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Lecture contents

Chapter 3. The Lorentz and Poincare groups

▶ III.1. The Lorentz and Poincare groups

▶ III.2. Representations of the Poincaré group

▶ III.3. Finite-dimensional vs. unitary representations

▶ III.4. Discrete symmetries



III.4.6. The complete Lorentz group

▶ In the 3 + 1-D Minkowski space, spatial inversion and time reversal
have the representation:

Is = diag(1,−1,−1,−1), It = diag(−1, 1, 1, 1), (1)

with Is It = −E and, in general, IsΛI
−1
s = ItΛI

−1
t .

▶ At the level of Lorentz transformations,

IsRI
−1
s = ItRIt = R, IsLI

−1
s = ItLI

−1
t = L−1. (2)

▶ The transformations Is and It split the complete Lorentz group in
four classes:

1. Proper, orthochronous: L̃↑
+, with Λ0

0 ≥ 1 and det Λ = 1;

2. Improper, orthochronous: L̃↑
− = Is L̃

↑
+, with Λ0

0 ≥ 1 and det Λ = −1;

3. Improper, non-orthochronous: L̃↓
− = It L̃

↑
+ : Λ0

0 ≤ −1, det Λ = −1.

4. Proper, non-orthochronous: L̃↓
+ = It Is L̃

↑
+ : Λ0

0 ≤ −1, det Λ = −1;

▶ The cosets {L̃↑+, Is L̃
↑
+, It L̃

↑
+, Is It L̃

↑
+} form a group isomorphic to the

dihedral group D2, inducing 4 inequivalent, degenerate, 1D
representations of L̃.



III.4.7. Time reversal as an antilinear operator

▶ It is clear that under time reversal, t → −t, which gives the matrix
representation of It .

▶ In QM, the Schrödinger eq. demands iℏ∂tψ(x, t) = Hψ(x, t).

▶ Considering H = P2/2m + V (x), it is clear that H → H under It .

▶ In order for the Schrödinger eq. to be invariant under time reversal,
it is not enough to impose t → −t.

▶ The solution is to implement It as an antilinear operator,

ψ(x, t)
It−→ ψ′(x′, t ′) = ηψ∗(x,−t), (3)

which implies antilinearity: α1ψ1 + α2ψ2
It−→ α∗

1ψ
′
1 + α∗

2ψ
′
2.



Antilinear and antiunitary operators

▶ Let A be an antilinear operator.

▶ A does not commute with c-numbers: Ac = c∗A.

▶ Inner products behave as: ⟨ϕ|Aψ⟩ = ⟨ψ|A†ϕ⟩ = ⟨A†ϕ|ψ⟩∗.
▶ Lemma: The eigenvectors satisfying A |λ⟩ = |λ⟩λ of A are divided

into classes characterized by |λ|. In each class, there is an infinity of
eigenvectors, characterized by 0 ≤ θ = arg(λ) < 2π.
Proof: Consider Ae iα/2 |λ⟩ = e−iα/2A |λ⟩ = e iα/2 |λ⟩λe−iα. Thus
{e iα/2 |λ⟩ , 0 ≤ α < π} generates a one-parameter family of
eigenvectors of A with magnitude |λ|.

▶ Def: An antiunitary operator additionally satisfies AA† = E ,
leading to ⟨Aϕ|Aψ⟩ = ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗.

▶ If A is antiunitary, then |λ| = 1.

▶ Theorem: The representation space of any group with time reversal
must contain eigenstates of It in entire classes, characterized by the
eigenvalue (phase) of It .



III.4.8. Complete Poincaré group

▶ For translations, we have

IsT (b0,b)I−1
s = T (b0,−b), ItT (b0,b)I−1

t = T (−b0,b). (4)

▶ Imposing Eq. (2) implies for the generators:

Is(J,K)I−1
s = (J,−K), It(J,K)I−1

t = (−J,K),

Is(P
0,P)I−1

s = (P0,−P), It(P
0,P)I−1

t = (P0,−P), (5)

since Ae−iBA−1 = e iABA
−1

for any antilinear A.

▶ At the level of the generators M = 1
2 (J+ iK) and N = 1

2 (J− iK),
we have

Is(M,N)I−1
s = (N,M), It(M,N)I−1

t = (−N,−M), (6)

implying that Is,t(M2,N2)I−1
s,t = (N2,M2).



III.4.9. Finite-dimensional representations of L̃

▶ Consider the basis |kl⟩ ≡ |u, k ; v , l⟩ ≡ |kl⟩u,v , satisfying

(M3,N3,M
2,N2) |kl⟩u,v = |kl⟩u,v (k , l , u(u + 1), v(v + 1)). (7)

▶ Under space reflection, we have Is |kl⟩u,v = |lk⟩v ,u η, with |η| = 1.

▶ When v ̸= u, the basis vectors can be redefined to give η = 1; for
v = u, η = ±1 gives two inequiv. irreps:

▶ Theorem: The finite-D irreps of L̃ belong to two classes:
(i) the self-conjugate reps with u = v are (2u + 1)2-dimensional and
are characterized by (u, η), with u = 0, 1/2, 1, . . . and η = ±1.
(ii) the general reps, with u ̸= v , are 2(2u + 1)(2v + 1)-dimensional
and behave as (u, v)⊕ (v , u).

▶ Examples: Dirac spinor: (0, 12 )⊕ ( 12 , 0);

▶ Scalars and pseudoscalars: (u, η) = (0,±1);

▶ Vectors and axial vectors: (u, η) = ( 12 ,±1);

▶ Second-rank anti-symmetric tensors: (1, 0)⊕ (0, 1).



