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Lecture contents

Chapter 2. Continuous symmetry groups
> 11.1. Abelian groups: SO(2) and T(3)
» 11.2. The rotation group SO(3)
> 11.3. The group SU(2)

» 1.4, The Euclidean group E;



Properties of the Clebsch-Gordan coefficients
» Angular momentum selection rule: (mm’(jj')JM) = 0 unless
m+m =Mand |j—j|<J<j+]".
» Orthogonality and completeness:
D (MG ymm") (mm' (') M") = 53,53,

S (mm (i) IM) (UM ynn'y = 680 (1)
IM
» Symmetry relations:
(mm' (") IM) = (=1~ (m' m(j') Jm)
= (P9 (o, = ()4, M)

(= J+m’ —m'(Ji"Nim 2J+1
— (Y M Ui S @)

» Explicitly, the direct product and irreducible representations are
related through:

Di(R)™a Dy (R)™ = > (mm' (jj')IM) Dy(R)M y (JN(ij')nn') ,
J,M,N

5 yDy(RMpr = 3" (MG ) (mm')) D(R)Y™ Dy (R)™ o (' (jf')J' M)

m,m’ n,n’



11.2.12. Direct product decomposition using Young

tableaux

» The decomposition into irreps of the direct product of j =1/2
representations of SO(3) [more specifically, of SU(2)] can be
obtained using Young tableaux, using the following rules:

» ] Jj =1/2 irrep (of dimension 2);
» [ [ ]...[]: Jj = n/2 irrep (of dimension 2j +1 = n+ 1);
|————
n times

> =1: j =0 irrep (dimension 1);

> DjDXD:D:]D—i-DjD product rule.
—_————

n times n+1 times n—1 times

» Example:

CIxO=[T]+1, UxOxO=CTT]+2x0]
\‘,_/ \—v_./
2x2=4 3+1=4 2X2x2=8 442x2=8

DXDXDXDZD:I:I:]+3XD:]+2.

2x2x2x2=16 5+3%x3+2=16

» The exact decomposition of the direct product basis into
constitutive irreps must be performed explicitly, e.g. by explicit
construction or using projector operators.



[1.2.13. Irreducible tensors

» Def: A set of operators {O;, A = —s, —s + 1,...s} form the
components of an irreducible spherical tensor of angular momentum
sif UR)OSU(R™Y) =3, 05, Ds(R)N ».

» Theorem: The comps. of an irreducible sph. tensor satisfy:

[2,05] = s(s +1)05, s, 0] = AO%,
[, O] = V/s(s +1) = AA £ 1) 04 (5)

Proof: For infinitesimal R;(0%), UjO5U; " ~ O — idwp[J), O3] and
Ds(R)M \8% — id9b(JF)N 5, hence [J;, 03] = O, (J9)N x.

» Def: {A;,/ =1,2,3} are the Cartesian components of a vector if
[Jk,A/] = ia’:‘k/mAm.

» Def: {7}, /i =1,2,3} are the components of an n-th rank tensor
if [Js Thooty] = i(Ektym Tty + - M T im)-



11.2.14. Wigner-Eckart theorem

» According to the W-E theorem,
('m'|O3]jm) = (j'm' (s, j)Am) ('[|O°|1j) (6)

where (j'||O®||j) is independent of m, m" and .

» The selection rules imply that the matrix elements vanish unless
—s|<j/<j+sand m =X+ m.

» The branching ratios are determined completely by C-G coefficients:

U'm'|O3jm) _ §'m'(s,j)Am)

GlOslim) (s j)on) )




Example: Dipole selection rules
» A particle in a weak external electromagnetic field is described by

2

H + V(r)+ qU, w=p—qA, p=-iAV. (8)

2m
» Taking U = 0 and the Coulomb gauge, V - A =0, we have

H~ Ho+ Hj, H,:—%A-p:%A~[x,HO]. (9)

> Writing A = Age /(“t=k%) ~ Age=/t (when k - r < 1 = dipole
approximation, the transition matrix T;_r = (f|H|i) reduces to

(FIHi) = — € (FIx)i), E=—8,A=iwA, hos=Er—E.
w
» Taking now |i) = |nlm) and |f) = |n'/'m’), W-E gives
(n'I'm’| X3 [nIm) = (I'm(11)Am) (' I']| X}||nl) . (10)

» If E= Ek, then E-x = EXy and m’ = m.
» If Eis in the x — y plane, then m = m+ 1.
» From the CG series, ' — | =0 or £1.



