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[11.1. The Lorentz and Poincare groups
[11.1.1. Definitions

» Def: An event is characterized by four numbers: x* = (x°, x), with
x% = ct representing the “temporal length” (time multiplied by c)
and x the usual spatial coordinates.

> Def: The difference x* = x{' — x§' between the coordinates of two
events is a coordinate four-vector.

» Obs: The coordinates of an event can be considered as a four-vector
when (implicitly) expressed as the difference with respect to the
origin at (ct,x) = (0,0).

» Def: The scalar product of two four-vectors u* and v* can be
defined in terms of the Minkowski metric tensor g,

u-v=guuv' =0 —u-v, g, =diag(l,-1,-1,-1). (1)

» Def: The length of a four-vector is u? = g, utu” = (u°)? — u?.

» Def: The 4D spate-time endowed with the Minkowski metric g, is
called the Minkowski space-time (ST).

» Def: The components u* are contravariant components.

> Def: u, = g, u” = (u°, —u) are covariant components.

» Def: u* = g*”u, uses the inverse metric tensor,
ghv = g, = diag(1,—-1,-1,-1).



11.1.2.

>

Homogeneous Lorentz transformations

Def: The homogeneous Lorentz transformations are continuous
linear transformations which preserve the length of 4-vectors:

’ ’
8, — &y =N, X=Xt =N XY x*=x2 (2

Obs: The preservation of norm implies
X2 = g xH X" = g xtxY, ie.
guvN Ny =g & Ngh=g, Nl1=ghgt (3)
Since detg = —1 = det A = A\° A1, A% \A3,e#7A7 = £1, with
60123 = 1.
Moreover, g, A*oNo = (A%)? — (Ng)?> =1 = [A%| > 1.
Def: The homogeneous Lorentz transfs. are linear 4 x 4 matrices
with A% > 0 that leave g*” and e***? invariant (i.e., detA = 1).

Eq. (3) provides 10 relations = A*,, is characterized by 16 — 10 = 6
indep. params.: 3 rotations and 3 Lorentz boosts:

cosh¢ sinhé 0 O
1 0 sinhé coshé 0 0
H — . © fy
R v — <0 RIJ) (Ll) v 0 0 1 0/’ (4)
0 0 0 1

with cosh & =~ and sinh ¢ = 3, s.t. tanh§é =8 =v/c.



11.1.3.

>

Proper Lorentz group

The proper Lorentz group Z+ is comprised of the homogeneous
Lorentz transfs. that are continuously connected to E, i.e. having
detA =1 and A% > 1.

The group is called SO(1,3), signaling the signature of the metric
8w With respect to which A are orthogonal.

The pure boosts, such as L, are unbounded, as
—00 < & < 00 = Ly is non-compact.

It can be seen that (LI)“V = (L))", # (L7Y)*, = A are non-unitary.

Covariant components transform with the inverse matrix:
! -1
u, = gu’l/’/\y Vuy = Ap/’/ul/ = ul/(/\ )VM" (5)
Similarly, the four-derivative 9, = (¢ ™19, V) transforms as a
covariant vector:

Ix* _
Oy = 2 0y — (N 1P0h = A0 ©)



I11.1.4. Causality structure
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» When expressed w.r.t. x5 = (0,0), events x* fall in one of three
distinct ST regions, separated by the light cone (LC):

x?=c*t? —x*=0. (M)
Future cone: when x° > 0 and x? = (x%)? — x? > 0;
Past cone: when x° > 0 and x? = (x°)2 — x2 > 0;
Region outside the light cone: x? < 0.
Intervals within the LC are time-like and IA € L, s.t. x*' = (ct',0).

Int. outside the LC are space-like and IA € L, s.t. x* = (0,x').
Vectors are time-like (142 > 0), space-like (u? < 0),or null (u*= Q)
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[11.1.5. Decomposition of Lorentz transformations
» Theorem: A general A € Z+ can be uniquely factorized as

- R(a7670)L3(£)R_1(¢’9aw)7 (8)
where L3(&) is a boost along the positive z axis: 0 < £ < oo.
Proof: (I) Since gl“,/\“o/\uo = (/\00)2 — (/\11)2 — (/\22)2 — (/\33)2 = 1,
one can parametrize

Ny = A% = cosh¢, (Aly,A%,A%) =A =sinhén(B,a),  (9)

with n(8, @) =sin B(icosa + jsin &) + kcos 3.

(i) Consider t* = &5 = (1,0,0,0) a unit vector along the time axis.
Then, all SO(3) rotations form the little group of t#, since Rt = t.
Furthermore,

[AE]* = Ao = A" [R(a, 3,0)L3(€)E]" = A*. (10)
Hence, A=1R(a, 8,0)L3(¢) € SO(3) as it leaves { invariant:
A'R(e, 8,0)L3(€) = R(¢,60,¢) = A = R(a, 3,0)L3(§)R(, 0, 1)).

» A pure rotation corresponds to £ = 0;
» A pure boost along (6, ¢) corresponds to ) =0, a = ¢ and 5 = 6.



I1.1. 6 Relation to SL(2,C)

» Let x* — X = x*o,, with o* = (E, o) and

(3 D=0 () ) w

» Then:

0 3 1 52
_ X" — X —X" + IX 02 22
» A Lorentz transf. acting on x* induces a transformation A acting as
X — X' = AXAT.
» Since x* = A" ,x” has the same length as x*, we have

det X’ = det X| det A]> = det X. (13)

» We fix the phase of A such that detA =1.

