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Lecture contents

Chapter 3. The Lorentz and Poincare groups

▶ III.1. The Lorentz and Poincare groups

▶ III.2. Representations of the Poincaré group

▶ III.3. Discrete symmetries; Representations of the full Poincare group

▶ III.4. Symmetries and conserved quantities



III.2. Representations of the Poincaré group
III.2.1. Equivalence of the Lorentz group to SU(2)×SU(2)

▶ Consider the new basis

Mm =
1

2
(Jm + iKm), Nm =

1

2
(Jm − iKm), (1)

or inversely,

Jm = Mm + Nm, Km = −i(Mm − Nm). (2)

▶ Their commutators read:

[Mm,Mn] = iεmnkMk , [Nm,Nn] = iεmnkNk , [Mm,Nn] = 0. (3)

▶ The Lie algebra corresponds to SU(2)M × SU(2)N .

▶ The irreps of SU(2) can be used to generate irreps of L̃+.
▶ Since SU(2) is compact, its unitary irreps are finite-dimensional;

however, L̃+ is non-compact.
▶ Mm, Nm, Jm, Km cannot be simultaneously Hermitian ⇒ the

corresponding irreps will be non-unitary.
▶ L̃+ and SU(2)M × SU(2)N are equivalent only at Lie algebra level;

the groups are isomorphic only close to E .



III.2.2. Finite-dimensional representations
▶ We impose M† = M and N† = N.
▶ Let u(u + 1) and v(v + 1) be the eigenvalues of the Casimir

operators M2 and N2 of SU(2)M and SU(2)N .
▶ The basis vectors can be labeled as |kl⟩ ≡ |u, k ; v , l⟩:

J3 |kl⟩ = |kl⟩ (l + k), K 3 |kl⟩ = |kl⟩ i(l − k),

J± |kl⟩ = |k ± 1, l⟩
√
u(u + 1)− k(k ± 1)

+ |k , l ± 1⟩
√
v(v + 1)− l(l ± 1),

K± |kl⟩ = |k , l ± 1⟩ i
√
v(v + 1)− l(l ± 1)

− |k ± 1, l⟩ i
√
u(u + 1)− k(k ± 1). (4)

▶ K †
3 = −K3 is anti-Hermitian and the corresponding representations

are non-unitary.
▶ W.r.t. the J2, J3 basis, the |kl⟩ rep. can be decomposed into irreps

|j ,mj⟩, labeled (j0, j1), with j0 = |u − v | and j1 = u + v .
▶ 4-vectors aµ transform with (u, v) = (1/2, 1/2): a0 is invariant

under rotations (j0 = 0); ai transforms as a 3-vector (j1 = 1).
▶ Second-rank tensors tµν transform as (0, 0) (trace), (1, 0)⊕ (0, 1)

(antisymmetric part) and (1, 1) irreps (see homework).



III.2.3. Unitary representations of L̃+
▶ We now use the |jm⟩ ≡ |j0, j1; j ,m⟩ basis and impose unitarity,

J†m = Jm and K †
m = Km.

▶ The matrix elements of K → K 1
σ = {−K+/

√
2,K 3,K−/

√
2} are

⟨j ′m′|K 3|jm⟩ = Aj′
j ⟨j ′m′(1, j)0m⟩ ,

⟨j ′m′|K±|jm⟩ = ∓
√
2Aj′

j ⟨j ′m′(1, j)± 1m⟩ , (5)

where we used the Wigner-Eckart theorem and Aj′
j is the reduced

matrix element.

▶ The selection rules impose |j − 1| ≤ j ′ ≤ j + 1.

▶ Using [K±,K 3] = ±J± and [K+,K−] = −2J3 eventually leads to

Aj
j =

iνj0√
j(j + 1)

, Aj
j−1 = −

√
j(2j − 1)Bjξj ,

Aj−1
j =

√
j(2j + 1)

Bj

ξj
, B2

j =
(j2 − j20 )(j

2 − ν2)

j2(4j2 − 1)
, (6)

where ν and ξj are arbitrary complex numbers.



