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Properties of the Clebsch-Gordan coefficients
▶ Angular momentum selection rule: ⟨mm′(jj ′)JM⟩ = 0 unless

m +m′ = M and |j − j ′| ≤ J ≤ j + j ′.
▶ Orthogonality and completeness:∑

m,m′
⟨JM(jj ′)mm′⟩ ⟨mm′(jj ′)J′M′⟩ = δJJ′δ

M
M′ ,

∑
JM

⟨mm′(jj ′)JM⟩ ⟨JM(jj ′)nn′⟩ = δmn δ
m′
n′ . (1)

▶ Symmetry relations:

⟨mm′(jj ′)JM⟩ = (−1)j+j′−J ⟨m′m(j ′j)JM⟩

= (−1)j+j′−J ⟨−m,−m′(jj ′)J,−M⟩

= (−1)j−J+m′
⟨M,−m′(Jj ′)jm⟩

√
2J + 1

2j + 1
. (2)

▶ Explicitly, the direct product and irreducible representations are
related through:

Dj (R)mnDj′ (R)m
′
n′ =

∑
J,M,N

⟨mm′(jj ′)JM⟩DJ(R)MN ⟨JN(jj ′)nn′⟩ ,

δJ J′DJ(R)MM′ =
∑

m,m′,n,n′
⟨JM(jj ′)(mm′)⟩Dj (R)mnDj′ (R)m

′
n′ ⟨nn′(jj ′)J′M′⟩ .

(3)



II.2.12. Direct product decomposition using Young
tableaux

▶ The decomposition into irreps of the direct product of j = 1/2
representations of SO(3) [more specifically, of SU(2)] can be
obtained using Young tableaux, using the following rules:
▶ : j = 1/2 irrep (of dimension 2);

▶ · · ·︸ ︷︷ ︸
n times

: j = n/2 irrep (of dimension 2j + 1 = n + 1);

▶ = 1: j = 0 irrep (dimension 1);

▶ · · ·︸ ︷︷ ︸
n times

× = · · ·︸ ︷︷ ︸
n+1 times

+ · · ·︸ ︷︷ ︸
n−1 times

: product rule.

▶ Example:

×︸ ︷︷ ︸
2×2=4

= + 1︸ ︷︷ ︸
3+1=4

, × ×︸ ︷︷ ︸
2×2×2=8

= + 2×︸ ︷︷ ︸
4+2×2=8

,

× × ×︸ ︷︷ ︸
2×2×2×2=16

= + 3× + 2︸ ︷︷ ︸
5+3×3+2=16

. (4)

▶ The exact decomposition of the direct product basis into
constitutive irreps must be performed explicitly, e.g. by explicit
construction or using projector operators.



II.2.13. Irreducible tensors

▶ Def: A set of operators {Os
λ, λ = −s,−s + 1, . . . s} form the

components of an irreducible spherical tensor of angular momentum
s if U(R)Os

λU(R−1) =
∑
λ′ Os

λ′Ds(R)
λ′
λ.

▶ Theorem: The comps. of an irreducible sph. tensor satisfy:

[J2,Os
λ] = s(s + 1)Os

λ, [J3,O
s
λ] = λOs

λ,

[J±,O
s
λ] =

√
s(s + 1)− λ(λ± 1)Os

λ±1. (5)

Proof: For infinitesimal Rl(δψ), UlO
s
λU

−1
l ≃ Os

λ − iδψ[Jl ,O
s
λ] and

Ds(R)
λ′
λδ
λ′

λ − iδψ(Jsl )
λ′
λ, hence [Jl ,O

s
λ] = Os

λ′(Jsl )
λ′
λ.

▶ Def: {Al , l = 1, 2, 3} are the Cartesian components of a vector if
[Jk ,Al ] = iεklmAm.

▶ Def: {Tl1...ln ; li = 1, 2, 3} are the components of an n-th rank tensor
if [Jk ,Tl1...ln ] = i(εkl1mTml2...ln + · · ·+ εklnmTl1...ln−1m).