» Def: The Special linear group SL(2,C) consists of the complex
2 X 2 matrices A having unit determinant: detA = 1.

» SL(2,C) is characterized by 6 independent parameters (4 x 2 =8
real entries —2 x 1 from determinant constraint).

» To each matrix A, we can associate two matrices £A(A), as both
det A=1 and X’ = AXAT are quadratic in the elements of A.

» SL(2,C) is the universal cov. gr. of SO(1,3), as SU(2) is for SO(3).



[11.1.7. Poincaré group.

» Def: The space-time translations and proper Lorentz B
transformations, as well as their products, form the group P, called
the Poincaré Group, or the inhomogeneous Lorentz group.

> g(b,A) € P acts as x" — x* = b + AW, xV.

» The products is g(b', A')g(b,\) = g(N'b+ b', N'A), while
g7 1(b,AN) = g(—A\"1bh,A7L).

» The transformation can be represented using 5 x 5 matrices:

g(b,A) - ("g bf) X = (Xl”). (14)

» Theorem: A general element of the Poincaré group can be
factorized as g(b,\) = T(b)A.

» Theorem: The translations form an invariant subgroup:
AT(b)A=L = T(Ab).



I11.1.8. Lie algebra of the Poincaré group

» The Poincaré group has 10 generators: 4 for space-time translations;
3 for the SO(3) rotations; and 3 for the Lorentz boosts.

» Def: The covariant generators for translations P, are defined by
T(6b) = E —i6b*P, = T(b)=e ®'Pu (15)
» Theorem: Under the Lorentz group, P, transform as
AP, ANt =P,N,,  APEATY = (NTHELPY. (16)
Proof: Applying AT(b)A~1 = T(Ab) infinitesimally gives
ASBHP YN = (N, 6bM)P, = AP AN Y=P,A,. (17)

Raising the index gives APFA™1 = A HPY = (AL)H, PV,



> Def: The covariant generators for the Lorentz transformations J,,,,
are anti-symmetric tensors defined by A(dw) = E — 50w"” Jyy,,.
» In the case of rotations, R(d6) = E — i60 - J gives the identification:

(591 = 50.}23 = —(5w32, Jl = J23 = —J32,
662 = 6wt = —sw'3, P == s,
663 = dw'? = —sw?t, P=Jip=—Jn. (18)
» More compactly, Jk = %SOkm”Jmn and Jip = —ep123J3, with
€M = —gppp3 = 1.

> In the case of the Lorentz boosts, A(6§) = E — id€ - K, with
SEM = 5w = —5w™, K™= Jom. (19)

> In the usual representation, (J..)%s = i(05 85 — 0, 8up), €8

00 0 o 0 0 0 0 00 0 0
. [0 0o 0o o s (o o o i . [0 0 i o
J(o 0 0 —i)’ J(o 0 0 o)’ =10 i o ol
00 i o 0 —i 0 0 00 0 o0
0 i 0 o0 00 i o0 00 0 i
« [i 0o 0 o , (o 0 0o o . (o 0 0 o
K(o 0 0 0)’ K(i 0 0 0)* K(o 0 0 0)'
00 0 0 00 0 0 i 0 0 0



Theorem: The Lie algebra of the Poincaré group is given by:
[P/M P)\] = 0 [ J)\J] = _i(P)\g;LO' - PO'g[L)\)7
[J/.Ll/7 JAJ] - - ( u \8vo — Juogu)\ - Jl/)xg,ua + Jl/ag,u)\)- (20)

Proof: By brute-force calculation, using the explicit form in the
natural representation.

Theorem: (i) The generators J,,,, transform under Q as:
QW Q7Y = Sy Q0,0 (21)

(i) Let A(w) be a proper Lorentz transformation. Then:

AW =AW), WY ="\ W (22)
Proof: (i) For small 6Q°7, LHS evaluates to:

LHS = Juw — i0Q% [Jas, Juv] = v — 2JapdQ% + 240 Q% 4.
RHS evaluates to:
RHS = Jurur (0 — 197 (Jup)" )82 — i9°7 (Jag)”" ),

in agreement with LHS.
(ii) Follows automatically from (i).



Exercises

1. Using the group multiplication rule shown on slide 9, show that
AT(b)A~ = T(Ab).
2. Compute [J,,,, Jrs] using the explicit expression for the Lorentz

transformations generators in the natural representation, shown on
slide 11, and confirm Eq. (20).

WKT10.3 Verify the following commutation relations using (a) the 5 x 5

matrix representation; (b) using Eq. (20):

[P°, P =[P",P™ =0, [P°J]=0,
[P7, 0" = ie™ P, [P" K" = i6mnP° [P° K" =iP",
[_]m7_j"] _ I'&‘mnl_ll, [Km’Jn] _ iam"IKl, [Km’ Kn] _ —iEm"IJI,
(23)
with el = g0mnl — 1,
3. Show that a) RKpR™! = Ky R™ 1 and b) RL4(€)R™T = Lra(€).

WKT10.4 Express Lm(€)JaLm(€)™! in terms of generators of the Lorentz group.