» SinceL=xxp,x-L=0and
(Im|x - L|Im) = Z {m|x|I'm") - (I'm’|L|Im) = 0. (11)
I',m’
> Considering that x- L = Y} (-D)MXL LY ,,, with
M=—1 ME—m
X+ iy

7

X — iy
\/§ )
and similarly for Li, we have

0= > (=1)MImI)YMm') (' m' (L) = M, m) (I[|XH|F) (PIILID . (13)
I",m" M

X1, = Xg =z, Xi=- (12)

» Since (I'm ’|L [Im) >~ §jpOms m+x, we have
1
0= > (=DM {Im@ANM, m+ M) (I,m+ M(1l) = M, m)
M=—1
(X (LA . (14)
» The sum over the CG coefficients is not zero and
(||LH|1) # 0 = (I]|X||l) = 0, leading to (E = Ek):

qu,

(n'l'm'|H|nlm) = [61 131 {1+ 1m(110Om) (nI + 1||X*||nl)

+ 5,/7,_1 (I = 1m(1H0m) (n'l — 1||X||n])].



11.3. The group SU(2)
11.3.1. Parametrization of SU(2) matrices

» SU(2) is the group of complex, unitary matrices of size 2.

» Theorem: An arbitrary 2 x 2 unitary matrix can be parametrized as

: . : 0<(,n<2m,
_ix [ cosfe’c  —sinfem
U=e (sin fe="  cosfe~i¢ ) 0sA<m (15)
0<6<m/2.

Proof: Can be verified by explicit construction. Additionally, a 2 x 2
complex matrix has a total of 8 real dofs, 4 of which are fixed by
UTU = E. The remaining 4 parametrize Eq. (15) and their ranges is
established as follows:
» ( and 7 cover the entire circle;
> 0 covers the first quadrant, as the other quadrants can be obtained
by changing the sign of either cos 6 or sin 6 by suitable choices of the
phases ¢ and 7;
> The overall phase \ covers the upper two quadrants, since '™ = —1
can be absorbed in the phases /¢ and ™.

» Imposing now det U = 1 gives A = 0 = an arbitrary SU(2) matrix A
can be parametrized using 3 real parameters: 6,7 and (.



11.3.2. Relationship to SO(3)
» The SU(2) matrices and the j = 1/2 representation of SO(3)

matrices,
_ (cosBe’c  —sin Gef"’ 20, 8,7 = (¢ —lat) cos & —e__%("‘_”) sin 2
~ \sinfe™  cosfe ¢ 7 esle=" g g e3(@t7) og 2 ’
(16)
are identical provided
g aty a—v
g ="= — = — . 17
5 ¢ 5 5 (17)

» Clearly, 0 < 8 < 7.

> To fully cover SU(2), 0 < (,n<2m, 0 < a<2mand 0 <y < 4n.

» Since v covers the circle twice, the SU(2) matrices form a
double-valued rep. of SO(3).

» Any SU(2) matrix can be represented in the angle-axis p.:

An(Y) = effwn o (COSE — isin lcosg 7ISII'| ism@e i® )
n = = .

—isin w sin Ge’“" cos 2 + isin ’é’ cos 0

» Using Euler angles, A(a, 8,7) = e 3993638265793 \here

»

_iy .
Ag() = (e ’ °> Ao() = dy o () = (Cf’sz "‘“”f)

0 ez ? sin = cos



11.3.3 Invariant integration measure

» Integrations over the group elements must be compatible with the
rearrangement lemma:

/f(A)dTA :/f(B_lA/)dTBf1A/ :/f(B‘lA’)dTA/, (18)

with A’ = BA.
» Using generic {&,n,(} to parametrize de group elements, we seek a
weight function p such that

dra = p(&,n,C)dEdnd¢ = p(¢',n',(")dE dn'd(’, (19)
where {¢’, 7/, ('} corresponds to A’ = BA, and

p(&n.¢) _ 9. <) (20)

p(& ¢ A m.C)

» The above equation becomes easy when (¢',7/,(’) are linear
functions of (&, 7, ().