II.2.14. Wigner-Eckart theorem

▶ According to the W-E theorem,

⟨j ′m′|Os
λ|jm⟩ = ⟨j ′m′(s, j)λm⟩ ⟨j ′||Os ||j⟩ , (6)

where ⟨j ′||Os ||j⟩ is independent of m,m′ and λ.

▶ The selection rules imply that the matrix elements vanish unless
|j − s| ≤ j ′ ≤ j + s and m′ = λ+m.

▶ The branching ratios are determined completely by C-G coefficients:

⟨j ′m′|Os
λ|jm⟩

⟨j ′n′|Os
σ|jn⟩

=
⟨j ′m′(s, j)λm⟩
⟨j ′n′(s, j)σn⟩

. (7)



Example: Dipole selection rules
▶ A particle in a weak external electromagnetic field is described by

H =
π2

2m
+ V (r) + qU, π = p− qA, p = −iℏ∇. (8)

▶ Taking U = 0 and the Coulomb gauge, ∇ · A = 0, we have

H ≃ H0 + HI , HI = − q

m
A · p =

iq

ℏ
A · [x,H0]. (9)

▶ Writing A = A0e
−i(ωt−k·x) ≃ A0e

−iωt (when k · r ≪ 1 ≡ dipole
approximation, the transition matrix Ti→f = ⟨f |HI |i⟩ reduces to

⟨f |HI |i⟩ = −qωfi

ω
E · ⟨f |x|i⟩ , E = −∂tA = iωA, ℏωfi = Ef − Ei .

▶ Taking now |i⟩ = |nlm⟩ and |f ⟩ = |n′l ′m′⟩, W-E gives

⟨n′l ′m′|X 1
λ|nlm⟩ = ⟨l ′m′(1l)λm⟩ ⟨n′l ′||X 1||nl⟩ . (10)

▶ If E = Ek, then E · x = EX0 and m′ = m.

▶ If E is in the x − y plane, then m′ = m ± 1.

▶ From the CG series, l ′ − l = 0 or ±1.



▶ Since L = x× p, x · L = 0 and

⟨lm|x · L|lm⟩ =
∑
l′,m′

⟨lm|x|l ′m′⟩ · ⟨l ′m′|L|lm⟩ = 0. (11)

▶ Considering that x · L =
∑1

M=−1(−1)MX 1
ML1−M , with

X 1
−1 =

x − iy√
2
, X 1

0 = z , X 1
1 = −x + iy√

2
, (12)

and similarly for L1λ, we have

0 =
∑

l′,m′,M

(−1)M ⟨lm(1l ′)Mm′⟩ ⟨l ′m′(1l)−M,m⟩ ⟨l ||X 1||l ′⟩ ⟨l ′||L1||l⟩ . (13)

▶ Since ⟨l ′m′|L1λ|lm⟩ ≃ δll′δm′,m+λ, we have

0 =
1∑

M=−1

(−1)M ⟨lm(1l)M,m +M⟩ ⟨l ,m +M(1l)−M,m⟩

× ⟨l ||X 1||l⟩ ⟨l ||L1||l⟩ . (14)

▶ The sum over the CG coefficients is not zero and
⟨l ||L1||l⟩ ≠ 0 ⇒ ⟨l ||X 1||l⟩ = 0, leading to (E = Ek):

⟨n′l ′m′|HI |nlm⟩ = −qEωfi

ω
[δl′,l+1 ⟨l + 1m(1l)0m⟩ ⟨n′l + 1||X 1||nl⟩

+ δl′,l−1 ⟨l − 1m(1l)0m⟩ ⟨n′l − 1||X 1||nl⟩].



II.3. The group SU(2)
II.3.1. Parametrization of SU(2) matrices

▶ SU(2) is the group of complex, unitary matrices of size 2.

