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Lecture contents

Chapter 2. Continuous symmetry groups
> 11.1. Abelian groups: SO(2) and T(3)
» 11.2. The rotation group SO(3)
> 11.3. The group SU(2)

» 11.4. The Euclidean group E,



11.4. The Euclidean group E,

11.4.1.

>

Definition.

Def: The Euclidean group E, consists of all continuous linear
transformations on the n-dimensional Euclidean space R, which
leave the length of all vectors invariant.

E, consists of two types of transformations: Translations T(b) and
rotations Ry(%)).

E, consists of 2 translations: T(ib! + jb?) = T,(b') + T,(b?); and
one rotation: Ry(v), having the action x — x’ = g(b, v)x, with

Xt =xlcostp — x?sintp + b, X = xTsinep + x* costp + b2 (1)

This can be put in matrix form with respect to 3-comp. vectors:

x! cosy —sinty bl
x3=|x*], g(b,y)=[sinyy cosyp b?]. (2)
1 0 0 1

The same trick works for E,:

o= (7). e = (590 @



11.4.2.

>

E, group structure

Theorem: The general g € E, can be decomposed as:
g(b,R) = T(b)R. (4)
The translations form a conjugacy class with respect to E,, since:
RT(b)R™* = T(Rb),  TT(b)T "= T(b). (5)
The group multiplication law reads:
g8 =83, bz=by+ by, R3;=RxR;. (6)

Clearly, g~%(b,R) = g(—R'b,R71).

For E5, b3 = by + R(12)b1, ¥3 = 1 + 12, and

g7t =g(=R(=v)b,—1).

Theorem: The translations form an invariant subgroup T, of E,.
The factor group E,/ T, is isomorphic to SO(n).

Proof: Eq. (5) shows that gT(b)g~! = T(Rb), hence T, is an
invariant subgroup. The elements of the factor group E,/ T, are
(right) cosests {Tg(b, R)} = {g(b, R)} = distinct cosets are
defined by one specific rotation and are in 1:1 corresp. with
SO(n) = E,/ T, ~ SO(n).



11.4.3.

>

Lie algebra of E;

In the representation (2), the generators read:

0 —i 0 0 0 i 000
J=[i o o],P=[00 0], Pp=|00 i]. (7
0 0 0 000 000

Theorem: The generators of E, satisfy the following commutation
relations (Lie algebra):

[P1,P] =0, [J,Px]=ickmPm (k=1,2). (8)
Since e ¥/ Pye = P, R(1))™, it can be checked that
e P .-be =P-b', b =R(Y)b. (9)
Since Ey/ Ty ~ SO(2), the irreps of SO(2) are also irreps of Ej:
U(b, ) = Un(b, ) = =™, (10)
It is easy to check that
Un(b, ) Un(a, x) = =™ = Un[R(¥)a + b, +x]. (1)

These are the only finite-dimensional (indeed, 1D) irreps of E,.



I1.4.4. Unitary irreps of Ey: angular momentum basis

» We introduce Py = Py & iP; satisfying [J, P+] = £Px.
» It can be checked that P> = P, P_ = P_P, is a Casimir operator:

P2, J] = [P?, P.] = 0. (12)
» We take the basis |pm) with
P2 |pm) = |pm) p?,  J|pm) = |pm) m, (13)

with p2 > 0and m=0,+1,....
» Taking (pm|pm’) = Spmme, Py |pm) = |pm + 1) NE, with

N> = (pm|PLPpm) = p* = Ng=7Fip. (14)
» When p? = 0, clearly Py [0m) = 0 and
J10m) = [0m) m,  R(¢)|0m) = [0m) e~ T(b)|0m) = [0m),

(15)
i.e. we uncover the degenerate irrep induced by SO(2).



» Theorem: The faithful unitary irreps of E, are characterized by
p > 0; the matrix elements of the generators are given by

(pm'|J|pm) = mé7 . (pm'|Py|pm) = Fipdy,  (16)
and the representation matrices for finite transformations are
Dp(b, )™ = €M™ (pb)e™ ™, (17)

where (b, ¢) are the polar coordinates of b and J,(z) is the Bessel

function of first kind.

