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Lecture contents

Chapter 2. Continuous symmetry groups

▶ II.1. Abelian groups: SO(2) and T (3)

▶ II.2. The rotation group SO(3)

▶ II.3. The group SU(2)

▶ II.4. The Euclidean group En



II.4. The Euclidean group En

II.4.1. Definition.
▶ Def: The Euclidean group En consists of all continuous linear

transformations on the n-dimensional Euclidean space Rn which
leave the length of all vectors invariant.

▶ En consists of two types of transformations: Translations T (b) and
rotations Rn(ψ).

▶ E2 consists of 2 translations: T (ib1 + jb2) = Tx(b
1) + Ty (b

2); and
one rotation: R2(ψ), having the action x → x′ = g(b, ψ)x, with

x ′1 = x1 cosψ − x2 sinψ + b1, x ′2 = x1 sinψ + x2 cosψ + b2. (1)

▶ This can be put in matrix form with respect to 3-comp. vectors:

x3 =

x1

x2

1

 , g(b, ψ) =

cosψ − sinψ b1

sinψ cosψ b2

0 0 1

 . (2)

▶ The same trick works for En:

xn+1 =

(
x
1

)
, g(b;n, ψ) =

(
Rn(ψ) b

0 1

)
. (3)



II.4.2. En group structure
▶ Theorem: The general g ∈ En can be decomposed as:

g(b,R) = T (b)R. (4)

▶ The translations form a conjugacy class with respect to En, since:

RT (b)R−1 = T (Rb), TT (b)T−1 = T (b). (5)

▶ The group multiplication law reads:

g2g1 = g3, b3 = b2 + R2b1, R3 = R2R1. (6)

▶ Clearly, g−1(b,R) = g(−R−1b,R−1).
▶ For E2, b3 = b2 + R(ψ2)b1, ψ3 = ψ1 + ψ2, and

g−1 = g(−R(−ψ)b,−ψ).
▶ Theorem: The translations form an invariant subgroup Tn of En.

The factor group En/Tn is isomorphic to SO(n).
Proof: Eq. (5) shows that gT (b)g−1 = T (Rb), hence Tn is an
invariant subgroup. The elements of the factor group En/Tn are
(right) cosests {Tg(b,R)} = {g(b,R)} ⇒ distinct cosets are
defined by one specific rotation and are in 1:1 corresp. with
SO(n) ⇒ En/Tn ≃ SO(n).



II.4.3. Lie algebra of E2
▶ In the representation (2), the generators read:

J =

0 −i 0
i 0 0
0 0 0

 , P1 =

0 0 i
0 0 0
0 0 0

 , P2 =

0 0 0
0 0 i
0 0 0

 . (7)

▶ Theorem: The generators of E2 satisfy the following commutation
relations (Lie algebra):

[P1,P2] = 0, [J,Pk ] = iεkmPm (k = 1, 2). (8)

▶ Since e−iψJPke
iψJ = PmR(ψ)

m
k , it can be checked that

e−iψJP · be iψJ = P · b′, b′ = R(ψ)b. (9)

▶ Since E2/T2 ≃ SO(2), the irreps of SO(2) are also irreps of E2:

U(b, ψ) → Um(b, ψ) = e−imψ. (10)

▶ It is easy to check that

Um(b, ψ)Um(a, χ) = e−im(ψ+χ) = Um[R(ψ)a+ b, ψ + χ]. (11)

▶ These are the only finite-dimensional (indeed, 1D) irreps of E2.



II.4.4. Unitary irreps of E2: angular momentum basis

▶ We introduce P± = P1 ± iP2 satisfying [J,P±] = ±P±.

▶ It can be checked that P2 = P+P− = P−P+ is a Casimir operator:

[P2, J] = [P2,P±] = 0. (12)

▶ We take the basis |pm⟩ with

P2 |pm⟩ = |pm⟩ p2, J |pm⟩ = |pm⟩m, (13)

with p2 ≥ 0 and m = 0,±1, . . . .