▶ Theorem: An arbitrary 2× 2 unitary matrix can be parametrized as

U = e iλ
(
cos θe iζ − sin θe iη

sin θe−iη cos θe−iζ

)
,

0 ≤ ζ, η < 2π,
0 ≤ λ < π,
0 ≤ θ ≤ π/2.

(15)

Proof: Can be verified by explicit construction. Additionally, a 2× 2
complex matrix has a total of 8 real dofs, 4 of which are fixed by
U†U = E . The remaining 4 parametrize Eq. (15) and their ranges is
established as follows:
▶ ζ and η cover the entire circle;
▶ θ covers the first quadrant, as the other quadrants can be obtained

by changing the sign of either cos θ or sin θ by suitable choices of the
phases ζ and η;

▶ The overall phase λ covers the upper two quadrants, since e iπ = −1
can be absorbed in the phases e iζ and e iη.

▶ Imposing now detU = 1 gives λ = 0 ⇒ an arbitrary SU(2) matrix A
can be parametrized using 3 real parameters: θ, η and ζ.



II.3.2. Relationship to SO(3)
▶ The SU(2) matrices and the j = 1/2 representation of SO(3)

matrices,

A =

(
cos θe iζ − sin θe iη

sin θe−iη cos θe−iζ

)
, D1/2(α, β, γ) =

(
e−

i
2
(α+γ) cos β2 −e−

i
2
(α−γ) sin β2

e
i
2
(α−γ) sin β2 e

i
2
(α+γ) cos β2

)
,

(16)

are identical provided

θ =
β

2
, ζ = −α+ γ

2
, η = −α− γ

2
. (17)

▶ Clearly, 0 ≤ β < π.
▶ To fully cover SU(2), 0 ≤ ζ, η < 2π, 0 ≤ α < 2π and 0 ≤ γ < 4π.
▶ Since γ covers the circle twice, the SU(2) matrices form a

double-valued rep. of SO(3).
▶ Any SU(2) matrix can be represented in the angle-axis p.:

An(ψ) = e−
i
2
ψn·σ =

(
cos ψ2 − i sin ψ2 cos θ −i sin ψ2 sin θe−iφ

−i sin ψ2 sin θe iφ cos ψ2 + i sin ψ2 cos θ

)
.

▶ Using Euler angles, A(α, β, γ) = e−
i
2ασ3e−

i
2βσ2e−

i
2γσ3 , where

A3(ψ) =

(
e−

i
2
ψ 0

0 e
i
2
ψ

)
, A2(ψ) ≡ d1/2(ψ) =

(
cos ψ2 − sin ψ2
sin ψ2 cos ψ2

)
.



II.3.3 Invariant integration measure
▶ Integrations over the group elements must be compatible with the

rearrangement lemma:∫
f (A)dτA =

∫
f (B−1A′)dτB−1A′ =

∫
f (B−1A′)dτA′ , (18)

with A′ = BA.

▶ Using generic {ξ, η, ζ} to parametrize de group elements, we seek a
weight function ρ such that

dτA = ρ(ξ, η, ζ)dξdηdζ = ρ(ξ′, η′, ζ ′)dξ′dη′dζ ′, (19)

where {ξ′, η′, ζ ′} corresponds to A′ = BA, and

ρ(ξ, η, ζ)

ρ(ξ′, η′, ζ ′)
=
∂(ξ′, η′, ζ ′)

∂(ξ, η, ζ)
. (20)

▶ The above equation becomes easy when (ξ′, η′, ζ ′) are linear
functions of (ξ, η, ζ).

▶ The overall normalization is chosen such that
∫
dτA = 1.



▶ Consider the parametrization of an SU(2) matrix via

A =

(
r0 − ir3 −r2 − ir1
r2 − ir1 r0 + ir3

)
, detA = r20 + r2 = 1. (21)

▶ The real parameters r0, . . . r3 are connected to θ, ζ, η and an extra
parameter r via(

r0
r3

)
= r cos θ

(
cos ζ
− sin ζ

)
,

(
r1
r2

)
= r sin θ

(
sin η

− cos η

)
, (22)

such that detA = r2 = 1.

