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Chapter 3. The Lorentz and Poincare groups

▶ III.1. The Lorentz and Poincare groups

▶ III.2. Representations of the Poincaré group

▶ III.3. Finite-dimensional vs. unitary representations

▶ III.4. Discrete symmetries



III.3. Finite-dimensional vs. unitary representations
III.3.1. Covariant normalization

▶ In the induced representation method, we defined |pλ⟩ = H(p) |p̃λ⟩,
with p̃ ∈ {pt , pl , ps} being the representative momentum.

▶ Let us consider a normalization: ⟨p′λ′|pλ⟩ = N(p)δ3(p− p′)δλ
′
λ.

▶ For unitary representations, Λ†Λ = E and

⟨p′λ′|pλ⟩ = ⟨p′λ′|Λ†Λ|pλ⟩ = D†
s [R

′]λ
′

σ′ ⟨Λp′σ′|Λpσ⟩Ds [R]
σ
λ, (1)

where R ′ ≡ R(Λ, p′) and R ≡ R(Λ, p), ∀Λ ∈ L̃+.

▶ Imposing the same normalization, we have

N(p)δ3(p− p′) = N(Λp)δ3(Λp− Λp′), (2)

where we used that D†
s [R]

λ′
σ′δσ

′

σ Ds [R]
σ
λ = Ds [R

−1R]λ
′
λ = δλ

′

λ .

▶ Eq. (2) represents the condition for a covariant normalization.



III.3.2. Covariant integration measure
▶ To find N(p), consider the expansion of a state vector |ψ⟩:

|ψ⟩ =
∑
λ

∫
|pλ⟩ψλ(p)d̃p, (3)

where d̃p is the yet-to-be-determined integration measure.
▶ The components ψλ′(p′) = ⟨p′λ′|ψ⟩ can be obtained as

ψλ′(p′) =

∫
ψλ′(p)N(p)δ3(p− p′)d̃p ⇒ d̃p =

d3p

N(p)
. (4)

▶ If N(p) is covariant, then d̃p = d̃Λp and the integration measure
becomes Lorentz-invariant.

▶ For a 4-vector with arbitrary components pµ = (p0,p), we have

d4(Λp) = (detΛ)d4p = d4p, ∀Λ ∈ L̃+. (5)

▶ Imposing that p0 > 0 and moreover, p2 = p20 − p2 = c1, we have

d̃p =
2

N0
θ(p0)δ(p2 − c1)d

4p =
d3p

(2π)3p0
, (6)

where p0 =
√
p2 + c1 in the last expression and N0 = (2π)3 is a

conventional momentum-independent constant.



III.3.3. Relativistic wave functions
▶ Def: A c-number relativistic wave function is a set of n space-time

functions ψσ(x) which transform under Λ ∈ L̃+ as

ψ
Λ−→ ψ′, ψ′α(x) = D[Λ]αβψ

β(Λ−1x). (7)

▶ Examples are shown below:
▶ The Klein-Gordon wave function, ϕ(x), for which n = 1, transforming

with the (u, v) = (0, 0) irrep, describing spin-0 particles:

ϕ′(x) = ϕ(Λ−1x). (8)

▶ The antisymmetric field strength tensor Fµν(x), with F 0i = E i and
F ij = εijkBk , transforming as (1, 0)⊕ (0, 1):

F ′µν(x) = Λµ
αΛ

ν
βF

αβ(Λ−1x). (9)

▶ The four-potential Aµ(x), describing spin-1 particles (vector bosons),
transforming as (1/2, 1/2):

A′µ(x) = Λµ
νA

ν(Λ−1x). (10)

▶ The Dirac wave function ψα(x), with n = 4, transforming as
(0, 1/2)⊕ (1/2, 0), describing spin-1/2 particles:

ψ′(x) = D[Λ]ψ(Λ−1x), D[Λ] = e−
i
2
ωαβSαβ

, Sαβ =
i

4
[γα, γβ ]. (11)



III.3.4. Relativistic field operators

▶ Def: For a given matrix representation D[Λ] corresponding to the
internal indices of a relativistic wave function, the relativistic field
operator is a set of n operator-valued space-time functions {Ψα(x)}
which transform as

U[Λ]Ψα(x)U[Λ−1] = D[Λ−1]αβΨ
β(Λx), (12)

where U[Λ] acts on the Hilbert space where Ψ is defined.

▶ The relativistic field operators (quantum field theory) are the
second-quantized versions of the relativistic wave functions
(relativistic quantum mechanics).