▶ Imposing K †
3 = K3 and K †

± = K∓ leads to 2 irreps:

▶ Theorem: There are two classes of unitary irreps of L̃+: a) the
principal series, with v = −iw and w ∈ R, while j0 = 0, 1/2, 1, . . . ;
b) the complementary series, when −1 ≤ ν ≤ 1 and j0 = 0. In both
cases, ξj = 1.
Proof: Will be discussed later.

▶ In terms of M2 and N2, we have j0 = |u − v | and ν = u + v .



III.2.4. Casimir operators of the Poincaré group P̃
▶ P̃ has the Casimir operator C1 = PµP

µ = P2
0 − P2.

Proof: Clearly, [Pµ,C1] = 0 since T (b) is abelian; Then, using
[Jαβ ,Pµ] = i(Pαgβµ − Pβgαµ), we have

[Jαβ ,C1] = Pµ[Jαβ ,Pµ] + [Jαβ ,Pµ]P
µ = 0. (7)

▶ Its eigenvalue c1 ∈ R distinguishes between: timelike (c1 > 0); null
(c1 = 0); and spacelike (c1 < 0) states.

▶ Theorem: The Pauli-Lubanski vector W µ = 1
2ε

µαβλJαβPλ

satisfies:

W µPµ = 0, [W µ,Pλ] = 0, [W µ, Jλσ] = i(W λgµσ −W σgµλ),

[W µ,W ν ] = iεµνλσWλPσ. (8)

Proof: (i) is trivial; (ii) follows from [Jαβ ,Pµ] = i(Pαgβµ − Pβgαµ):

[W µ,Pλ] =
i

2
εµναβPν(Pαδ

λ
β − Pβδ

λ
α) = 0. (9)

(iii) follows from the definition of W µ as a four-vector; (iv) HW!

▶ Theorem: C2 = −W µWµ is a Casimir operator of P̃.
Proof: [C2,Pλ] = 0 trivially; [C2, Jαβ] = 2i(W βW α−W αW β) = 0.



III.2.5 Induced unitary irreps of P̃
Trivial case

▶ We consider momentum eigenstates: Pµ |p⟩ = |p⟩ pµ.
▶ When pµ = 0, both c1 = c2 = 0 and the little group is L̃+.

▶ The irreps of P̃ for this case are those of the Lorentz group:

T (b) |0jm⟩ = |0jm⟩ , Λ |0jm⟩ = |0j ′m′⟩Dj0,ν [Λ]
j′m′

jm. (10)



Time-like case (c1 = M2 > 0)
▶ The standard vector is taken as pµt = (M, 0), corresponding to a

mass M at rest.

▶ The little group of pµt is SO(3) and every unitary irrep of SO(3)

induces a unitary irrep of P̃.

▶ Consider the vectors |0λ⟩, satisfying

(Pµ, J2, J3) |0λ⟩ = |0λ⟩ (pµt , s(s + 1), λ), (11)

with λ = −s,−s + 1, . . . s, generating an inv. subsp. w.r.t. SO(3).

▶ The second Casimir evaluates to c2 = M2J2 = s(s + 1)M2.

▶ The other vectors can be generated via

|pλ⟩ = H(p) |0λ⟩ , H(p) = R(ϕ, θ, 0)L3(ξ), (12)

with cosh ξ = p0/M.