▶ Consider now ri and r ′i , parametrizing A and A′, and si ,
parametrizing B, such that A′ = BA. The Jacobian of the
transformation is:

∂(r ′0, r
′
1, r

′
2, r

′
3)

∂(r0, r1, r2, r3)
=

∣∣∣∣∣∣∣∣
s0 −s1 −s2 −s3
s1 s0 −s3 s2
s2 s3 s0 −s1
s3 −s2 s1 s0

∣∣∣∣∣∣∣∣ = (s20 + s2)2 = 1, (23)

which means dr0dr1dr2dr3 = dr ′0dr
′
1dr

′
2dr

′
3.



▶ Imposing detA = 1, the integration measure can be taken as

VGdτA = d4r δ(1−r20−r2) =
d4r

2
√
1− r2

∑
ς=±1

δ(r0−ς
√
1− r2), (24)

where d4r = dr0dr1dr2dr3, while VG is a normalization constant:

VG =

∫
d4rδ(1− r20 − r2) = 4π

∫ 1

0

dr r2√
1− r2

= π2. (25)

▶ With respect to (r , θ, ζ, η), we have

dτA =
δ(1− r2)

π2

∂(r0, r1, r2, r3)

∂(r , θ, ζ, η)
drdθdζdη → sin(2θ)

4π2
dθdζdη. (26)

▶ W.r.t. the Euler angle and angle-axis parametrizations,

SU(2) : dτA =
dαd cosβdγ

16π2
= sin2

ψ

2

dψd cos θdϕ

4π2
,

SO(3) : dτR =
dαd cosβdγ

8π2
= sin2

ψ

2

dψd cos θdϕ

2π2
, (27)

where 0 ≤ γ < 4π for SU(2) and 0 ≤ γ < 2π for SO(3); For
angle-axis, we use 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π and 0 ≤ ψ < 2π for
SU(2) and 0 ≤ ψ < π for SO(3).



II.3.4. Orthonormality of the representation matrices
▶ In the case of discrete groups,

nµ
nG

∑
g D

†
µ(g)

k
iDν(g)

j
l = δµνδ

k
l δ

j
i .

▶ For SU(2), irrep j has size nµ → nj = 2j + 1 and

(2j + 1)

∫
dτAD

†
j (A)

m
nDj′(A)

n′
m′ = δjj′δ

m
m′δn

′

n. (28)

▶ Using the Euler angle parametrization, the α and γ integrations can
be performed, giving (no summation over n,m):

2j + 1

2

∫ 1

−1

d(cosβ)dj(β)
n
mdj′(β)

n
m = δjj′ . (29)

▶ Multiplying Eq. (28) by δnmδ
m′

n′ gives∫
dτAχ

†
j (A)χj′(A) = δjj′ . (30)

▶ Using χj(A) = sin[(j + 1
2 )ψ]/ sin

ψ
2 , we have∫

dτAχ
†
j (A)χj′(A) =

∫ 2π

0

dψ

2π

(
cos[(j − j ′)ψ]− cos[(j + j ′ + 1)ψ]

)
= δjj′ .



II.3.5. Completeness: Peter-Weyl theorem
▶ Theorem (Peter-Weyl): The irrep functions Dj(A)

m
n form a complete

basis in the space of (Lebesgue) square-integrable functions defined on
the group manifold.

▶ Let f (A) be such a function, then:

f (A) =
∑
jmn

f njmDj(A)
m
n, f njm = (2j + 1)

∫
dτAD

†
j (A)

n
mf (A), (31)

which implies ∑
jmn

(2j + 1)Dj(A)
m
nD

†
j (A

′)nm = δ(A− A′), (32)

where δ(A− A′) = 16π2δ(α− α′)δ(cosβ − cosβ′)δ(γ − γ′) in the Euler
angle parametrization.

