Symmetries in Physics Lecture 10

Victor E. Ambruș

Universitatea de Vest din Timișoara

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lecture contents

Chapter 3. The Lorentz and Poincare groups

- ▶ III.1. The Lorentz and Poincare groups
- III.2. Representations of the Poincaré group
- ▶ III.3. Discrete symmetries; Representations of the full Poincare group

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

III.4. Symmetries and conserved quantities

III.2. Representations of the Poincaré group III.2.1. Equivalence of the Lorentz group to $SU(2) \times SU(2)$

Consider the new basis

$$M^{m} = \frac{1}{2}(J^{m} + iK^{m}), \qquad N^{m} = \frac{1}{2}(J^{m} - iK^{m}), \qquad (1)$$

or inversely,

$$J^m = M^m + N^m, \qquad K^m = -i(M^m - N^m).$$
 (2)

Their commutators read:

 $[M^m, M^n] = i\varepsilon^{mnk}M^k, \quad [N^m, N^n] = i\varepsilon^{mnk}N^k, \quad [M^m, N^n] = 0.$ (3)

- The Lie algebra corresponds to $SU(2)_M \times SU(2)_N$.
- The irreps of SU(2) can be used to generate irreps of \tilde{L}_+ .
- ▶ M_m , N_m , J_m , K_m cannot be simultaneously Hermitian \Rightarrow the corresponding irreps will be non-unitary.
- ▶ L_+ and $SU(2)_M \times SU(2)_N$ are equivalent only at Lie algebra level; the groups are isomorphic only close to E.

III.2.2. Finite-dimensional representations

- We impose $\mathbf{M}^{\dagger} = \mathbf{M}$ and $\mathbf{N}^{\dagger} = \mathbf{N}$.
- Let u(u + 1) and v(v + 1) be the eigenvalues of the Casimir operators M² and N² of SU(2)_M and SU(2)_N.
- The basis vectors can be labeled as $|kl\rangle \equiv |u, k; v, l\rangle$:

$$J^{3} |kl\rangle = |kl\rangle (l+k), \qquad K^{3} |kl\rangle = |kl\rangle i(l-k),$$

$$J^{\pm} |kl\rangle = |k \pm 1, l\rangle \sqrt{u(u+1) - k(k \pm 1)}$$

$$+ |k, l \pm 1\rangle \sqrt{v(v+1) - l(l \pm 1)},$$

$$K^{\pm} |kl\rangle = |k, l \pm 1\rangle i \sqrt{v(v+1) - l(l \pm 1)}$$

$$- |k \pm 1, l\rangle i \sqrt{u(u+1) - k(k \pm 1)}.$$
(4)

- ▶ K₃[†] = −K₃ is anti-Hermitian and the corresponding representations are non-unitary.
- ▶ W.r.t. the **J**², J^3 basis, the $|kl\rangle$ rep. can be decomposed into irreps $|j, m_j\rangle$, labeled (j_0, j_1) , with $j_0 = |u v|$ and $j_1 = u + v$.
- ▶ 4-vectors a^µ transform with (u, v) = (1/2, 1/2): a⁰ is invariant under rotations (j₀ = 0); aⁱ transforms as a 3-vector (j₁ = 1).
- Second-rank tensors t^{µν} transform as (0,0) (trace), (1,0) ⊕ (0,1) (antisymmetric part) and (1,1) irreps (see homework).

III.2.3. Unitary representations of \tilde{L}_+

• We now use the $|jm\rangle \equiv |j_0, j_1; j, m\rangle$ basis and impose unitarity, $J_m^{\dagger} = J_m$ and $K_m^{\dagger} = K_m$.

▶ The matrix elements of $\mathbf{K} \to K_{\sigma}^1 = \{-K^+/\sqrt{2}, K^3, K^-/\sqrt{2}\}$ are

$$\langle j'm'|K^{3}|jm\rangle = A^{j'}{}_{j} \langle j'm'(1,j)0m\rangle , \langle j'm'|K^{\pm}|jm\rangle = \mp \sqrt{2}A^{j'}{}_{j} \langle j'm'(1,j)\pm 1m\rangle ,$$
 (5)

where we used the Wigner-Eckart theorem and $A^{j'}{}_{j}$ is the reduced matrix element.

▶ The selection rules impose $|j - 1| \le j' \le j + 1$.