▶ A free field Ψα(x) obeys the field equation Π(m, i∂)αβΨ
β(x) = 0,

where Π is a linear differential operator of first or second order w.r.t.
∂µ, that acts as an n × n matrix w.r.t. the internal structure α, β.

▶ Example: the Klein-Gordon equation: (∂µ∂µ −m2)Φ(x) = 0, for a
single-component operator Φ.

▶ Example: the Dirac equation: (iγµ∂µ −m)Ψ = 0, with γµ being the
4× 4 gamma matrices.



III.3.5. Lorentz-covariant wave equations

▶ Under the Fourier transform Ψα(x) =

∫
d4p

(2π)4
Φ̃α(p)e−ip·x , the

differential equation is converted into an algebraic one:

Π(m, p)Φ̃(p) = 0. (13)

▶ Under a Lorentz transformation, we have∫
d4p

(2π)4
U[Λ]Φ̃(p)U[Λ−1]e−ip·x =

∫
d4p

(2π)4
D[Λ−1]Φ̃(p)e−ip·Λx .

(14)

▶ Since p · (Λx) = (Λ−1p) · x and d4p = d4(Λ−1p), we must have

U[Λ]Φ̃(p)U[Λ−1] = D[Λ−1]Φ̃(Λp). (15)

▶ Imposing that Π(m,Λp)Φ̃(Λp) = 0, we have

D[Λ−1]Π(m,Λp)D[Λ] = Π(m, p), (16)

or Π(m,Λp) = D[Λ]Π(m, p)D[Λ−1].



III.3.6. Plane-wave expansion

▶ Field equations must contain the mass shell condition,

(p2 −m2)Φ̃(p) = 0. (17)

▶ This can be enforced by writing the solution as

Φ̃(p) = 2(2π)δ(p2 −m2)Φ(p), (18)

where p0 = ±Ep, with Ep =
√

p2 +m2.

▶ In QFT, the two branches corresponding to positive- and
negative-energy solutions represent particle and anti-particle states,
begin separated as

Ψ(x) =

∫
d̃p

[
Φ+(p)e

−ip·x +Φ−(p)e
ip·x] , (19)

where Φ±(p) = Φ(±Ep,±p) satisfies Π(m;±Ep,±p)Φ±(p) = 0.



▶ Consider now the case c1 = m2 > 0. The wavefunction uα(p = 0, λ)
corresponding to the reference momentum satisfies

Π(m, pt)
α
βu

β(0, λ) = 0, λ = −s,−s + 1, . . . s. (20)

▶ Then, uα(p, λ) = D[H(p)]αβu
β(0, λ) satisfies

Π(m, p)u(p, λ) = D[H(p)]Π(m, pt)u(0, λ) = 0, (21)

when pµ = H(p)µνp
ν
t .

▶ The elementary plane wave solutions uα(p, λ) represent the concrete
realisation of the momentum basis states |p, λ⟩.

▶ The general solution of the field equation is then

Ψα(x) =
∑
λ

∫
d̃p[e−ip·xuα(p, λ)b(p, λ) + negative energy terms].

(22)

▶ In QFT, the expansion coefficients b(p, λ) are one-particle
annihilation operators and their Hermitian conjugates, b†(p, λ), are
one-particle creation operators.



III.3.7. Lorentz-Poincaré connection
▶ In QFT, particle states with definite momentum can be created from

the vacuum |0⟩ using the creation operators:

|p, λ⟩ = b†(p, λ) |0⟩ . (23)

▶ Starting from the reference state |0, λ⟩ = b†(0, λ) |0⟩, we have

|p, λ⟩ = H(p) |0λ⟩ = H(p)b†(0, λ)H−1(p)H(p) |0⟩ , (24)

which shows that b†(p, λ) = H(p)b†(0, λ)H−1(p), while

U[Λ]b†(p, λ)U[Λ−1] = b†(Λp, λ′)Ds [R(Λ, p)]
λ′

λ,

U[Λ]b(p, λ)U[Λ−1] = Ds [R
−1(Λ, p)]λλ′b(Λp, λ′). (25)

▶ The wavefunction of a state |ϕ⟩ is ϕα(x) = ⟨0|Ψα(x)|ϕ⟩.
▶ The plane wave solutions can be obtained as

uα(p, λ)e−ip·x = ⟨0|Ψα(x)|p, λ⟩ =
∑
λ′

∫
d̃p′e−ip′·xuα(p′, λ′)

× ⟨0|b(p′, λ′)b†(p, λ)|0⟩ , (26)

which implies

⟨0|b(p′, λ′)b†(p, λ)|0⟩ = (2π)3Epδ
3(p− p′). (27)



▶ Theorem: The c-number wave functions uα(p, λ)e−ip·x are the
coefficient functions which connect the operators b(p, λ),
transforming as unitary irreps (m, s) of the Poincaré group, to the
set of field operators Ψα(x), transforming as finite-dimensional
non-unitary representations of the Lorentz group.

