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Lecture contents

Chapter 3. The Lorentz and Poincare groups
» IlI.1. The Lorentz and Poincare groups
> |11.2. Representations of the Poincaré group
» [11.3. Discrete symmetries; Representations of the full Poincare group

» [Il.4. Symmetries and conserved quantities



[11.2. Representations of the Poincaré group
I11.2.1. Equivalence of the Lorentz group to SU(2) x SU(2)

» Consider the new basis

1 1
M™ = E(Jm + iK™, N = E(Jm —iK™), (1)
or inversely,
JT=M"4+ N, K™= —i(M™ — N™). (2)

» Their commutators read:
[M™, M"] = ie™*M¥,  [N™,N"] = ie™*N*, [M™ N"] =0. (3)
» The Lie algebra corresponds to SU(2)y x SU(2)n.
> The irreps of SU(2) can be used to generate irreps of L.
> Since SU(2) is compact, its unitary irreps are finite-dimensional;
however, L, is non-compact.

» M., Np, Jn, Kn cannot be simultaneously Hermitian = the
corresponding irreps will be non-unitary.

> L[ and SU(2)y x SU(2)y are equivalent only at Lie algebra level;
the groups are isomorphic only close to E.



I11.2.2. Finite-dimensional representations
» We impose M = M and Nt = N.
» Let u(u+1) and v(v + 1) be the eigenvalues of the Casimir
operators M? and N2 of SU(2)u and SU(2)n.
» The basis vectors can be labeled as |kl) = |u, k; v, [):

LIkly = k) (I + k),  K3|kl) = |kI)i(] — k),
JENkD = |k+ 1,1 /u(u+1) — k(k£1)
+ |k, 1+ 1) Vv(v+1) = I(l £1),
KE |kl) = |k, 1 £ 1) i/v(v+1) — I(I £ 1)
—k£1,0)i/u(u+1) — k(k+1). (4)

> K3T = —Kj3 is anti-Hermitian and the corresponding representations
are non-unitary.

> W.r.t. the J2, J3 basis, the |k/) rep. can be decomposed into irreps
lj, mj), labeled (jo, 1), with jo = |u—v| and j; = u—|— v.

» 4-vectors a* transform with (u,v) = (1/2,1/2): a° is invariant
under rotations (jo = 0); a' transforms as a 3-vector (j; = 1).

» Second-rank tensors t*¥ transform as (0,0) (trace), (1,0) & (0,1)
(antisymmetric part) and (1, 1) irreps (see homework).



11.2.3.

>

>

Unitary representations of Z+

We now use the |jm) = |jo,j1;j, m) basis and impose unitarity,
JI = Jm and K = K,p,.

The matrix elements of K — K} = {—K*/v/2, K3, K~ /\/2} are
G'm' K3 jm) = AL (' m/ (1, /)0m)
G'm'|[KEjm) = FV2A; ('m'(1,)) + 1m), (5)

where we used the Wigner-Eckart theorem and A/'; is the reduced
matrix element.

The selection rules impose |j — 1| <j/ <j+ 1.
Using [K*, K3] = £J% and [K*, K~] = —2J3 eventually leads to

A — ) » (PG -A)
Al = m?ja B = 242 -1) (6)

where v and §; are arbitrary complex numbers.




» Imposing K3T = K3 and Kj[ = K leads to 2 irreps:

» Theorem: There are two classes of unitary irreps of er a) the
principal series, with v = —jw and w € R, while o =0,1/2,1,...;
b) the complementary series, when —1 < v <1 and jo = 0. In both
cases, & = 1.
Proof: Will be discussed later.

» In terms of M? and N2, we have jo = |u—v| and v = u + v.



[11.2.4. Casimir operators of the Poincaré group P
> P has the Casimir operator C; = P, P = P2 — P2,
Proof: Clearly, [P*, C;] = 0 since T(b) is abelian; Then, using
[Jop, Pu]l = i(Pagsu — Ppgay), we have
[ag: Gl = P*[Jag: Pul + [Jas, P]P* =0. (7)
> lts eigenvalue ¢; € R distinguishes between: timelike (¢; > 0); null
(e1 = 0); and spacelike (¢ < 0) states.