Proof: (i) The matrix elements of the generators follow from Egs. (13) and (14).

(ii) Writing U(b, %) = T(b)R(), as well as T(b) = R(¢) Tx(b)R(—¢), we have
(pm/|U(b, ) pm) = e~ "="% (pm'|U(bi, 0) |pm) e~ ™. (18)

Writing Px = (P+ + P_)/2, we have

. . N+ plpl
. o —ipp —Lpp_ ib +
U(bi,0) = e 2" +e™ 2 = Ig// (—5) TR (19)
Noting that (pm’|P’ P’+,|pm> = 6m+,/7m/+/(—ip)’,(ip)/,
L o (pb\™T™ & pb\ 2K (—1)k
Dy (bi, 0)™ = (—1)™™ (P2 PPy 2 (20
p6.07"n = (07 ()5 (R) gty @

where we replaced I’ =/+ m' — mand k=/— m+ m’ when m > m’; and
I=1+m—m and k =1"— m’ + m when m" > m. Noting that
Jn(2) = (3)" 3052 0(—22/4)% /Ik\(k + n)!], we recover Eq. (17).



11.4.5. Induced irreps of E,: plane wave basis

» The idea of induced reps. is to consider the algebra of the invariant
(abelian) subgroup, T,, and select a particular eigenvector:

Pilpo) = [po) P, P2[po) =0, P?[po) = |po) p*.  (21)
> Acting with R(6) gives an eigenstate of Py with eigenvalue:
PiR(6) [po) = R(6) [po) P (22)

with px = porR(—0)"x or p* = R(8)py.
» R(0)|po) = |p), where p = R(0)po has polar coordinates (p, 6).

> |p) with fixed p forms the basis of an irreducible vector space,
invariant under E;, with (p’|p) = (p,&’|p,0) = 2m6(6' — 9).



11.4.6. Connection between angular momentum and plane
wave bases

» The vector |m) can be obtained using the projection method:

27'rd . d .
)= [ GeR@ e = [ Lloem. @)

» Clearly, R(0)|m) = |m) e~ and J|m) = |m) m.
» Since (' |M) = Smm = Omm, We have (M) = |m) e/¥m.

> Applying P+ gives
N d
Pl = [ 5210) ™ —mE 1. (28)

> At the same time, Py |m) = |m x 1) (Fip) = ¥ = o — mm/2.
» Taking by convention 1y = 0, we have |m) = |m) i and

d ; x . ”
m) = [ 5210)emet D, ) = Y fmpe D, (25)

with (¢|m) = em(@+7/2),



11.4.7. Properties of Bessel functions

> Writing T(b) = e ®" P++"P-) with b* = (b' + ib?)/2, we have

. 0 . +ip ad i 0

—Z_T(b)= 2 4 22| T(b) = T(b)P 2

e T®) = | Ss L O 7o) = TP, (26)
with b* = be®'® /2,

» Multiplying by |m) (m’| and tracing leads to

ei;¢|:ail 1o}

ob 5875}<m’|T(b)\m>=¢p<m'|T(b)|m+1>v (27)

in other words, J;(z) F (n/z)Jn(z) = FInt1(2).

» Theorem: The Bessel functions J,(z) satisfy the recursion formulas:

2J1(2) = Jo—1(2) — Jns1(2), 2?nJ,,(z) = Jp-1(2) + Jny1(2). (28)



» Applying Eq. (26) twice and using P?> = P, P_ gives

0? 10 1 0
|3zt T(b) = T(b)P?. 2
(8b2+b28¢+b28¢2> ( ) ( ) ( 9)
» Theorem: The Bessel functions satisfy the differential eq.:
d? 1d n?
|:d22 ;dZ + 1— 22:| Jn(Z) =0. (30)

» Theorem: The Bessel functions satisfy the addition theorem:

e Jo(R Ze’k¢Jk r)ni(r'),

where the notation is derived from
T(r)T(r) = T(R), with r = (r,0), r
r'=(r',¢) and R=(R,0).