▶ Bose-Einstein: f (α, β, γ + 2π) = f (α, β, γ) and f njm = 0 when j = l + 1
2
.

▶ Fermi-Dirac: f (α, β, γ + 2π) = −f (α, β, γ) and f njm = 0 when j = l .
▶ In the case when f (α, β, γ) is independent of γ, denoting (α, β) → (ϕ, θ),

we write

f (θ, ϕ) =
∞∑
l=0

l∑
m=−l

flmYlm(θ, ϕ), Ylm(θ, ϕ) =

√
2l + 1

4π
D∗

l (ϕ, θ, 0)
m
0,

and flm =
∫
d cos θdϕY ∗

lm(θ, ϕ)f (θ, ϕ).



II.3.6. Projection operators

▶ The invariant integration measure allows the projection operators to
be constructed:

Pn
jm = (2j + 1)

∫
dτAD

†
j (A)

n
mU(A), (33)

by which Pn
jm |j ′m′⟩ = |j ′m′⟩ δj

′

j δ
n
m′ .



II.3.7. Differential equation for Dj

▶ For R(α, β, γ) = e−iαJ3e−iβJ2e−iγJ3 , we have

i
∂R

∂α
= R[R−1J3R], i

∂R

∂β
= R[e iγJ3J2e

−iγJ3 ], i
∂R

∂γ
= RJ3. (34)

▶ Using R−1JiR = Ri
jJj , the square brackets evaluate to

R−1J3R = − sinβ

2
(J+e

iγ + J−e
−iγ) + J3 cosβ,

e iγJ3J2e
−iγJ3 =

i

2
(−J+e

iγ + J−e
−iγ). (35)

▶ Plugging Eq. (35) into Eq. (34) gives

e−iγ

[
− ∂

∂β
− i

sinβ

(
∂

∂α
− cosβ

∂

∂γ

)]
R = RJ+,

e iγ
[
∂

∂β
− i

sinβ

(
∂

∂α
− cosβ

∂

∂γ

)]
R = RJ−, i

∂R

∂γ
= RJ3. (36)



▶ Evaluating ⟨jm′|RJ±|jm⟩ gives(
− d

dβ
− m′ −m cosβ

sinβ

)
dj(β)

m′
m = dj(β)

m′
m+1

√
j(j + 1)−m(m + 1),(

d

dβ
− m′ −m cosβ

sinβ

)
dj(β)

m′
m = dj(β)

m′
m−1

√
j(j + 1)−m(m − 1).

(37)

▶ The above relations can be used as recurrence relations: Knowing
dj(β)

m′
m for a combination of m and m′, it is possible to obtain it for all

other m.

▶ At the same time, a differential eq. can be obtained for dj(β)
m′

m by
applying J2 = J2

3 − J3 + J+J−, since:

RJ2 =

{
e−iγ

[
− d

dβ
− i

sinβ

(
∂

∂α
− cosβ

∂

∂γ

)]
×e iγ

[
∂

∂β
− i

sinβ

(
∂

∂α
− cosβ

∂

∂γ

)]
− ∂2

∂γ2
− i

∂

∂γ

}
R. (38)

▶ Using ⟨jm′|RJ2|jm⟩ = j(j + 1)e−iαm′−iγmdj(β)
m′

m leads to(
1

sinβ

d

dβ
sinβ

d

dβ
− m2 +m′2 − 2mm′ cosβ

sin2 β
+ j(j + 1)

)
dj(β)

m′
m = 0.

(39)



II.3.8. Relation to spherical harmonics
▶ When m = 0, setting (m′, j , β) → (m, l , θ) and restoring

Dl (ϕ, θ, 0)
m
0 = e−imϕdl (θ)

m
0 gives[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
+ l(l + 1)

]
Dl (ϕ, θ, 0)

m
0 = 0, (40)

which is solved by the spherical harmonics:

[Dl (ϕ, θ, 0)
m
0]

∗ =

√
4π

2l + 1
Ylm(θ, ϕ), dl (θ)

m
0 =

√
(l −m)!