» The overall normalization is chosen such that deA =1.




> Consider the parametrization of an SU(2) matrix via

_ ro—ir3 —r2—ir1 2 2
A_<r2—ir1 r0+l.r3>7 detA=rd+r’=1. (21)

» The real parameters ry, ... r3 are connected to 0, (,n and an extra
parameter r via

(r()):rcosH(co.sC), <r1> :rsin9< sin ) ), (22)
r3 —sin( rn —cosn

such that det A= r2 =1.

» Consider now r; and r,-’, parametrizing A and A/, and s;,
parametrizing B, such that A’ = BA. The Jacobian of the
transformation is:

So —$S1 —S —S3
orb, rl, r}. rh s s —s S
M — |t 0 3 2 | (502 + S2)2 _ 1, (23)
Aro,r,sm3) |2 S35 S0 —S1

53 —S s So

which means drydridradrs = drjdr|drdr}.



» Imposing det A =1, the integration measure can be taken as

Vedra = d*ré 1—r2—2 E d(ro—sv'1 —r? 24
G A ( 0 2mg = 0 ) ( )
where d*r = drydridrdrs, while V¢ is a normalization constant:
1 2
d
b@:/ﬁdﬂ—%—ﬂﬁ%i/—iL—:ﬁ. (25)
0 1—r2

» With respect to (r,0,¢,n), we have

~ 61— r2) O(ro, r1, 12, 13)
Ut R

> W.r.t. the Euler angle and angle-axis parametrizations,
dadcosfBdy . 5 W dipd cosd¢

in(20)
$2W2 dodcdn. (26)

SU(2): dra = 16,2 =sin” 5 12
. __dadcosfdy . 59 didcosfdg
SO(3): dmg= 82 =sin” 5 52 ,  (27)

where 0 < v < 4r for SU(2) and 0 <y < 27 for SO(3); For
angle-axis, we use 0 < ¢ <27, 0 <0 <7 and 0 <9 < 27 for
SU(2) and 0 < ¢ < 7 for SO(3).



11.3.4.
>
>

Orthonormality of the representation matrices
In the case of discrete groups, -“ > D;Q(g)k,-Dl,(g)", = 5W5,k5{.

' E

For SU(2), irrep j has size n, — nj = 2j + 1 and
(2j +1) / d7aD] (A" nDjr(A)" = 816" my6" . (28)

Using the Euler angle parametrization, the a and +y integrations can
be performed, giving (no summation over n, m):

2j+1 [*
Ld

> /|, (cos B)d;(5)" mdjr (B)"m = 9jjr- (29)

Multiplying Eq. (28) by 67.6™ gives

m¥n’

[ A 4) = 3. (30)

Using x;(A) = sin[(j + 3)¥]/sin &, we have

[ dmdane ()= [ 5 (cosli — )01 - coslli '+ 1)0]) = by



11.3.5. Completeness: Peter-Weyl theorem

» Theorem (Peter-Weyl): The irrep functions D;(A)", form a complete
basis in the space of (Lebesgue) square-integrable functions defined on
the group manifold.

> Let f(A) be such a function, then:

)= S DA o= (2+1) [ D] (A wf(A), (1)
Jjmn
which implies
S7(2) + 1D (A)" D] (A)'m = 5(A — A), (32)
Jjmn
where §(A — A') = 167°6(a — a’)d(cos B — cos 3')5( — +') in the Euler
angle parametrization.
> Bose-Einstein: f(a, 3,7 +2r) = f(a, 3,7) and £y, =0 when j =/ + 1.
» Fermi-Dirac: f(c, 8,7+ 27) = —f(a,8,7) and f5, = 0 when j = /.
» In the case when f(«, 3,7) is independent of v, denoting (o, 8) — (¢, 0),

we write
> < 21+ 1
F(0,0) =) D finYm(0,0),  Yim(60:6) =/ = —Di'(,0,0)",
1=0 m=—1

and fin = [ dcos8dp Y, (0, ¢)f (0, ¢).



11.3.6. Projection operators

» The invariant integration measure allows the projection operators to
be constructed:

Pr o= (2 + 1)/dTADjT(A)”mU(A), (33)

by which PL[j'm’") = |j'm’) 5{5,’;,.