▶ Using $[K^{\pm}, K^3] = \pm J^{\pm}$ and $[K^+, K^-] = -2J^3$ eventually leads to

$$\mathcal{A}^{j}_{j} = \frac{i\nu j_{0}}{\sqrt{j(j+1)}}, \qquad \mathcal{A}^{j}_{j-1} = -\sqrt{j(2j-1)}B_{j}\xi_{j},$$
$$\mathcal{A}^{j-1}_{j} = \sqrt{j(2j+1)}\frac{B_{j}}{\xi_{j}}, \qquad B_{j}^{2} = \frac{(j^{2}-j_{0}^{2})(j^{2}-\nu^{2})}{j^{2}(4j^{2}-1)}, \qquad (6)$$

where ν and ξ_i are arbitrary complex numbers.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

• Imposing $K_3^{\dagger} = K_3$ and $K_{\pm}^{\dagger} = K_{\mp}$ leads to 2 irreps:

Theorem: There are two classes of unitary irreps of *L*₊: a) the principal series, with v = −iw and w ∈ ℝ, while j₀ = 0, 1/2, 1, ...;
 b) the complementary series, when −1 ≤ ν ≤ 1 and j₀ = 0. In both cases, ξ_j = 1.
 Proof: Will be discussed later.

▶ In terms of \mathbf{M}^2 and \mathbf{N}^2 , we have $j_0 = |u - v|$ and $\nu = u + v$.

III.2.4. Casimir operators of the Poincaré group P

▶ \widetilde{P} has the Casimir operator $C_1 = P_{\mu}P^{\mu} = P_0^2 - \mathbf{P}^2$. **Proof:** Clearly, $[P^{\mu}, C_1] = 0$ since T(b) is abelian; Then, using $[J_{\alpha\beta}, P_{\mu}] = i(P_{\alpha}g_{\beta\mu} - P_{\beta}g_{\alpha\mu})$, we have

$$[J_{\alpha\beta}, C_1] = P^{\mu}[J_{\alpha\beta}, P_{\mu}] + [J_{\alpha\beta}, P_{\mu}]P^{\mu} = 0.$$
 (7)

- Its eigenvalue c₁ ∈ ℝ distinguishes between: timelike (c₁ > 0); null (c₁ = 0); and spacelike (c₁ < 0) states.</p>
- **Theorem:** The Pauli-Lubanski vector $W^{\mu} = \frac{1}{2} \varepsilon^{\mu\alpha\beta\lambda} J_{\alpha\beta} P_{\lambda}$ satisfies:

$$W^{\mu}P_{\mu} = 0, \quad [W^{\mu}, P^{\lambda}] = 0, \quad [W^{\mu}, J^{\lambda\sigma}] = i(W^{\lambda}g^{\mu\sigma} - W^{\sigma}g^{\mu\lambda}),$$
$$[W^{\mu}, W^{\nu}] = i\varepsilon^{\mu\nu\lambda\sigma}W_{\lambda}P_{\sigma}. \tag{8}$$

Proof: (i) is trivial; (ii) follows from $[J_{\alpha\beta}, P_{\mu}] = i(P_{\alpha}g_{\beta\mu} - P_{\beta}g_{\alpha\mu})$:

$$[W^{\mu}, P^{\lambda}] = \frac{i}{2} \varepsilon^{\mu\nu\alpha\beta} P_{\nu} (P_{\alpha} \delta^{\lambda}_{\beta} - P_{\beta} \delta^{\lambda}_{\alpha}) = 0.$$
 (9)

(iii) follows from the definition of W^{μ} as a four-vector; (iv) HW!

► **Theorem:** $C_2 = -W^{\mu}W_{\mu}$ is a Casimir operator of \widetilde{P} . **Proof:** $[C_2, P_{\lambda}] = 0$ trivially; $[C_2, J_{\alpha\beta}] = 2i(W^{\beta}_{\Box}W^{\alpha}_{\Box} - W^{\alpha}_{\Box}W^{\beta}_{\Box}) = 0$.