(l +m)!
(−1)mPlm(θ).

(41)
▶ For general (m,m′), the differential eq. can be put in the form for the Jacobi

polynomials,{
(1− z2)

d2

dz2
+ [β − α− (2 + α+ β)z]

d

dz
+ l(l + α+ β + 1)

}
P

(α,β)
l (z) = 0,

(42)
such that

dj (β)
m′

m =

√
(j +m′)!(j −m′)!

(j +m)!(j −m)!

(
cos

β

2

)m+m′ (
sin

β

2

)m−m′

Pm′−m,m′+m
j−m′ (cosβ).

(43)
▶ This reproduces the m = 0 result since

Pm,m
l−m(z) = (−2)m

l!

(l −m)!
(1− z2)−m/2Plm(z), (44)

as well as Pl (cos θ) = Pl0(cos θ) = P0,0
l (cos θ) = dl (θ)

0
0.



II.3.9. Properties of spherical harmonics

▶ Transformation under rotations: Consider |ξ, ψ⟩ = U(α, β, γ) |θ, ϕ⟩. Then:

Ylm(θ, ϕ) = ⟨ξ, ψ|U(α, β, γ)|lm⟩ = Ylm′ (ξ, ψ)Dl (α, β, γ)
m′

m. (45)

▶ Addition theorem: Taking m = 0 and using Yl0(θ, ϕ) = Pl (cos θ)
√

(2l + 1)/4π,
such that ∑

m′
Ylm′ (ξ, ψ)Ylm′ (β, α) =

2l + 1

4π
Pl (cos θ), (46)

where cos θ = n(ξ, ψ) · n(β, α).
▶ Decomposition of products of Ylm with the same arguments:

Ylm(θ, ϕ)Yl′m′ (θ, ϕ) =
∑
L

⟨mm′(ll ′)Lm +m′⟩YL,m+m′ (θ, ϕ)

× ⟨L0(ll ′)00⟩

√
(2l + 1)(2l ′ + 1)

4π(2L+ 1)
. (47)

▶ Symmetry in m: Yl,−m(θ, ϕ) = (−1)mY ∗
lm(θ, ϕ).



▶ Eqs. (37) provide recurrence relations at fixed l :√
l(l + 1)−m(m + 1)Yl,m+1(θ, ϕ) = e iϕ

(
d

dθ
−m cot θ

)
Ylm(θ, ϕ),√

l(l + 1)−m(m − 1)Yl,m−1(θ, ϕ) = e−iϕ

(
−

d

dθ
−m cot θ

)
Ylm(θ, ϕ). (48)

▶ Recurrence relations at fixed m can be obtained by multiplying YlmY10, with
Y10(θ, ϕ) = cos θ

√
3/4π:

cos θYlm(θ, ϕ) =

√
(l +m)(l −m)

(2l − 1)(2l + 1)
Yl−1,m(θ, ϕ)

+

√
(l +m + 1)(l −m + 1)

(2l + 1)(2l + 3)
Yl+1,m(θ, ϕ), (49)

where we used:

⟨m0(l1)l + 1m⟩ =

√
(l −m + 1)(l +m + 1)

(2l + 1)(l + 1)
, ⟨m0(l1)lm⟩ =

m√
l(l + 1)

,

⟨m0(l1)l − 1m⟩ = −

√
(l −m)(l +m)

l(2l + 1)
. (50)

▶ Orthogonality:
∫
dΩY ∗

lm(θ, ϕ)Yl′m′ (θ, ϕ) = δll′δmm′ .

▶ Completeness:
∑

l,m Ylm(θ, ϕ)Y
∗
lm(θ

′, φ′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′).



Exercises

1. Starting from the commutation relations [Ji ,Xj ] = iεijkXk , show
that the components of the irreducible vector operator X 1

λ are:

X 1
0 = X3, X 1

±1 =
1√
2
(∓X1 − iX2).