11.3.7. Differential equation for D;

> For R(a, 3,7) = e "@Be=ifLe=i7h e have

OR OR : : OR
i—— = R[R' 3R], i-- =R[e""he 5] i— =RJ.
e [R™ LR, 13,8 [ e | Ia'y J3
» Using R'JR = R,JJJ the square brackets evaluate to
R'LR = _S”;B(JJreiW +J_e ) + Jzcos 3,

ek fpe= M = é(—JJre"V +J_e™ ).

» Plugging Eq. (35) into Eq. (34) gives

; 0 i 0 0
1y o _ _ _
e [ n ( cos 3 7)] R=RJ;,

. : R
el [ 0 ! (a - cosﬁa)] rR=ri. i2F _gy
oy Y

8 sinf \da

(34)

(36)



Evaluating (jm’|RJ+|jm) gives

d r . . .-
(—diﬁ_mTrnﬁcos,B) dj(/B) m:dj(ﬂ) m+1\/_j(‘/—|—]_)—m(rn_|_1)7

d m’ — mcos 3 m’ m’ =
(55~ "o ) 4(65)" = ()" ea VIG+ 1)~ (i —(13)4)
7

The above relations can be used as recurrence relations: Knowing

! . . . . . . .
dj(B)™ m for a combination of m and m’, it is possible to obtain it for all
other m.

At the same time, a differential eq. can be obtained for dj(ﬁ)’"/m by
applying J? = J2 — s+ JyJ_, since:

s [ n[ d i (2 9
RJ *{e ”{W*m(%*“%ﬂ
i 0 i 15) 0 52 .0
< |55 s (05 ) | -5 g R (9

Using (jm'|RI?[jm) = j(j + 1)e "™ =™ d;(8)™ 1 leads to

2 2 /
(1 dsinﬁi—m+m 2mm’ cos 3

sinﬁ?ﬂ dﬁ sin2,8 +.j(j+ 1)) dj(ﬁ)m m=0.

(39)



11.3.8. Relation to spherical harmonics
» When m = 0, setting (m’,j,3) — (m, [,0) and restoring
Dy(#,6,0)™o = e~ M d)(0)™o gives
10 . .0 1 8 mo
[SM% sinf 22+ 5 27t 101+ 1)} Dy(¢,0,0)™, (40)
which is solved by the spherical harmonics:

1D(6.0.0)"6]" = || 35 Yin(0.0). di(0)70 = || =0 (1) Pin(0).
()

> For general (m, m’"), the differential eq. can be put in the form for the Jacobi
polynomials,

{(17 ):2 +[Bfaf(2+a+ﬁ)z]—+I(l+a+6+1)}P “f(z) =0,

(42)
such that
m’ (j+m/)!(j*m/)! ﬁ mym’ . B m7m,m'7m,m' m
di(B)™ m = GEmiG—mr (cos 5) (sm 5) P M (cos B).
(43)
» This reproduces the m = 0 result since
P™M(z) = (—=2)" a _II )l (1- 22)7m/2P,m(z)7 (44)

as well as Pj(cos0) = Pjg(cos ) = P,O’O(cos 0) = di(6)%



11.3.9. Properties of spherical harmonics

> Transformation under rotations: Consider |£,v) = U(w, 3,7) |0, ). Then:

Yim(6, 6) = (€, 9| U(ct, B,7)Im) = Vi (€,9)Di(c, B,7)™ m.  (45)

> Addition theorem: Taking m = 0 and using Yjo(0, ¢) = P)(cos0)+/(2/ + 1)/4m,
such that

> Yie (6:8) Vi (5.2) = 21 (cos), (46)

where cos = n(¢, ’t/J) -n(B, a).

» Decomposition of products of Y}, with the same arguments:

Yin(0, 8) Y (6,0) = S {mem (1)L + ') Yy (0, 6)
L
2r+1)2r+1)

x (LO(/I")00) L+ D)

(47)

> Symmetry in m: Y _,(0,0) = (=1)"Y/ (0, ¢).