III.2.5 Induced unitary irreps of *P* Trivial case

- We consider momentum eigenstates: $P^{\mu} \ket{p} = \ket{p} p^{\mu}$.
- When $p^{\mu} = 0$, both $c_1 = c_2 = 0$ and the little group is \widetilde{L}_+ .
- The irreps of \widetilde{P} for this case are those of the Lorentz group:

$$T(b) |0jm\rangle = |0jm\rangle, \quad \Lambda |0jm\rangle = |0j'm'\rangle D_{j_0,\nu}[\Lambda]^{j'm'}{}_{jm}.$$
(10)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Time-like case ($c_1 = M^2 > 0$)

- The standard vector is taken as p^µ_t = (M, 0), corresponding to a mass M at rest.
- The little group of p_t^µ is SO(3) and every unitary irrep of SO(3) induces a unitary irrep of P̃.

• Consider the vectors $|\mathbf{0}\lambda\rangle$, satisfying

$$(P^{\mu}, \mathbf{J}^{2}, J^{3}) |\mathbf{0}\lambda\rangle = |\mathbf{0}\lambda\rangle (p_{t}^{\mu}, s(s+1), \lambda),$$
(11)

with $\lambda = -s, -s + 1, \dots s$, generating an inv. subsp. w.r.t. SO(3).

- The second Casimir evaluates to $c_2 = M^2 \mathbf{J}^2 = s(s+1)M^2$.
- The other vectors can be generated via

$$|\mathbf{p}\lambda\rangle = H(p) |\mathbf{0}\lambda\rangle, \qquad H(p) = R(\phi, \theta, 0)L_3(\xi), \qquad (12)$$

with $\cosh \xi = p^0/M$.

• The eigenvalue λ can be linked to the helicity operator, $h = \mathbf{J} \cdot \mathbf{P} / |\mathbf{P}|$:

$$\frac{\mathbf{J} \cdot \mathbf{P}}{|\mathbf{P}|} |\mathbf{p}\lambda\rangle = R \frac{\mathbf{J} \cdot \mathbf{P}}{|\mathbf{P}|} |\mathbf{p}\mathbf{k}, \lambda\rangle = R J^3 L_3(\xi) |\mathbf{0}\lambda\rangle = |\mathbf{p}\lambda\rangle \lambda.$$
(13)

Time-like case

Theorem: (i) The vector space spanned by |pλ⟩ is invariant under the Poincaré group transformations, that act as follows:

$$T(b) |\mathbf{p}\lambda\rangle = \mathbf{p}\lambda e^{-ib^{\mu}p_{\mu}}, \quad \Lambda |\mathbf{p}\lambda\rangle = |\mathbf{p}'\lambda'\rangle D_{s}[R(\Lambda, p)]^{\lambda'}{}_{\lambda}, \quad (14)$$

with $p'^{\mu} = \Lambda^{\mu}{}_{\nu}p^{\nu}$ and $R(\Lambda, p) = H^{-1}(p')\Lambda H(p)$. (ii) The resulting representation, labelled (M, s), is unitary and irreducible.

Proof: $P^{\mu} |\mathbf{p}\lambda\rangle = P^{\mu}H(p) |\mathbf{0}\lambda\rangle = H(p)P^{\nu} |\mathbf{0}\lambda\rangle H(p)^{\mu}{}_{\nu} = |\mathbf{p}\lambda\rangle p^{\mu}.$ Acting with Λ on $|\mathbf{p}\lambda\rangle = H(p) |\mathbf{0}\lambda\rangle$ gives:

$$\Lambda |\mathbf{p}\lambda\rangle = H(p')[H^{-1}(p')\Lambda H(p)]|0\lambda\rangle = |\mathbf{p}'\lambda'\rangle D_{s}[R(\Lambda,p)]^{\lambda'}{}_{\lambda},$$

where $p' = \Lambda p$, such that $H^{-1}(p')\Lambda H(p) = R(\Lambda, p)$ is an element of the little group of p_t .

► Theorem: (i) The independent components of W^µ form the Lie algebra of the little group of p^µ. (ii) To every irrep of the little group corresponds an *induced rep*. of the full Poincaré group by successive application of \$\tilde{L}_+\$. (iii) The unitary irreps are characterized by \$C_1 = P^2\$ and \$C_2 = -W^2\$.

Light-like case $(c_1 = 0)$

• Since
$$p^2 = p_0^2 - \mathbf{p}^2 = 0 \Rightarrow \mathbf{p}^2 / p_0^2 = v^2 / c^2 = 1$$
.