» Theorem: The Pauli-Lubanski vector W# = %EM“W‘JMP,\
satisfies:

WP, =0, [WH PN =0, [WF J]=iW gh® —Wg),
[WH, W¥] = ie" " Wy P,. (8)

Proof: (i) is trivial; (ii) follows from [Jos, P,] = i(Pagsu — P3&ap):
(W, PY] = SeM P P, (Pad} — Pd)) = 0. 9)

(iii) follows from the definition of W* as a four-vector; (iv) HW!

» Theorem: G, = —WHW, is a Casimir operator of P.
Proof: [Co, P\] = 0 trivially; [C2, Jag] = 2i(WP WS — WeWF) = 0.



[11.2.5 Induced unitary irreps of P
Trivial case

» \We consider momentum eigenstates: PH |p) = |p) p*.
> When p" =0, both ¢; = ¢, = 0 and the little group is L.

» The irreps of P for this case are those of the Lorentz group:

T(b)|0jm) = [0jm), A [0jm) = [0'm') Dy [NV ™ jm- ~ (10)



Time-like case (¢ = M? > 0)

>

>

>

The standard vector is taken as pt' = (M, 0), corresponding to a
mass M at rest.

The little group of pt' is SO(3) and every unitary irrep of SO(3)
induces a unitary irrep of P.
Consider the vectors |0)), satisfying

(P, 32, ) 10N) = |ON) (pt, s(s + 1), ), (11)
with A = —s, —s+1,...s, generating an inv. subsp. w.r.t. SO(3).

The second Casimir evaluates to c; = M2J2 = s(s + 1)M?.
The other vectors can be generated via

IpA) = H(p)[0X),  H(p) = R(¢,0,0)L3(¢), (12)

with cosh & = p°/M.
The eigenvalue X can be linked to the helicity operator,
h=1J-P/IP|

J-P J
T PN = Rr P 1ok A) = REL(€)[0X) = [pA) A (13)



Time-like case

» Theorem: (i) The vector space spanned by |pA) is invariant under
the Poincaré group transformations, that act as follows:

T(b)[pA) = pre™Pr, AlpX) = [p'N) Do[R(A,p)]¥ 5. (14)

with p'* = A*,p” and R(A, p) = H1(p')AH(p).

(ii) The resulting representation, labelled (M, s), is unitary and
irreducible.

Proof: P¥ [pA) = P H(p)[0) = H(p)P” [0) H(p)", = [pA) p".
Acting with A on |pA) = H(p) |0\) gives:

AlpA) = H(p")[H (P )AH(P)]10A) = [p'X') DS[R(A. p)]" 3,

where p’ = Ap, such that H=(p')AH(p) = R(A, p) is an element of
the little group of p;.

» Theorem: (i) The independent components of W* form the Lie
algebra of the little group of p*. (ii) To every irrep of the little
group corresponds an induced rep. of the full Poincaré group by
successive application of L. (iii) The unitary irreps are
characterized by C; = P? and G, = —W?2.



Light-like case (¢; = 0)

» Since p? = p? —p?>=0=p?/p3 = v?/c2 =1
> Light-like 4-vectors have no rest frame = the standard momentum
is taken as p|" = (wo, 0,0, wp).

> Let p* = (w,p), where p = wp and p = p(0, ¢) a unit vector. Then:

pt = H(p)uup;jv H(p) = R(¢7970)L3(£)7 (15)

with w = (cosh & + sinh &)wy = e*wp.
> The little group of p|* can be found by computing:

W — D (7070 = e#9%3) = WO(S, 4 K2, 2= K, ). (16)
» The Lie algbera is:
Wt w3 =0, [W?P]=iwt [W!P]=-iw?  (17)

corresponding to E, (when W12 — pPL.2),



Light-like caes
> The irreps of E; are labelled by [w), with,
Liwd) = |wh) A, G |wd) = (WZ + WZ) |w)) = [w)) w?. (18)

» In physics, only the w = 0 states are relevant: neutrinos
(A = —1/2), anti-neutrinos (A = 1/2), photons (A = +1), etc.
» We consider the states |p;A) satisfying:
('D#a J3) ‘p//\> = |p/)‘> (p#7/\)7 (Wh W2) |p/)‘> = (070)' (19)

» The induced subspace is |pA) = H(p) |p;A), with
H = R(6,0,0)L3(€) and p = wpet.