11.4.8. E5: Lie algebra and group structure

» E3 consists of 6 generators: P and J.
» Theorem: The Lie algebra of Ej is specified by

[P, Pl =0, [J,di] = ickimIm, [Pis ] = ickimPnm- (31)
» Theorem: T3 forms an invariant subgroup of E3 and
RP;R™' = P;,RI;, RT(b)R™* = T(Rb). (32)

» Corollary: The group elements can be written as
g = T(b)R(a, 8,7) or g = R(¢,0,0) T(bk)R(c, 3,7).

» Theorem: The Casimir operators of E3 are P? and J - P.

» Since E3/ T3 ~ SO(3), the representations of SO(3) represent
degenerate representations of Ez, via TR — Dj(R), for which both
Casimirs vanish: P2 =1J-P =0.



11.4.9. E5: Unitary irreps by induced rep. method

» We consider the eigenvectors of P2, J- P and P:
P2lpA) = [pA) p?, J-PlpA) =[pA)Ap, PlpX) =[pN)p. (33)

» Consider the subspace characterized by pg = pk.

» Def: All group elements in the factor group leaving the subpsace
corresponding to pg invariant form the little group of pg.

» In the case of E3, the little group consists of rotations about the z
axis, R3(v), whose irreps are labeled by A.

> The Casimir operators are (P?,J - P) |po)) = |po)) (pA, p?), while
Rs(¥)) [Po) = [poA) e, T(b)[poA) = [por) e ™. (34)

» The full irrep is generated using rotations that are not in the little
group:

where p = (p, 0, ¢).



» Theorem: The basis vectors (35) satisfy Egs. (33). The effect of
the group operations is:

T(b) [pA) = [pA\) e P, R(a, B,7) [pA) = [pP'A) e, (36)
where p = (p,0,6), ' = R(a, 3,7)p = (p, ', &), with 1 defined by

-1
R(0,0,9) = R(¢',60",0)""R(a, 8,7)R(¢,0,0). (37)

Proof: (i) Let p = Rpo. Then

T(b) |pX) = RIRT(b)R] [poX) = RT(R™'b) [poX) = [pX) e~ ™P,  (38)
where we used (R™1b) - po = b - p, since po = R~ !p.
(i) Let R = R(a,B,7), Ro = R(#,6,0) and R, = R(¢',6’,0). We know
Rp = RRppo = p’. On the other hand, p’ = Ry po = Ry R3(¢)po, for any value
of ¥ [Since R3(%) is in the little group of pg]. This angle can be found via:

RRy = R(¢/,0',%) = Rs(¢)) = R, RRy.
Then:
RIPA) = Ry R T RRy [po)) = Ry R3(¥) [po) = [p'A) e (39)
» The subspace thus created is invariant under E3 and irreducible, as it
is spanned by applying E3 on |po)).
» The vectors are normalized according to:

(p'|p) = 4md(cos @ — cos0)d(¢’ — o), (40)

where the structure of delta functions is inspired by the invariant
integration measure on SO(3) = E3/ Ts.



11.4.10. E3: Angular momentum basis
> We seek basis vectors |p, A; jm) = |jm), satisfying
(P2, J-p) |jm) = |jm) (p?, Ap), as well as:
P? |jm) = |jm) p*, - pljm) = jm) pA, J* |jm) = |jm) j(j + 1),
Jsljm) = im) m, Ji |jm) = |jm £ 1) \/j(i +1) - m(m£1).  (41)

» The relation between |jm) and |p) can be obtained using the projection
method:

2 l
im) = [ S 19} 0] (6,6,0)* n LE = 3 lim) (6,00

(42)
» Theorem: The operators Rpa(c, 3,7) and Tpx(b) on the subspace of the
(p, A) irrep satisfy:

(I'm'|Rpx|Im) = 8] DI(R)™ m, (43a)
(' m'| Tox(b)|Im) = 3" (I'n| Toa(bK)|In) Dy (b)™ »D;f (b)", (43b)

n

(I'n| Tpx(bk)[In) = ~(2L + 1)(—i)"jc(pb) (n0O(/' L) In) {IX(I'L)AO) ,

(43c)

where ji(z) is the spherical Bessel function of order /.