▶ Taking ⟨pm|pm′⟩ = δmm′ , P± |pm⟩ = |pm ± 1⟩N±
m , with

|N±
m |2 = ⟨pm|P†

±P±|pm⟩ = p2 ⇒ N±
m = ∓ip. (14)

▶ When p2 = 0, clearly P± |0m⟩ = 0 and

J |0m⟩ = |0m⟩m, R(ψ) |0m⟩ = |0m⟩ e−imψ, T (b) |0m⟩ = |0m⟩ ,
(15)

i.e. we uncover the degenerate irrep induced by SO(2).



▶ Theorem: The faithful unitary irreps of E2 are characterized by
p > 0; the matrix elements of the generators are given by

⟨pm′|J|pm⟩ = mδm
′

m , ⟨pm′|P±|pm⟩ = ∓ipδm
′

m±1, (16)

and the representation matrices for finite transformations are

Dp(b, ψ)
m′

m = e i(m−m′)ϕJm−m′(pb)e−imψ, (17)

where (b, ϕ) are the polar coordinates of b and Jn(z) is the Bessel
function of first kind.
Proof: (i) The matrix elements of the generators follow from Eqs. (13) and (14).
(ii) Writing U(b, ψ) = T (b)R(ψ), as well as T (b) = R(ϕ)Tx (b)R(−ϕ), we have

⟨pm′|U(b, ψ)|pm⟩ = e−i(m−m′)ϕ ⟨pm′|U(bi, 0)|pm⟩ e−imψ . (18)

Writing Px = (P+ + P−)/2, we have

U(bi, 0) = e−
i
2
bP+e−

i
2
bP− =

∑
l,l′

(
−
ib

2

)l+l′ P l′
+P l

−
l ′!l!

. (19)

Noting that ⟨pm′|P l
−P l′

+ |pm⟩ = δm+l′,m′+l (−ip)l
′
(ip)l ,

Dp(bi, 0)
m′

m = (−1)m−m′
(
pb

2

)m−m′ ∞∑
k=0

(
pb

2

)2k (−1)k

l!(l +m −m′)!
, (20)

where we replaced l ′ = l +m′ −m and k = l −m +m′ when m ≥ m′; and

l = l ′ +m −m′ and k = l ′ −m′ +m when m′ > m. Noting that

Jn(z) = ( z
2
)n

∑∞
k=0(−z2/4)k/[k!(k + n)!], we recover Eq. (17).



II.4.5. Induced irreps of E2: plane wave basis

▶ The idea of induced reps. is to consider the algebra of the invariant
(abelian) subgroup, T2, and select a particular eigenvector:

P1 |p0⟩ = |p0⟩ p, P2 |p0⟩ = 0, P2 |p0⟩ = |p0⟩ p2. (21)

▶ Acting with R(θ) gives an eigenstate of Pk with eigenvalue:

PkR(θ) |p0⟩ = R(θ) |p0⟩ pk , (22)

with pk = p0lR(−θ)l k or pk = R(θ)k lp
l
0.

▶ R(θ) |p0⟩ = |p⟩, where p = R(θ)p0 has polar coordinates (p, θ).

▶ |p⟩ with fixed p forms the basis of an irreducible vector space,
invariant under E2, with ⟨p′|p⟩ = ⟨p, θ′|p, θ⟩ = 2πδ(θ′ − θ).



II.4.6. Connection between angular momentum and plane
wave bases

▶ The vector |m⟩ can be obtained using the projection method:

|m̃⟩ =
∫ 2π

0

dϕ

2π
R(ϕ) |p0⟩ e imϕ =

∫
dϕ

2π
|ϕ⟩ e imϕ. (23)

▶ Clearly, R(θ) |m̃⟩ = |m̃⟩ e−imθ and J |m̃⟩ = |m̃⟩m.

▶ Since ⟨m̃′|m̃⟩ = δmm′ = δmm′ , we have ⟨m̃⟩ = |m⟩ e iψm .

▶ Applying P± gives

P± |m̃⟩ =
∫

dϕ

2π
|ϕ⟩ e i(m±1)ϕ = | ˜m ± 1⟩ p. (24)

▶ At the same time, P± |m⟩ = |m ± 1⟩ (∓ip) ⇒ ψm = ψ0 −mπ/2.

▶ Taking by convention ψ0 = 0, we have |m⟩ = |m̃⟩ im and

|m⟩ =
∫

dϕ

2π
|ϕ⟩ e im(ϕ+π

2 ), |ϕ⟩ =
∑
m

|m⟩ e−im(ϕ+π
2 ), (25)

with ⟨ϕ|m⟩ = e im(ϕ+π/2).