▶ The eigenvalue λ can be linked to the helicity operator,
h = J · P/|P|:

J · P
|P|

|pλ⟩ = R
J · P
|P|

|pk, λ⟩ = RJ3L3(ξ) |0λ⟩ = |pλ⟩λ. (13)



Time-like case
▶ Theorem: (i) The vector space spanned by |pλ⟩ is invariant under

the Poincaré group transformations, that act as follows:

T (b) |pλ⟩ = pλe−ibµpµ , Λ |pλ⟩ = |p′λ′⟩Ds [R(Λ, p)]
λ′

λ, (14)

with p′µ = Λµ
νp

ν and R(Λ, p) = H−1(p′)ΛH(p).
(ii) The resulting representation, labelled (M, s), is unitary and
irreducible.
Proof: Pµ |pλ⟩ = PµH(p) |0λ⟩ = H(p)Pν |0λ⟩H(p)µν = |pλ⟩ pµ.
Acting with Λ on |pλ⟩ = H(p) |0λ⟩ gives:

Λ |pλ⟩ = H(p′)[H−1(p′)ΛH(p)] |0λ⟩ = |p′λ′⟩Ds [R(Λ, p)]
λ′

λ,

where p′ = Λp, such that H−1(p′)ΛH(p) = R(Λ, p) is an element of
the little group of pt .

▶ Theorem: (i) The independent components of W µ form the Lie
algebra of the little group of pµ. (ii) To every irrep of the little
group corresponds an induced rep. of the full Poincaré group by
successive application of L̃+. (iii) The unitary irreps are
characterized by C1 = P2 and C2 = −W 2.



Light-like case (c1 = 0)

▶ Since p2 = p20 − p2 = 0 ⇒ p2/p20 = v2/c2 = 1.

▶ Light-like 4-vectors have no rest frame ⇒ the standard momentum
is taken as pµl = (ω0, 0, 0, ω0).

▶ Let pµ = (ω,p), where p = ωp̂ and p̂ ≡ p̂(θ, ϕ) a unit vector. Then:

pµ = H(p)µνp
ν
l , H(p) = R(ϕ, θ, 0)L3(ξ), (15)

with ω = (cosh ξ + sinh ξ)ω0 = eξω0.

▶ The little group of pµl can be found by computing:

W µ → ω0

2
Jαβ(ε

µαβ0− εµαβ3) = ω0(J3, J1+K 2, J2−K 1, J3). (16)

▶ The Lie algbera is:

[W 1,W 2] = 0, [W 2, J3] = iW 1, [W 1, J3] = −iW 2, (17)

corresponding to E2 (when W 1,2 → P1,2).



Light-like caes
▶ The irreps of E2 are labelled by |wλ⟩, with,

J3 |wλ⟩ = |wλ⟩λ, C2 |wλ⟩ = (W 2
1 +W 2

2 ) |wλ⟩ = |wλ⟩w2. (18)

▶ In physics, only the w = 0 states are relevant: neutrinos
(λ = −1/2), anti-neutrinos (λ = 1/2), photons (λ = ±1), etc.

▶ We consider the states |plλ⟩ satisfying:

(Pµ, J3) |plλ⟩ = |plλ⟩ (pµl , λ), (W1,W2) |plλ⟩ = (0, 0). (19)

▶ The induced subspace is |pλ⟩ = H(p) |plλ⟩, with
H = R(ϕ, θ, 0)L3(ξ) and p = ω0e

ξ.

▶ Theorem: |pλ⟩ span a vector space invariant under P̃+; the
resulting rep., labelled (M = 0, λ), is unitary and irreducible and

T (b) |pλ⟩ = |pλ⟩ e−ibµpµ , Λ |pλ⟩ = |p′λ⟩ e−iλθ(Λ,p), (20)

where p′µ = Λµ
νp

ν and

⟨plλ′|H−1(Λp)ΛH(p)|plλ⟩ = e−iλθ(Λ,p)δλ
′

λ. (21)

▶ Important difference: the helicity λ is invariant under Λ for M = 0,
while for M > 0, it is transformed among all 2s + 1 possible values.



Space-like case: c1 = −Q2 < 0
▶ The standard momentum is pµ

s = (0, 0, 0,Q) and the little group is:

W µ → −Q

2
εµαβ3 = Q(−J3,K 2,−K 1, 0). (22)

▶ The second Casimir operator is C2 = −W 2 = K 2
1 + K 2

2 − J2
3 .