- ► Light-like 4-vectors have no rest frame \Rightarrow the standard momentum is taken as $p_l^{\mu} = (\omega_0, 0, 0, \omega_0)$.
- Let $p^{\mu} = (\omega, \mathbf{p})$, where $\mathbf{p} = \omega \hat{\mathbf{p}}$ and $\hat{\mathbf{p}} \equiv \hat{\mathbf{p}}(\theta, \phi)$ a unit vector. Then:

$$p^{\mu} = H(p)^{\mu}{}_{\nu}p^{\nu}_{l}, \quad H(p) = R(\phi, \theta, 0)L_{3}(\xi), \quad (15)$$

with $\omega = (\cosh \xi + \sinh \xi)\omega_0 = e^{\xi}\omega_0$.

• The little group of p_l^{μ} can be found by computing:

$$W^{\mu} \to \frac{\omega_0}{2} J_{\alpha\beta} (\varepsilon^{\mu\alpha\beta0} - \varepsilon^{\mu\alpha\beta3}) = \omega^0 (J^3, J^1 + K^2, J^2 - K^1, J^3).$$
(16)

The Lie algbera is:

$$[W^1, W^2] = 0, \quad [W^2, J^3] = iW^1, \quad [W^1, J^3] = -iW^2,$$
 (17)

corresponding to E_2 (when $W^{1,2} \rightarrow P^{1,2}$).

Light-like caes

• The irreps of E_2 are labelled by $|w\lambda\rangle$, with,

$$J^{3} |w\lambda\rangle = |w\lambda\rangle\lambda, \quad C_{2} |w\lambda\rangle = (W_{1}^{2} + W_{2}^{2}) |w\lambda\rangle = |w\lambda\rangle w^{2}.$$
(18)

- In physics, only the w = 0 states are relevant: neutrinos $(\lambda = -1/2)$, anti-neutrinos $(\lambda = 1/2)$, photons $(\lambda = \pm 1)$, etc.
- We consider the states $|\mathbf{p}_l \lambda\rangle$ satisfying:

$$(P^{\mu}, J_3) |\mathbf{p}_l \lambda\rangle = |\mathbf{p}_l \lambda\rangle (p_l^{\mu}, \lambda), \quad (W_1, W_2) |\mathbf{p}_l \lambda\rangle = (0, 0).$$
(19)

- The induced subspace is $|\mathbf{p}\lambda\rangle = H(p) |\mathbf{p}_l \lambda\rangle$, with $H = R(\phi, \theta, 0) L_3(\xi)$ and $p = \omega_0 e^{\xi}$.
- ▶ **Theorem:** $|\mathbf{p}\lambda\rangle$ span a vector space invariant under \hat{P}_+ ; the resulting rep., labelled ($M = 0, \lambda$), is unitary and irreducible and

$$T(b) |\mathbf{p}\lambda\rangle = |\mathbf{p}\lambda\rangle e^{-ib^{\mu}p_{\mu}}, \quad \Lambda |\mathbf{p}\lambda\rangle = |\mathbf{p}'\lambda\rangle e^{-i\lambda\theta(\Lambda,p)}, \qquad (20)$$

where $p^{\prime\mu}=\Lambda^{\mu}{}_{\nu}p^{\nu}$ and

$$\langle \mathbf{p}_{l} \lambda' | H^{-1}(\Lambda p) \Lambda H(p) | \mathbf{p}_{l} \lambda \rangle = e^{-i\lambda\theta(\Lambda,p)} \delta^{\lambda'}{}_{\lambda}.$$
(21)

Important difference: the helicity λ is invariant under Λ for M = 0, while for M > 0, it is transformed among all 2s + 1 possible values.

Space-like case: $c_1 = -Q^2 < 0$

• The standard momentum is $p_s^{\mu} = (0, 0, 0, Q)$ and the little group is:

$$W^{\mu} \rightarrow -\frac{Q}{2} \varepsilon^{\mu\alpha\beta3} = Q(-J^3, K^2, -K^1, 0).$$
 (22)

• The second Casimir operator is $C_2 = -W^2 = K_1^2 + K_2^2 - J_3^2$.

The Lie algebra consists of

$$[K^2, J^3] = iK^1, \quad [J^3, K^1] = iK^2, \quad [K^1, K^2] = -iJ^3,$$
(23)

corresp. to the (non-compact) SO(2,1) group \Rightarrow infinite-dim. unitary irreps.