II.4.7. Properties of Bessel functions

▶ Writing T (b) = e−i(b−P++b+P−), with b± = (b1 ± ib2)/2, we have

i
∂

∂b∓T (b) = ie±iϕ

[
∂

∂b
± i

b

∂

∂ϕ

]
T (b) = T (b)P±, (26)

with b± = be±iϕ/2.

▶ Multiplying by |m⟩ ⟨m′| and tracing leads to

e±iϕ

[
∂

∂b
± i

b

∂

∂ϕ

]
⟨m′|T (b)|m⟩ = ∓p ⟨m′|T (b)|m + 1⟩ , (27)

in other words, J ′
n(z)∓ (n/z)Jn(z) = ∓Jn+1(z).

▶ Theorem: The Bessel functions Jn(z) satisfy the recursion formulas:

2J ′
n(z) = Jn−1(z)− Jn+1(z),

2n

z
Jn(z) = Jn−1(z) + Jn+1(z). (28)



▶ Applying Eq. (26) twice and using P2 = P+P− gives

−
(
∂2

∂b2
+

1

b2
∂

∂ϕ
+

1

b2
∂2

∂ϕ2

)
T (b) = T (b)P2. (29)

▶ Theorem: The Bessel functions satisfy the differential eq.:[
d2

dz2
+

1

z

d

dz
+ 1− n2

z2

]
Jn(z) = 0. (30)

r

R
r′

ϕθ

▶ Theorem: The Bessel functions satisfy the addition theorem:

e inθJn(R) =
∑
k

e ikϕJk(r)Jn−k(r
′),

where the notation is derived from
T (r)T (r′) = T (R), with r = (r , 0),
r′ = (r ′, ϕ) and R = (R, θ).



II.4.8. E3: Lie algebra and group structure

▶ E3 consists of 6 generators: P and J.

▶ Theorem: The Lie algebra of E3 is specified by

[Pk ,Pl ] = 0, [Jk , Jl ] = iεklmJm, [Pk , Jl ] = iεklmPm. (31)

▶ Theorem: T3 forms an invariant subgroup of E3 and

RPiR
−1 = PjR

j
i , RT (b)R−1 = T (Rb). (32)

▶ Corollary: The group elements can be written as
g = T (b)R(α, β, γ) or g = R(ϕ, θ, 0)T (bk)R(α, β, γ).

▶ Theorem: The Casimir operators of E3 are P2 and J · P.
▶ Since E3/T3 ≃ SO(3), the representations of SO(3) represent

degenerate representations of E3, via TR → Dj(R), for which both
Casimirs vanish: P2 = J · P = 0.



II.4.9. E3: Unitary irreps by induced rep. method

▶ We consider the eigenvectors of P2, J · P and P:

P2 |pλ⟩ = |pλ⟩ p2, J · P |pλ⟩ = |pλ⟩λp, P |pλ⟩ = |pλ⟩p. (33)

▶ Consider the subspace characterized by p0 = pk.

▶ Def: All group elements in the factor group leaving the subpsace
corresponding to p0 invariant form the little group of p0.

▶ In the case of E3, the little group consists of rotations about the z
axis, R3(ψ), whose irreps are labeled by λ.

▶ The Casimir operators are (P2, J · P) |p0λ⟩ = |p0λ⟩ (pλ, p2), while

R3(ψ) |p0λ⟩ = |p0λ⟩ e−iψλ, T (b) |p0λ⟩ = |p0λ⟩ e−ib·p0 . (34)

▶ The full irrep is generated using rotations that are not in the little
group:

|pλ⟩ = R(ϕ, θ, 0) |p0λ⟩ , (35)

where p ≡ (p, θ, ϕ).



