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[11.4.6. The complete Lorentz group

» In the 3+ 1-D Minkowski space, spatial inversion and time reversal
have the representation:

I; = diag(1,—-1,-1,-1), I = diag(—1,1,1,1), (1)

with Il = —E and, in general, Is/\ls_1 = It/\lfl.

» At the level of Lorentz transformations,
LRIZY = LRI, = R, [LLI7Y = ILI7 = L7, (2)

» The transformations /s and /; split the complete Lorentz group in
four classes:

1. Proper, orthochronous: ZT, with A% >1and detA =1;
2. Improper, orthochronous: ZT_ = ISZL with A% > 1 and detA = —1,;
3. Improper, non-orthochronous: v = ItZIr :N% < —1,detA = —1.
4. Proper, non-orthochronous: Br = Itlsfl:fr tN% < —1,detA = —1;
» The cosets {ZL ISZTH ItZTH IsltZL} form a group isomorphic to the
dihedral group D, inducing 4 inequivalent, degenerate, 1D
representations of Z



I11.4.7. Time reversal as an antilinear operator

» It is clear that under time reversal, t — —t, which gives the matrix
representation of /;.

> In QM, the Schrodinger eq. demands ihd:1)(x, t) = Hi(x, t).
» Considering H = P?/2m + V/(x), it is clear that H — H under ;.

» In order for the Schrodinger eq. to be invariant under time reversal,
it is not enough to impose t — —t.

» The solution is to implement /; as an antilinear operator,
B(x, 1) 25 P (X, ) = bt (x, —t), (3)

R g I
which implies antilinearity: ay1; + apthy = o] + a3,



Antilinear and antiunitary operators

vvyVvVyy

Let A be an antilinear operator.

A does not commute with c-numbers: Ac = c*A.

Inner products behave as: (¢|Ay) = (p|Afg) = (Afg|y)".

Lemma: The eigenvectors satisfying A|A) = |A) A of A are divided
into classes characterized by |A|. In each class, there is an infinity of
eigenvectors, characterized by 0 < 6 = arg(\) < 2.

Proof: Consider Ae/®/? |\) = e=/*/2A|\) = e/®/2|\) \e~®. Thus
{e’/2|\),0 < a < 7} generates a one-parameter family of
eigenvectors of A with magnitude |A|.

Def: An antiunitary operator additionally satisfies AAT = E,
leading to (Ag|Ay) = (¥|¢) = (¢|y)".

If Ais antiunitary, then || = 1.

Theorem: The representation space of any group with time reversal
must contain eigenstates of /; in entire classes, characterized by the
eigenvalue (phase) of /;.



[11.4.8. Complete Poincaré group

» For translations, we have
T(B,b)I7t = T(b°,—b), L T(K°,b)I7t = T(—b°b). (4)
> Imposing Eq. (2) implies for the generators:

Is(J, K)lsil =(J,—K), l(J, K)I;1 = (—J,K),
Is(POa P)Isil = (P07 _P)v It('Dov P)Itil = (Pov _P)a (5)

since Ae"BA~L = ¢ABA™" for any antilinear A.
> At the level of the generators M = 2(J + iK) and N = 1(J — iK),
we have
I,(M,N)/; = (N, M), LM,N)I7t = (=N, -M), (6)

implying that /5 (M2, N2)/;} = (N2, M?2).



111.4.9.

>
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Finite-dimensional representations of L

Consider the basis |kl) = |u, k; v, ) = |kl), , satisfying

u,v’
(M3, N3, M? N?) [kl),, , = [kl), , (k,|,u(u+1),v(v+1). (7)

Under space reflection, we have s |kl), , = |lk), , 7, with |n| = 1.

When v # u, the basis vectors can be redefined to give n = 1; for

v = u, n = £1 gives two inequiv. irreps:

Theorem: The finite-D irreps of L belong to two classes:

(i) the self-conjugate reps with u = v are (2u + 1)?-dimensional and

are characterized by (u,n), with u =0,1/2,1,... and n = £1.

(i) the general reps, with u # v, are 2(2u + 1)(2v + 1)-dimensional

and behave as (u,v) @ (v, u).

Examples: Dirac spinor: (0, 3) & (3, 0)'
)

= (0, £1);

Vectors and axial vectors: (u,7n) = (%, +1);

Scalars and pseudoscalars: (u,

Second-rank anti-symmetric tensors: (1,0) & (0, 1).