- ▶ $w = c_2/Q^2$ can take either continuous, positive values: $0 < w < \infty$; or discrete negative values: w = -j(j+1), with j = 0, 1/2, 1, ...
- The states $|\mathbf{p}\lambda\rangle$ can be generated as follows:

$$|\mathbf{p}\lambda\rangle = H(p) |p_s\lambda\rangle, \quad H(p) = R_3(\phi)L_1(\zeta)L_3(\xi),$$
 (24)

where

$$(0, 0, 0, Q) \xrightarrow{L_{3}(\xi)} Q(\sinh \xi, 0, 0, \cosh \xi)$$
$$\xrightarrow{L_{1}(\zeta)} Q(\sinh \xi \cosh \zeta, \sinh \xi \sinh \zeta, 0, \cosh \xi)$$
$$\xrightarrow{R_{3}(\phi)} (Q \sinh \xi \cosh \zeta, \mathbf{p}_{\perp}, \cosh \xi), \qquad (25)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with $\mathbf{p}_{\perp} = Q \sinh \xi \sinh \zeta (\mathbf{i} \cos \phi + \mathbf{j} \sin \phi).$

Exercises

1. Compute the Clebsch-Gordan coefficients $\langle JM(j,1)mm' \rangle$ by directly decomposing the direct product representation $|jm;j'm'\rangle$, with j' = 1. Writing m = M - m', express the result as the table below:

- 2. Follow Appendix VII in Wu-Ki Tung to derive Eq. (6) and to establish the Theorem on slide 6.
- WKT10.5 Show that an anti-symmetric second-rank tensor in Minkowski space transforms as the $(1,0) \oplus (0,1)$ representation of the Lorentz group.
- WTK10.6 (i) Show that the trace of a second-rank tensor, $t^{\mu}{}_{\mu}$, is invariant under all Lorentz transformations, so that it transforms as the (0,0) representation. (ii) Show that the traceless symmetric tensor $\tilde{t}^{\mu\nu} = \frac{1}{2}(t^{\mu\nu} + t^{\nu\mu}) - \frac{1}{4}g^{\mu\nu}t^{\lambda}{}_{\lambda}$ transforms under Lorentz transformations as the (1, 1) representation.

Exercises

- 3. Consider the Pauli-Lubanski vector, $W^{\mu} = \frac{1}{2} \varepsilon^{\mu\alpha\beta\lambda} J_{\alpha\beta} P_{\lambda}$.
 - a) Consider an index $\xi \neq \mu$ with fixed value. Show that

$$W^{\mu} = \varepsilon^{\mu\alpha\beta\xi} (\frac{1}{2} J_{\alpha\beta} P_{\xi} + J_{\xi\alpha} P_{\beta}) \qquad \text{(no summation over } \xi\text{)}. \tag{27}$$

b) Compute
$$[W^{\mu}, J^{\lambda\sigma}]$$
, knowing $[P_{\mu}, J_{\lambda\sigma}] = -i(P_{\lambda}g_{\mu\sigma} - P_{\sigma}g_{\mu\lambda})$
and $[J_{\mu\nu}, J_{\lambda\sigma}] = -i(J_{\mu\lambda}g_{\nu\sigma} - J_{\mu\sigma}g_{\nu\lambda} - J_{\nu\lambda}g_{\mu\sigma} + J_{\nu\sigma}g_{\mu\lambda})$.

c) Clearly, $\lambda \neq \sigma$. Consider now simultaneously that $\mu \neq \lambda$ and $\mu \neq \sigma$, and let ξ be a fourth index such that, without loss of generality, $(\mu, \lambda, \sigma, \xi)$ form an even permutation of (0, 1, 2, 3) (i.e., $\varepsilon^{\mu\lambda\sigma\xi} = 1$). Show that, in this case, $[W^{\mu}, J^{\lambda\sigma}] = 0$.

d) Consider now $\mu = \lambda$ but $\mu \neq \sigma$. Considering the result from part a), show that $[W^{\mu}, J^{\lambda\sigma}] = -i(W^{\lambda}g^{\mu\sigma} - W^{\sigma}g^{\mu\lambda})$.

WKT10.9 Derive the unitary irreps of the group SO(2,1), which has as its generators (K_1, K_2, J_3) .

NKT10.11 Show that if p is a time-like or light-like 4-vector, then the sign of its time component and that of Λp is the same, for all proper homogeneous Lorentz transformations Λ .