▶ Theorem: The basis vectors (35) satisfy Eqs. (33). The effect of
the group operations is:

T (b) |pλ⟩ = |pλ⟩ e−ib·p, R(α, β, γ) |pλ⟩ = |p′λ⟩ e−iλψ, (36)

where p = (p, θ, ϕ), p′ = R(α, β, γ)p = (p, θ′, ϕ′), with ψ defined by

R(0, 0, ψ) = R(ϕ′, θ′, 0)−1R(α, β, γ)R(ϕ, θ, 0). (37)

Proof: (i) Let p = Rp0. Then

T (b) |pλ⟩ = R[R−1T (b)R] |p0λ⟩ = RT (R−1b) |p0λ⟩ = |pλ⟩ e−ib·p, (38)

where we used (R−1b) · p0 = b · p, since p0 = R−1p.
(ii) Let R ≡ R(α, β, γ), Rp = R(ϕ, θ, 0) and Rp′ = R(ϕ′, θ′, 0). We know
Rp = RRpp0 = p′. On the other hand, p′ = Rp′p0 = Rp′R3(ψ)p0, for any value
of ψ [Since R3(ψ) is in the little group of p0]. This angle can be found via:

RRp = R(ϕ′, θ′, ψ) ⇒ R3(ψ) = R−1
p′ RRp.

Then:

R |pλ⟩ = Rp′R
−1
p′ RRp |p0λ⟩ = Rp′R3(ψ) |p0λ⟩ = |p′λ⟩ e−iλψ . (39)

▶ The subspace thus created is invariant under E3 and irreducible, as it
is spanned by applying E3 on |p0λ⟩.

▶ The vectors are normalized according to:

⟨p′|p⟩ = 4πδ(cos θ′ − cos θ)δ(ϕ′ − ϕ), (40)

where the structure of delta functions is inspired by the invariant
integration measure on SO(3) = E3/T3.



II.4.10. E3: Angular momentum basis
▶ We seek basis vectors |p, λ; jm⟩ ≡ |jm⟩, satisfying

(P2, J · p) |jm⟩ = |jm⟩ (p2, λp), as well as:

P2 |jm⟩ = |jm⟩ p2, J · p |jm⟩ = |jm⟩ pλ, J2 |jm⟩ = |jm⟩ j(j + 1),

J3 |jm⟩ = |jm⟩m, J± |jm⟩ = |jm ± 1⟩
√

j(j + 1)−m(m ± 1). (41)

▶ The relation between |jm⟩ and |p⟩ can be obtained using the projection
method:

|jm⟩ =
∫

dΩp |p⟩D†
j (ϕ, θ, 0)

λ
m
2j + 1

4π
, |p⟩ =

∑
jm

|jm⟩Dj(ϕ, θ, 0)
m
λ.

(42)
▶ Theorem: The operators Rpλ(α, β, γ) and Tpλ(b) on the subspace of the

(p, λ) irrep satisfy:

⟨l ′m′|Rpλ|lm⟩ = δl
′
l Dl(R)

m′
m, (43a)

⟨l ′m′|Tpλ(b)|lm⟩ =
∑
n

⟨l ′n|Tpλ(bk)|ln⟩Dl′(b)
m′

nD
∗
l (b)

m
n, (43b)

⟨l ′n|Tpλ(bk)|ln⟩ =
∑
L

(2L+ 1)(−i)LjL(pb) ⟨n0(l ′L)ln⟩ ⟨lλ(l ′L)λ0⟩ ,

(43c)

where jl(z) is the spherical Bessel function of order l .



Proof: (i) Since |lm⟩ is an irrep of SO(3), we have R |lm⟩ = |lm′⟩Dl [R]m
′
m, leading

automatically to Eq. (43a).

(ii) Consider R(b) such that b = R(b)(bk). Then, T (b) = R(b)T (bk)R−1(b) and

⟨l′m′|T (b)|lm⟩ =
∑
n,n′

Dl (b)
m′

n′ ⟨l
′n′|T (bk)|ln⟩D∗

l (b)
m
n. (44)

Since [Jz ,Pz ] = 0, ⟨l′n′|T (bk)|ln⟩ = ⟨l′n|T (bk)|ln⟩ δn
′
n, thereby establishing Eq. (43b).