▶ Applying Λ on the plane-wave expansion in Eq. (22) gives:

U(Λ)Ψα(x)U(Λ−1) = D[Λ−1]αα′

∑
λ

∫
d̃p

× [b(Λp, λ)uα
′
(Λp, λ)e−ip·x + a.p.], (28)

where a.p. denotes the antiparticle sector.
▶ Using Eq. (25), we have

U(Λ)Ψα(x)U(Λ−1) =
∑
λ,λ′

Ds [R
−1(Λ, p)]λ

′

λ

∫
d̃p

× [b(Λp, λ)uα
′
(p, λ′)e−ip·x + a.p.]. (29)

▶ Comparing the two expressions above, it follows that

D[Λ]αα′uα
′
(p, λ) = uα(Λp, λ′)Ds [R(Λ, p)]

λ′

λ. (30)



III.3.8. Relativistic wave equations
▶ Relativistic wave equations have as solutions the plane-wave basis

vectors, u(p, λ), satisfying Π(m, p)αβu
β(p, λ) = 0.

▶ In general, Π(m, p) acts on the Lorentz structure α, β, . . . under a
finite-dimensional (non-unitary) representation, e.g. (u, v) = ( 12 ,

1
2 )

for the vector field Aµ and ( 12 , 0)⊕ (0, 12 ) for the Dirac field ψ(x).
▶ A priori, uα(p, λ) can be decomposed into |u − v | ≤ j ≤ u + v . If

the field operator Ψ(x) characterizes particles with a definite spin s,
▶ Then, Π(m, p) must project out all j ̸= s. Focussing on the

characteristic momentum state, pt , we have

Πj′λ′

jλ(pt) ∼ δj
′

s δ
j
sδ

λ′

λ . (31)

▶ W.r.t. the direct product representation basis |kl⟩ of (u, v), we have

Πk′l′
kl(pt) ∼

∑
λ

⟨k ′l ′(uv)sλ⟩ ⟨sλ(uv)kl⟩ . (32)

▶ At arbitrary p, we have

Π(m, p) = D[H(p)]Π(m, pt)D[H(p)−1], (33)

or explicitly,

Πj′λ′

jλ(m, p) ∼
∑
σ

D[H(p)]j
′λ′

sσD[H(p)−1]sσ jλ. (34)



III.4. Discrete transformations
III.4.1. Space inversion

▶ Space inversion is a transformation that changes the sign of one or
several spatial coordinates.

▶ In 2D, we have Iαêi = êj(Iα)j i , with α ∈ {1, 2, s}:

I1 =

(
−1 0
0 1

)
, I2 =

(
1 0
0 −1

)
, Is =

(
−1 0
0 −1

)
. (35)

▶ Since det Is = 1, Is ∈ SO(2), corresponding to a rotation by π.

▶ det I1 = det I2 = −1 ⇒ I1, I2 /∈ SO(2).

▶ Taking I2 as reference, Iθ = R(θ)I2R
−1(θ) represents the reflection

into the line inclined at θ w.r.t. the x axis.

▶ In general, IR(θ)I−1 = R(−θ),∀R(θ) ∈ SO(2).

▶ Clearly, IJI−1 = −J.

▶ The orthogonal group O(2) consists of all matrices satisfying
ATA = E and is comprised of R and I2R, with R ∈ SO(2).



III.4.2. Irreps of O(2)

▶ Considering the irrep given by |m⟩ with J |m⟩ = |m⟩m, the spatial
inversion corresponds to m → −m:

JI |m⟩ = I |m⟩ (−m) ⇒ I |m⟩ = |−m⟩ e iαm . (36)

▶ Since I 2 = E , we have α−m = −αm.

▶ The phase ambiguity can be absorbed in the definition of the basis
vectors. Defining |m⟩′ = |m⟩ and |−m⟩′ = |−m⟩ e iαm , we have
I |m⟩′ = |−m⟩′ with α′

m = −α′
m = 0.