▶ The Lie algebra consists of

[K 2, J3] = iK 1, [J3,K 1] = iK 2, [K 1,K 2] = −iJ3, (23)

corresp. to the (non-compact) SO(2, 1) group ⇒ infinite-dim. unitary
irreps.

▶ w = c2/Q
2 can take either continuous, positive values: 0 < w < ∞; or

discrete negative values: w = −j(j + 1), with j = 0, 1/2, 1, . . . .
▶ The states |pλ⟩ can be generated as follows:

|pλ⟩ = H(p) |psλ⟩ , H(p) = R3(ϕ)L1(ζ)L3(ξ), (24)

where
(0, 0, 0,Q)

L3(ξ)−−−→ Q(sinh ξ, 0, 0, cosh ξ)

L1(ζ)−−−→ Q(sinh ξ cosh ζ, sinh ξ sinh ζ, 0, cosh ξ)

R3(ϕ)−−−→ (Q sinh ξ cosh ζ, p⊥, cosh ξ), (25)

with p⊥ = Q sinh ξ sinh ζ(i cosϕ+ j sinϕ).



Exercises

1. Compute the Clebsch-Gordan coefficients ⟨JM(j , 1)mm′⟩ by directly
decomposing the direct product representation |jm; j ′m′⟩, with
j ′ = 1. Writing m = M −m′, express the result as the table below:

j ′ = 1 m′ = 1 m′ = 0 m′ = −1

J = j + 1
√

(j+M)(j+M+1)
(2j+1)(2j+2)

√
(j−M+1)(j+M+1)

(2j+1)(j+1)

√
(j−M)(j−M+1)
(2j+1)(2j+2)

J = j −
√

(j+M)(j−M+1)
2j(j+1)

M√
j(j+1)

√
(j−M)(j+M+1)

2j(j+1)

J = j − 1
√

(j−M)(j−M+1)
2j(j+1)

−
√

(j−M)(j+M)
j(2j+1)

√
(j+M+1)(j+M)

2j(2j+1)

(26)

2. Follow Appendix VII in Wu-Ki Tung to derive Eq. (6) and to
establish the Theorem on slide 6.

WKT10.5 Show that an anti-symmetric second-rank tensor in Minkowski space
transforms as the (1, 0)⊕ (0, 1) representation of the Lorentz group.

WTK10.6 (i) Show that the trace of a second-rank tensor, tµµ, is invariant
under all Lorentz transformations, so that it transforms as the (0, 0)
representation. (ii) Show that the traceless symmetric tensor
t̃µν = 1

2 (t
µν + tνµ)− 1

4g
µνtλλ transforms under Lorentz

transformations as the (1, 1) representation.



Exercises
3. Consider the Pauli-Lubanski vector, W µ = 1

2ε
µαβλJαβPλ.

a) Consider an index ξ ̸= µ with fixed value. Show that

W µ = εµαβξ( 12JαβPξ + JξαPβ) (no summation over ξ). (27)

b) Compute [W µ, Jλσ], knowing [Pµ, Jλσ] = −i(Pλgµσ − Pσgµλ)
and [Jµν , Jλσ] = −i(Jµλgνσ − Jµσgνλ − Jνλgµσ + Jνσgµλ).

c) Clearly, λ ̸= σ. Consider now simultaneously that µ ̸= λ and
µ ̸= σ, and let ξ be a fourth index such that, without loss of
generality, (µ, λ, σ, ξ) form an even permutation of (0, 1, 2, 3) (i.e.,
εµλσξ = 1). Show that, in this case, [W µ, Jλσ] = 0.

d) Consider now µ = λ but µ ̸= σ. Considering the result from part
a), show that [W µ, Jλσ] = −i(W λgµσ −W σgµλ).

WKT10.9 Derive the unitary irreps of the group SO(2, 1), which has as its
generators (K1,K2, J3).

WKT10.11 Show that if p is a time-like or light-like 4-vector, then the sign of its
time component and that of Λp is the same, for all proper
homogeneous Lorentz transformations Λ.