Proof: (i) Since |/m) is an irrep of SO(3), we have R |Im) = |Im’) D;[R]mlm, leading
automatically to Eq. (43a).
(ii) Consider R(b) such that b = R(b)(bk). Then, T(b) = R(b) T(bk)R~}(b) and

(' m’| T(b)|Im) = ZD, / (I"'n’| T(bK)|In) D} (b)™,. (44)

Since [y, Pz] = 0, (I'n’| T(bk)|In) = (I n| T(bk)|In) 6" ,, thereby establishing Eq. (43b).
(i) Applying T(bk) on |In) using Eq. (42) gives

2/ +1 ;
Inl TR lin) = == [ Dy ()" 3 D] ()™, (45)

The exponential factor can be expanded w.r.t. the Legendre polynomials and spherical Bessel

functions:
oo

o iPbeosOp _ Z(2L + 1)(—i)"jL(pb)PL(cos 0,). (46)
L=0

Noting that P, (cos 8,) = D;(p)°, and using
’ ’
Dy ()" ADL(B)’0 = D _ (n'0(/'L)Jn") Ds(B)" x (JA(I'L)A0) , (47
J
as well as the orthogonality relation:

2J+1

/ /
/dQPDJ(ﬁ)" ADf (B)*, = o]y, (48)
we arrive at

("0’ Tpa (bK)|In) = 5;' (2L + 1)(=i) i (pb) {n0(I’ L) In) (IN(I L)AO) . (49)
L



Exercises
1. Use Eq. (23) to show that (@'|M) = Jmm.

2. Evaluate (m’| T(b)|m) using Eq. (25) to obtain the integral
representation of the Bessel functions:

o d¢ inp—izsin
In(z) = /0 e . (50)
3. Group contraction — SO(3) to E,. Consider the mapping
(J/R,Jy/R, J;) = (—Py, Px, J;) between the generators of SO(3)
and those of E,.
a) Compute the Lie algebra in the R — oo limit and show that it
coincides with Eq. (8).
b) Consider the irreps of SO(3) with basis vectors |jm). Show that
j = pR, with p finite while R — oo, reproduces the Lie algebra of E;
in Eq. (16).
c) Consider the matrix element d;(8)™ ,, = (jm'|Ra(6)[jm), with
6 = b/R = bp/j. Show that

lim d;(0 = z/))™"0 = (=n|T(2,0)[0),,_, = Jn(2)-  (51)

j—in



Exercises

4. Using the definition of the Clebsch-Gordan coefficients,
(mm'(jj")IM) = (jm; j'm’|JM), use Eq. (43c) to show that

(00| Tpo(bk)|10) = (—i)'(2/ + 1)ji(pb). (52)

WKT9.5 Using group-theoretical methods, derive the recursion formulas for
spherical Bessel functions:

2/ +1

J1(x) = Jji—1(x) + Jira(x),

250 = 5 llia0) — U4 Dbl (5)



Exercises

WKT9.4 Using the definition of the Clebsch-Gordan coefficients, (mm’ (jj’)JM) = (jm;j'm’|IM),
use Egs. (43b) and (43c) to show that

(' m' | Ton(b)[Im) = (—1)™™ S7(2L + 1)(=i) i (pb) Di(b)™ ~™
L

x {m',m— m'(I"L)Im) (IX(I'L)XOY . (54)
Hint: Use the symmetry relations of the C-G coeffs:
(mm' (") IM) = (=17~ (m m(j' ) IM)
= (=0 (e, = (), M)

2J+1

= (1M, () S (55)
the completeness and orthogonality of the C-G coeffs:
% (MG ymm') (mm' (') S M) = 89,63
S (mar (i )IM) (IMG Y} = 6787 (56)
M
the relation
8y DARM e = D2 (MG Ymm') D(R)T D, (R (nn () M), (57)
mm’ nn’

as well as D} (R)™ = (~1)""D;(R) ™" _p.