WKT7.9 If {Tij , i , j = 1, 2, 3} are the components of a second-rank tensor,
show that:
(i) trT = δijTij is invariant under SO(3);

(ii) T̂ij = (Tij − Tji )/2 remains antisymmetric after an SO(3)

transformation, and T̂k = 1
2εkijTij transforms as a vector;

(iii) T̃ij = (Tij + Tji )/2− 1
3δijtrT remains symmetric under SO(3)

and the 5 independent components of T̃ transform with the j = 2
representation.

2. Derive the invariant integration measure for SU(2) with respect to
the parameters θ, ζ, η, shown in Eq. (26). [Hint: multiply A in Eq. (16) by a

factor r and impose at the end r = 1 via a Dirac delta function]



Exercises

3. Derive the invariant integration measure with respect to the
angle-axis parameters, using the convention 0 ≤ ϕ < 2π,
0 ≤ θ ≤ π/2 and 0 ≤ ψ < 4π for SU(2). Use the explicit relation
between the angle-axis parameters and the Euler angles:

ϕ =
π + α− γ

2
, tan θ =

tan(β/2)

sin[(γ + α)/2]
, cos

ψ

2
= cos

(
β

2

)
cos

(
α + γ

2

)
.

4. Completeness of characters.
a) Use Schur’s lemma to show that Aj

ψ =
∫

dΩn

4π Dj [Rn(ψ)] = c jψE ,
where E is the identity matrix.
b) Using the angle-axis parametrization of the SU(2) matrices A and
A′, integrate Eq. (32) with respect to dΩn′ = d(cos θ′)dϕ′ to show
that:

sin2
ψ

2

∑
j

χj(ψ)χj(ψ
′) = πδ(ψ − ψ′). (51)

c) Therefore deduce that
∑∞

j=0
1

2j+1 sin[ψ(j +
1
2 )] =

π
4 .



Exercises
5. Invariant integration measure. Consider the parametrization (θ, ζ, η) of the SU(2) matrices

in Eq. (16).
a) Calculate ∂A/∂ξi , with ξi = {θ, ζ, η}.
b) Express the product A−1(ξ)(∂A/∂ξi ) with respect to the generators Jα, using the matrix

Ã defined below:

A−1 ∂A

∂ξi
=
∑
α

JαÃ(ξ)
α

i . (52)

c) Compute dτA = ρA(ξ)
∏

i dξi , with ρA(ξ) = det Ã(ξ)α i .
d) Repeat the above for the angle-axis parametrization.

6. Reduced representation matrix dj (β). Consider the direct product of n irreducible
representations with j = 1/2. Of these, consider the basis |jm⟩ corresponding to the
j = n/2 (maximal) irrep.
a) Show that |jj⟩ = |+ + · · ·+︸ ︷︷ ︸

n elements

⟩.

b) By repeated application of J−, show that

|jm⟩ =

√
(j − m)!(j + m)!

(2j)!
(|

j+m elements︷ ︸︸ ︷
+ + · · ·+

j−m el.︷ ︸︸ ︷
− − · · · −⟩ + · · · + |

j−m el.︷ ︸︸ ︷
− − · · · −

j+m el.︷ ︸︸ ︷
+ + · · ·+⟩︸ ︷︷ ︸

(2j)!/[(j+m)!(j−m)!] terms

).

c) Show that U2(β) |±⟩ = |±⟩ c ± |∓⟩ s, where c = cos(β/2) and s = sin(β/2).
d) Taking into account that |jm⟩ and U2(β) |jm⟩ are totally symmetric, show that

⟨jm′|U2(β)|jm⟩ =

j−m∑
k=0

(−1)k
√

(j + m)!(j − m)!(j + m′)!(j − m′)!

k!(j + m′ − k)!(m − m′ + k)!(j − m − k)!

× c2j−2k−m+m′
s2k+m−m′

. (53)