(iii) Applying T (bk) on |ln⟩ using Eq. (42) gives

⟨l′n|T (bk)|ln⟩ =
2l + 1

4π

∫
dΩpDl′ (p̂)

n′
λD

†
l (p̂)

λ
ne

−ipb cos θp . (45)

The exponential factor can be expanded w.r.t. the Legendre polynomials and spherical Bessel
functions:

e−ipb cos θp =
∞∑
L=0

(2L + 1)(−i)LjL(pb)PL(cos θp). (46)

Noting that PL(cos θp) = DL(p̂)
0
0, and using

Dl′ (p̂)
n′

λDL(p̂)
0
0 =

∑
J

⟨n′0(l′L)Jn′⟩DJ (p̂)
n′

λ ⟨Jλ(l′L)λ0⟩ , (47)

as well as the orthogonality relation:

2J + 1

4π

∫
dΩpDJ (p̂)

n′
λD

†
l (p̂)

λ
n = δ

J
l δ

n′
n , (48)

we arrive at

⟨l′n′|Tpλ(bk)|ln⟩ = δ
n′
n

∑
L

(2L + 1)(−i)LjL(pb) ⟨n0(l′L)ln⟩ ⟨lλ(l′L)λ0⟩ . (49)



Exercises
1. Use Eq. (23) to show that ⟨m̃′|m̃⟩ = δmm′ .

2. Evaluate ⟨m′|T (b)|m⟩ using Eq. (25) to obtain the integral
representation of the Bessel functions:

Jn(z) =

∫ 2π

0

dψ

2π
e inψ−iz sinψ. (50)

3. Group contraction – SO(3) to E2. Consider the mapping
(Jx/R, Jy/R, Jz) → (−Py ,Px , Jz) between the generators of SO(3)
and those of E2.
a) Compute the Lie algebra in the R → ∞ limit and show that it
coincides with Eq. (8).
b) Consider the irreps of SO(3) with basis vectors |jm⟩. Show that
j = pR, with p finite while R → ∞, reproduces the Lie algebra of E2

in Eq. (16).
c) Consider the matrix element dj(θ)

m′
m = ⟨jm′|R2(θ)|jm⟩, with

θ = b/R = bp/j . Show that

lim
j→inf

dj(θ = z/j)−n
0 = ⟨−n|T (z , 0)|0⟩p=1 = Jn(z). (51)



Exercises

4. Using the definition of the Clebsch-Gordan coefficients,
⟨mm′(jj ′)JM⟩ = ⟨jm; j ′m′|JM⟩, use Eq. (43c) to show that

⟨00|Tp0(bk)|l0⟩ = (−i)l(2l + 1)jl(pb). (52)

WKT9.5 Using group-theoretical methods, derive the recursion formulas for
spherical Bessel functions:

2l + 1

x
jl(x) = jl−1(x) + jl+1(x),

d

dx
jl(x) =

1

2l + 1
[ljl−1(x)− (l + 1)jl+1(x)]. (53)



Exercises
WKT9.4 Using the definition of the Clebsch-Gordan coefficients, ⟨mm′(jj′)JM⟩ = ⟨jm; j′m′|JM⟩,

use Eqs. (43b) and (43c) to show that

⟨l′m′|Tpλ(b)|lm⟩ = (−1)m+m′ ∑
L

(2L + 1)(−i)LjL(pb)DL(b)
m′−m

0

× ⟨m′
,m − m′(l′L)lm⟩ ⟨lλ(l′L)λ0⟩ . (54)

Hint: Use the symmetry relations of the C-G coeffs:

⟨mm′(jj′)JM⟩ = (−1)j+j′−J ⟨m′m(j′j)JM⟩

= (−1)j+j′−J ⟨−m,−m′(jj′)J,−M⟩

= (−1)j−J+m′
⟨M,−m′(Jj′)jm⟩

√
2J + 1

2j + 1
, (55)

the completeness and orthogonality of the C-G coeffs:∑
mm′

⟨JM(jj′)mm′⟩ ⟨mm′(jj′)J′M′⟩ = δ
J
J′δ

M
M′ ,

∑
JM

⟨mm′(jj′)JM⟩ ⟨JM(jj′)nn′⟩ = δ
m
n δ

m′
n′ , (56)

the relation

δ
J
J′DJ (R)MM′ =

∑
mm′nn′

⟨JM(jj′)mm′⟩Dj (R)mn Dj′ (R)m
′

n′ ⟨nn′(jj′)J′M′⟩ , (57)

as well as D∗
j (R)mn = (−1)m−nDj (R)−m

−n.