III.4.10. Irreps of the complete Poincaré group
Time-like case c1 > 0

▶ We consider states for which c1 = P2 = M2 and
C2 = −W 2 = M2s(s + 1).

▶ Considering the intrinsic parity ηp = ±1, the rest-frame basis vector
is defined by

(P, Jz , Is) |0λ⟩ = |0λ⟩ (0, λ, ηp), (8)

▶ J3It |0λ⟩ = −It |0λ⟩λ shows that It |0λ⟩ ∼ |0,−λ⟩.
▶ The action of It can be “reverted” by employing the rotation R2(π):

R2(π)It |0λ⟩ = |0λ⟩ ηT ⇒ It |0λ⟩ = |0,−λ⟩ ηT (−1)s+λ, (9)

where the extra phase ηT can be absorbed into the basis vectors, by

defining |0λ⟩′ = |0λ⟩ η1/2T .

▶ Thus, we will work with the two basis vectors {|0,±λ⟩} satisfying:

(P, Jz , Is) |0,±λ⟩ = |0,±λ⟩ (0,±λ, ηp), R2(π)It |0,±λ⟩ = |0,∓λ⟩ .
(10)



▶ As usual, we consider the basis vectors generated using the Lorentz
transformations

|pλ⟩ = R(p) |pêz , λ⟩ , |pêz , λ⟩ = L3(ξ) |0λ⟩ . (11)

▶ Since IsPI−1
s = −P and IsJI−1

s = J, then Is |pλ⟩ ∼ |−p,−λ⟩.
▶ Similarly, ItPI

−1
t = −P and ItJI

−1
t = −J, so that It |pλ⟩ ∼ |−pλ⟩.

▶ To establish the relative phases, we consider the action of R2(π)Is,t
on |pêz , λ⟩:

R2(π)Is |pêz , λ⟩ = L3(ξ)R2(π)Is |0λ⟩ = |pêz ,−λ⟩ ηp(−1)s−λ,

R2(π)It |pêz , λ⟩ = L3(ξ)R2(π)It |0λ⟩ = |pêz , λ⟩ . (12)

▶ On a general state, we have

Is |pλ⟩ = R(p)Is |pêz , λ⟩ = R(−p)R3(∓π) |pêz ,−λ⟩ ηp(−1)s−λ

= |−p,−λ⟩ ηpe∓iπs ,

It |pλ⟩ = R(p)It |pêz , λ⟩ = R(−p)R3(∓π) |pêzλ⟩ (−1)s−λ

= |−pλ⟩ e±iπλ, (13)

where we used R(p)R2(−π) = R(−p)R3(∓π), with upper/lower sign
when 0 ≤ ϕ < π (π ≤ ϕ < 2π) and (−1)s−λ = e∓iπ(s−λ).



Light-like case c1 = 0

▶ In this case, pµl = (ω0, 0, 0, ω0) and

J3 |plλ⟩ = |plλ⟩λ, (W1,W2) |plλ⟩ = 0. (14)

▶ Furthermore, including λ = ±m with m > 0, we have

R2(π)Is |plm⟩ ≡ |pl ,−m⟩ , R2(π)It |plλ⟩ = |plλ⟩ ηT , (15)

with ηT arbitrary (set to ηT = 1 henceforth).

▶ Note that R2(π)Is |pl ,−m⟩ = |plm⟩ (−1)2m.

▶ For an arbitrary vector |pλ⟩ = H(p) |plλ⟩, we have

Is |pλ⟩ = |−p,−λ⟩ e∓iπ|λ|, It |pλ⟩ = |−pλ⟩ e±iπληT , (16)

with the upper/lower signs corresponding to 0 < ϕ < π
(π < ϕ < 2π).



Exercises
1. The Dirac spinor ψ = (ξ, η)T is a collection of four complex

numbers that can be arranged in two two-spinors, ξ = (ξ1, ξ2)
T and

η = (η1, η2). Under Lorentz transformations, ψ behaves as

ψ(x) → ψ′(x) = D[Λ]ψ(Λ−1x), D[Λ] = e−
i
2ωαβD[Jαβ ], (T1.1)

where the generators of the Lorentz transformations are

D[J] =
1

2

(
σ 0
0 σ

)
, D[K] =

i

2

(
0 σ
σ 0

)
, (T1.2)

with σ = (σ1, σ2, σ3) being the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (T1.3)

a) Construct M = 1
2
(J+ iK) and N = 1

2
(J− iK).

b) Compute M2 and N2. Find their eigenvalues (u, v) and simultaneous
eigenvectors:

M2ψu,v = u(u + 1)ψu,v , N2ψu,v = v(v + 1)ψu,v . (T1.4)

Therefore show that the Dirac field transforms as ( 1
2
, 0)⊕ (0, 1

2
).

c) Knowing that ψ(t, x)
Is−→ γ0ψ(t,−x), find explicitly the basis vectors

|kl⟩u,v satisfying Is |kl⟩u,v = |lk⟩v,u.



Exercises

WKT11.7 Show that Is |plλ⟩, with pµl = (ω0, 0, 0, ω0), is an eigenvector of Pµ,
Jz and W 1,2, and evaluate the eigenvalues.

WKT12.1 (i) Prove that ηT in Eq. (9) is independent of λ. (ii) From Eq. (9),
construct an explicit basis |0, λ⟩′ s.t. It |0,±λ⟩′ = |0,∓λ⟩′ (−1)s+λ,
keeping in mind the Lemma on slide 5.

WKT12.2 Prove that I 2t = (−1)2s by applying It on both sides of Eqs. (12) and
(13).