» Theorem: |p)\) span a vector space invariant under ﬁ+; the
resulting rep., labelled (M = 0, A), is unitary and irreducible and

T(b)[pA) = [pA) e ™7, AlpA) = [p'A) e M) (20)
where p’* = A", p” and
(PN H Y (Ap)AH(p)|piA) = e MAPIGA | (21)

» Important difference: the helicity A is invariant under A for M = 0,
while for M > 0, it is transformed among all 2s 4 1 possible values.



Space-like case: ¢; = —Q? < 0
» The standard momentum is p£ = (0,0, 0, Q) and the little group is:

W — —gs‘“‘“ = Q(-/, K* —K,0). (22)
» The second Casimir operator is G = —W? = K2 + K7 — J3.
» The Lie algebra consists of
(K%, Pl =K', [P K'=iK? [K'K]=-iP, (23)

corresp. to the (non-compact) SO(2,1) group = infinite-dim. unitary
irreps.

> w = c/Q? can take either continuous, positive values: 0 < w < co; or
discrete negative values: w = —j(j + 1), with j =0,1/2,1,....

> The states |pA) can be generated as follows:

IpA) = H(p) IpsA) . H(p) = Ra(¢)L1(C)L3(€), (24)

where
(0,0,0, Q) L), Q(sinh £, 0,0, cosh &)

RION Q(sinh & cosh ¢, sinh £ sinh ¢, 0, cosh &)
Ra@), ——= (Qsinh&cosh ¢, pL,cosh§), (25)

with p1. = Qsinh sinh ((icos ¢ + jsin ¢).



Exercises

1. Compute the Clebsch-Gordan coefficients (JM(j, 1)mm’) by directly
decomposing the direct product representation |jm;j'm’), with
Jj/ = 1. Writing m = M — m’, express the result as the table below:

j/=1 | m =1 m =0 m = —

J—j+1 ‘ G+M)(j+M+1) (=M+1)(j+M+1) (=M)(—M+1)
=J (2+1)(2j+2) (2j+1)(+1) (2j+1)(2j+2)

J= _ [GEMG=M+1) M G—mM(Gtmt1)  (26)
=J Vo 204 i+ 2(+1)

J=i_1 ‘ (=M)(=M+1) _ . [G=m)GEM) G+MFD)G+M)
=J 2(1) 7@i+1) 22/ +1)

2. Follow Appendix VII in Wu-Ki Tung to derive Eq. (6) and to
establish the Theorem on slide 6.

WKT10.5 Show that an anti-symmetric second-rank tensor in Minkowski space
transforms as the (1,0) @ (0, 1) representation of the Lorentz group.

WTK10.6 (i) Show that the trace of a second-rank tensor, t#,,, is invariant
under all Lorentz transformations, so that it transforms as the (0, 0)
representation. (ii) Show that the traceless symmetric tensor
i = 1(¢" + t1) — 1givt? ) transforms under Lorentz
transformations as the (1, 1) representation.



Exercises

3. Consider the Pauli-Lubanski vector, W# = $e1PA J, 5P,
a) Consider an index & # p with fixed value. Show that

W = etPE(LJ 5P + Jea Ps) (no summation over £). (27)

b) Compute [W*, J*?], knowing [Py, Jro] = —i(Prguo — Pogunr)
and [Jp,lu J)\a] = _i(Ju)\gya - J;mgu/\ - Jl/)\g;m + Jl/ogu/\)-

c) Clearly, A # o. Consider now simultaneously that x # A and
u# o, and let £ be a fourth index such that, without loss of
generality, (u, A, 0,&) form an even permutation of (0,1,2,3) (i.e.,
ghr9& = 1). Show that, in this case, [W*, J*°] = 0.

d) Consider now p = A but u # o. Considering the result from part
a), show that [WH, JA7] = —i(WAgho — W7 ght).

WKT10.9 Derive the unitary irreps of the group SO(2,1), which has as its
generators (Ki, Kz, J3).

NKT10.11 Show that if p is a time-like or light-like 4-vector, then the sign of its
time component and that of Ap is the same, for all proper
homogeneous Lorentz transformations A.