111.4.10. Irreps of the complete Poincaré group
Time-like case ¢; > 0
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We consider states for which ¢; = P? = M? and
G =—W? = M?s(s + 1).
Considering the intrinsic parity 1, = %1, the rest-frame basis vector
is defined by
(P, J%,15) [0A) = [0A) (0, A, ), (8)

J3l: |0X) = —1; |0X) X shows that /; |O\) ~ |0, —\).

The action of /; can be “reverted” by employing the rotation Ry(7):
Ro(m)1: [0A) = [0X) n7 = 1[0A) = [0, =A) 7 (=1)°FA,  (9)

where the extra phase 71 can be absorbed into the basis vectors, by

defining [0))" = |O\) 771T/2.

Thus, we will work with the two basis vectors {|0,+\)} satisfying:

(P, J2, 1) [0, £2) = [0,£X) (0, £),7,), Ra(m)/:[0,£X) = |0, FA).
(10)



As usual, we consider the basis vectors generated using the Lorentz
transformations

IPA) = R(p) P&z, A),  [péz, A) = L3(£) [0A) . (11)
Since P71 = —P and [JI; = J, then s [pA) ~ |—p, —)).
Similarly, ItPI‘l —P and I1JI;1 = —J, so that I, [pA\) ~ |—pA).
To establish the relative phases, we consider the action of Rx(7)/s ¢
on |pé,, \):
Ro(m)ls |péz, A) = La(€)Ra(m)s [OA) = |pé, —A) mp(—1)°,
Ra(m)l: |p&z, A) = L3(§)Ra(m)l [ON) = [p&;, A) . (12)
On a general state, we have
ls |P)\> = R(p)ls |Péz» )‘> = R(_p)R3(:F7T) |Péz> _)‘> np(_l)S_A
= |_pa _A> npe:F”TSa
le [pA) = R(p): |pé., N) = R(—p)Rs(Fr) |p&.\) (—1)°*
o |7p>\> :tl7r)\ (]_3)

where we used R(p)Rz(—7) = R(—p)Rs(Fn), with upper/lower sign
when 0 < ¢ < 7 (7 < ¢ < 27) and (—1)°~* = eFims—A),



Light-like case ¢; = 0

> In this case, p; = (wo,0,0,wp) and
B lpiA) = piA) A, (Wi, W) [pA) = 0.
» Furthermore, including A = +m with m > 0, we have
Ro(m)ls lpim) = [pr,—m),  Ro(m)le [P1A) = [piA) 07,

with 77 arbitrary (set to nt = 1 henceforth).
» Note that Ry(7)ls |ps, —m) = |pym) (—1)3™.
» For an arbitrary vector [pA) = H(p) |p;\), we have

s |pA) = |=p, —A) €Tl pA) = [—pA) e,

with the upper/lower signs corresponding to 0 < ¢ <
(m < ¢ < 2m).

(14)

(15)



Exercises

1. The Dirac spinor 1) = (£,1)" is a collection of four complex
numbers that can be arranged in two two-spinors, & = (£1,&)7 and
17 = (n1,72). Under Lorentz transformations, ¢ behaves as

$(x) = ¢/ (x) = DIN(A"1x), DIA] = e~ #«erPU™1 0 (T1.1)

where the generators of the Lorentz transformations are

D[] = % (g 2) ., DIK] = é (2 ‘g) , (T1.2)

with o = (01, 02, 03) being the Pauli matrices:

01:<(l) (1)) 0—2:((,.) _0’) 03:@ _01> (T1.3)

a) Construct M = J(J +iK) and N = 1(J — iK).
b) Compute M? and N2. Find their eigenvalues (u, v) and simultaneous
eigenvectors:

M*Yuy = u(u+ 1)y, Ny = v(v + 1), (T1.4)
Therefore show that the Dirac field transforms as (1,0) & (0, 3).

c) Knowing that ¥ (t,x) Ly 7°4(t, —x), find explicitly the basis vectors
|Kl), , satisfying Is |kl), , = |Ik), .



Exercises

WKT11.7 Show that /s |psA), with p}" = (wo,0,0,wp), is an eigenvector of P*,
J7 and W12 and evaluate the eigenvalues.

WKT12.1 (i) Prove that n7 in Eq. (9) is independent of A. (ii) From Eq. (9),
construct an explicit basis |0, \) s.t. /;|0,4+)\)" = |0, FA) (—=1)°+?,
keeping in mind the Lemma on slide 5.

WKT12.2 Prove that /2 = (—1)2 by applying /; on both sides of Eqgs. (12) and
(13).