▶ Theorem: O(2) has two types of inequiv. unitary irreps: (i) two
degenerate 1D irreps:

R(θ) |0η⟩ = |0η⟩ , I |0η⟩ = |0η⟩ η, η = ±1; (37)

and (ii) the faithful angular momentum basis {|±m⟩}, for each
m = 1, 2, . . . , with

R(θ) |±m⟩ = |±m⟩ e∓imθ, I |±m⟩ = |∓m⟩ . (38)



III.4.3. Extended Euclidean group Ẽ2

▶ Def: The extended Euclidean group Ẽ2 represents the full symmetry
group of the 2D Euclidean space and consists of translations,
rotations and space reflections.

▶ The action of a spatial inversion I on translations is

IT (b)I−1 = T (Ib), IPi I
−1 = Pj I

j
i . (39)

▶ Translations make an invariant subgroup ⇒ the factor group
Ẽ2/T2 ∼ O(2).

▶ As in the case of E2, we have the degenerate irrep corresponding to
p2 = 0, induced by the factor group O(2).

▶ The faithful irreps are characterized by P2 and η (inversion
eigenvalue).

▶ Starting from the standard p0 = pi, we have

P |p0⟩ = |p0⟩p0, I2 |p0⟩ = |p0⟩ η, (40)

with η = ±1.



III.4.4. The O(3) group
▶ In 3D, the spatial inversion is Is = diag(−1,−1,−1), flipping

simultaneously the signs of all spatial coordinates.
▶ Theorem: The elements A of the O(3) group, satisfying ATA = E ,

are divided into two classes: R and IsR, ∀R ∈ SO(3).
▶ Theorem: The space inversion commutes with all rotations and

their generators:

IsRI
−1
s = R, [Is , Ji ] = 0. (41)

Proof: Straightforward, since Is = −E in the natural representation.
▶ Therefore, Is is a Casimir operator. Together with j , its eigenvalue
η = ±1 distinguishes between irreps:

(J3, J
2, Is) |m⟩ = |m⟩ (m, j(j + 1), η). (42)

▶ In the case of spherical harmonics, Ylm(û) = ⟨û|lm⟩ changes under
space inversion to

Ylm(−û) = ⟨û|Is |lm⟩ = ηYlm(û). (43)

▶ As a Casimir operator, η can be evaluated for û = êz and m = 0:

⟨êz |Is |l0⟩ = ⟨−êz |l0⟩ = ⟨êz |R2(π)|l0⟩ = (−1)lYl0(êz). (44)

▶ Thus, η = (−1)l .



III.4.5. The extended Euclidean group Ẽ3

▶ Spatial inversion acts on translations by flipping the sign of their
argument:

IsT (b)I−1
s = T (−b), IsPI

−1
s = −P. (45)

▶ While P2 remains a Casimir operator, J · P flips sign under Is ⇒ the
second Casimir is (J · P)2.

▶ The degenerate representations, corresponding to P = 0, are
induced by the factor group Ẽ3/T3 ∼ O(3).

▶ The non-degenerate irreps are induced by O(2), the little group of
p0 = pêz . The irrep is characterized by (p, η) and

(P, J3) |p0,±⟩ = |p0,±⟩ (p0,±λ), I2 |p0,±⟩ = |p0,∓⟩ . (46)

▶ The general basis vector is obtained via |p,±⟩ = R(p) |p0,±⟩.
▶ The effect of Is = R2(π)I2 is

Is |p,±⟩ = IsR(ϕ, θ, 0) |p0,±⟩ = R(ϕ, θ, 0)R2(π) |p,∓⟩
= R(π + ϕ, π) |−p∓⟩ (−1)λ. (47)



Exercises

1. Show that a four-vector Aµ transforms under the Lorentz group as
the (u, v) = ( 12 ,

1
2 ) representation.

WKT11.2 Write down the 3× 3 matrix representation of the momentum
operators (P1,P2) and the inversions (I1, I2). Verify Eq. (39)
explicitly.

WKT11.4 Derive de representation matrices for the operators T (b), R(α, β, γ)

and Is in the irrep corresponding to P2 = p2 ̸= 0, (J ·P)2 = 0 for Ẽ3.

WKT11.5 Define the angular momentum basis of the (p, η) representation of

Ẽ3 in terms of the linear momentum basis given by Eq. (??). Derive
the representation matrices of the elements of the subgroup O(3).

WKT11.6 Find eigenstates of the operator Iθ = R(θ)I2R
−1(θ) in the vector

space of the m-irrep (m = 1, 2, . . . ) of the O(2) group and the
associated eigenvalues.