Egs. (37) provide recurrence relations at fixed /:

VI +1) = m(m+1)Y my1(6,6) = € (% - mcote) Yim(0, 8),

VIO+1) —m(m—1)Y; m1(0,¢) = e~'® (—% — mcot e) Yim(0, ¢). (48)

Recurrence relations at fixed m can be obtained by multiplying Y}, Y10, with

Y10(0, ¢) = cos0+/3/4m:

I+ m)(I — m)

cos0Ym(0, ¢) = @-1)2/+1)

Yi—1,m(0, ®)

(I+m+1)(/—m+1)
" (21 + 1)(2/ + 3) Yit1m(0,9),  (49)

where we used:

U =m+1)(I+m+1) m o — m
(mO(/1)/ + 1m) = \/ QI+ )+ 1) , (mO(I1)Im) = 7/(/ =

(mO(11)] — 1m) = —1/%. (50)

> Orthogonality: [ dQY}: (0,9)Y)rm (0,0) = 8y G-
> Completeness: >, . Yim(0,¢) Y} (0',¢") = d(cos & — cos0')5(¢ — ¢').



Exercises

1. Starting from the commutation relations [J;, Xj] = iejx Xk, show
that the components of the irreducible vector operator X} are:

Xg=X3, X = \%(:Fxl —iXo).
WKT7.9 If {Tj,i,j =1,2,3} are the components of a second-rank tensor,

show that:
(i) tr T = 6Y T is invariant under SO(3);
(ii) Ty = (T; — Tji)/2 remains antisymmetric after an SO(3)
transformation, and 'f'k = %ak,-j T} transforms as a vector;
(iii) 7~',-j = (Tj+ Tji)/2 — 30;tr T remains symmetric under SO(3)
and the 5 independent components of T transform with the j =2
representation.

2. Derive the invariant integration measure for SU(2) with respect to
the parameters 6, (, 7, shown in Eq. (26). [Hint: multiply A in Eq. (16) by a

factor r and impose at the end r = 1 via a Dirac delta function]



Exercises

3. Derive the invariant integration measure with respect to the
angle-axis parameters, using the convention 0 < ¢ < 2,
0<0<m/2and 0 <1 < 4r for SU(2). Use the explicit relation
between the angle-axis parameters and the Euler angles:

¢_7r+o¢—'y tane—itan(ﬁ/z) cosf—czx(é)cos(a_‘_v)
N 2 ’ " osin[(y 4+ @)/2]’ 2 2 2 ’

4. Completeness of characters. _ _
a) Use Schur's lemma to show that A}, = 9 D [Ra(1)] = c,E
where E is the identity matrix.
b) Using the angle-axis parametrization of the SU(2) matrices A and
A, integrate Eq. (32) with respect to dQyy = d(cos6’')d¢’ to show
that:

sin fo, " =7o( — ). (51)

c) Therefore deduce that >, m sin[y(j + 3)] = Z.



Exercises

5.

Invariant integration measure. Consider the parametrization (60, {,n) of the SU(2) matrices
in Eq. (16).
a) Calculate 0A/0¢,, with & = {6, ¢(, n}.
b) Express the product A~1(£)(DA/H¢;) with respect to the generators J,, using the matrix
A defined below:
_,0A ~
A = JaA(€)%) (52)

08;

c) Compute d7a = pa(§) [1; d&i, with pa(§) = det A(§)“;.
d) Repeat the above for the angle-axis parametrization.
Reduced representation matrix d;(3). Consider the direct product of n irreducible
representations with j = 1/2. Of these, consider the basis |jm) corresponding to the
Jj = n/2 (maximal) irrep.
a) Show that [j) = [+ +---+).

h\,—J

n elements

b) By repeated application of J_, show that

j+m elements  j—mel. j—mel. J+mel.
3 G —ml(+ m) ———~— —_—N— —
|jm) = T(‘++...+__..._>+...+|__..._++...+>)4

(2)!/[G+m)!(j—m)!] terms

c) Show that U(B) |£) = |£) ¢ & |F) s, where ¢ = cos(3/2) and s = sin(3/2).
d) Taking into account that |jm) and U>(8) |jm) are totally symmetric, show that

. R VG mIG = G+ m)IG — )
Gm' |G (B)ljm) = > _(~1) KIG+m — K)(m—m + kI — m — k!

k=0

2j —2k— ! 2ktm—m’
w ¥ mtm’ 2ktm—m" (53)



