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Lecture contents

Chapter 2. Continuous symmetry groups
> 11.1. Abelian groups: SO(2) and T(3)
» 11.2. The rotation group SO(3)
> 11.3. The group SU(2)

» 1l.4. The Euclidean group E;



11.2.5. Irreps of the SO(3) Lie algebra

» Theorem: The irreducible representations of the Lie algebra of
S50(3) are each characterized by an angular momentum eigenvalue j
from the set of non-negative integers and half-integers. The
orthonormal basis vectors can be specified by the following
equations:

B|jm) = jm) jG+1), Iz ljm) = |jm) m,
Ja |jm) = |jm £ 1) [j(j + 1) = m(m £ 1)]*/. (1)
Proof: The first two relations were already proved. The third

relation can be proved by writing J.. [jm) = N |jm & 1), with the
convention (jm|j’m’) = §;;§pmm and evaluating:

NG 2 = (mlJyd-ljm) = (jm|J? = J3 + Js|jm) = j(j +1) = m(m — 1),
N |2 = Gml|J- Sy jm) = (jm|J? — I3 — Js|jm) = j(j + 1) = m(m +1).

The phase convention N5 = [j(j + 1) — m(m £ 1)]/2 is called the
Condon-Shortley convention.



11.2.6. Irreps of the SO(3) group

» Since Jx only modify m, the angular momentum number j identifies
the inequivalent irreps of SO(3).

» The action of a group element R(«, 57) is

U(v, 8,7) ljm) = Lim') Di(et, ,7)™ m- ()
» Since R(«, 8,7) = Rgia R3(8)Rs(7y) and keeping in mind that
R3() |jm) = |jm) , we have
U(a, ,) ljm) = Us(@) Ua(B) lim) ™" = Us(a) [jm') d(8)" me ™"
_ |_/m'> e|—l'¢)¢m/dj(ﬁ)m/me—i"/m7 (3)
with d;(8)™ = (jm'|e~ 5% jm).
» In the C-S convention, iJ, = 3(J; — J_) is a real matrix and
di(B)™ m is a real, orthogonal matrix:



Example: j =1/2
» When j = 1/2, the invariant subspace has only two states: |+1/2).
» The representation matrices are the Pauli matrices, J; = %o,-, such

that
1/1 0 0 1 0 0
J3_2<0 —1)’ J+_<o o)’ J__<1 o)‘ (5)

» The reduced representation matrix can be obtained using 03 = 1:

— e~ 2P0 — B . . B [cosz —sinz
d1/2(5) = e 2P% = Ecosa — 1o2sIn 5= (sin§ coc §2> . (6)
» The full representation matrix reads

—i(at7) B _e=bla=gin 8
_[€°? cos 5 e ? sin 5
Dl/2(a7ﬁ7’y) - ( eé(a,,y)sing eé(a‘i"y) Cosg ) . (7)

» Within the j = 1/2 representation, the 27 rotation gives
D[Ra(27)] = D[R]e™22"* D[R]~ = —E, (8)

hence D[R,(47)] = E and the representation is double-valued.



Example: j =1

» The generators for j = 1 have the following matrix representations:

1 0 O 0 v2 o0 0 0 0
Ls=[00 0], L=[0 0o V2|, J=[v2 0 o0].
0 0 -1 0 0 O© 0 v2 0

(9)

» The reduced representation matrix can be obtained as

di(B) =1— J5(1 —cosB) — iJrsin 3
2(1+ cosB) —% sin8  3(1 — cosf3)
- Lsin B 1COS_B 1—%5"‘5 - (10)
3(1 —cos 3) J5sin B 5(1 +cos )

» The full representation matrix reads

'(a+'v)

(1+C055) —e\_[i; sin 3 M(l—cosﬁ)
Di(o, B,7) = f ' sin B cos 3 775In,3
M(1 — cos 3) e%sinﬁ aﬂ)(l—&-cos,@)

(11)



Theorem: The irreps of the so(3) Lie algebra give rise to SO(3)
irreps belonging to 2 categories: (i) for j a non-negative integer:
single-valued reps.; (ii) for j an odd half-integer: double-valued reps.
Proof: Consider the rep. matrix for R3(27):

Dj[Rs(2m)]™ m = Djle 2" )™ 1y = by me 27

= S €™ = (=1)¥ 5, m. (12)

The existence of the double-valued representations are a
consequence of the double-connectedness of the group manifold.

Since the Lie algebra is related to the group properties in the vicinity
of E, there is no a priori control over D[R(27)], D[R(4)], etc.

All SO(3) reps. become single-valued reps. of the covering group,
SU(2).
In nature, fermion wave functions correspond to 2v reps. reps;

1v reps. describe boson systems.



[1.2.7. Characters

> For fixed ¥, Ra(¥)) = RR3(x))R~! belong to the same conj. class.
» The character x;(7) can be evaluated using the R3(¢) rotation:

_Np e _ Sl + 1))
w)_gDJ[R:‘} ] m = Z Sln(w/Q) . (13)

m=—j

> In particular, x1/5(¢)) = 2cos(¢/2) and x1(v) = 1+ 2cos ).



11.2.8.

>
>

Properties of Di(«, 3,7)

Unitarity: DT(OZ, 63 7) = Dil(oﬁ 577) = D(777 7ﬂ7 70‘)'
Unit determinant (special): In the angle-axis parametrization,

det D[R, (1))] = det D[RRs(¢))R™1] = H e”m =1, (14)

m=—j

Reality of d(3): True in the Condon-Shortley convention, where
d=1(8) = d7(B) = d(-p).
Complex conjugation: D*(a, 3,7) = YD(«, 3,7)Y 1, where
Y = D[Ry(7)], since
YD(a, B,7) = [YDs(a) Y [YD2(B)Y H[YD3(7) Y '], (15)

and YD3(1/))Y 1= Ds(— ¢) = D3 (¢), while
YD, ()Yt = Da(¥) = D5 ().
Symmetry relations: The reduced matrices d;((3) satisfy:
&(B)™ m = di(—B) " = (— 1)’ S TCC)
= (=)™ (8" . (16)



11.2.9.

>
>
>

Relation to spherical harmonics Y),(6, ¢)

Consider a unit vector |f) = |0, ¢).
When j — 1 € N, (0, ¢|Im) = Yim(0, p) is the spherical harmonic.
Noting that |0, ¢) = U(¢,6,0)|0,0), we have

Yim(0, ) = (0,0[U*(¢,0,0)|Im) = (0,0]/m') [D] (¢,0,0)]™ m. (17)
R3(7/}) |07 0> = |07 0> = J3 |07 0> =0= <07 O‘Im,> = (sm’,O YIO(an)
Fina”yv we have ylm(07¢) = \/10(0’0)[D/*(¢79’0)]m0
Noting that Y)o(0,0) = /(2/ + 1)/4, the above discussion

provides a connection between the representation matrices,
Yim(60, @), associated Legendre functions Pj,(cos @) and Legendre
polynomials P;(cos ):

211 o 2T
Y/m(97¢): \/T[D/(¢7970) 0] - \/76 ¢d/(9) 0,

{md(0)"

Py(cos8) = Pro(cos ) = di(6)% — ,/2/4711»/,0(9,0;). (18)

Pim(cos @) = (—1)"




11.2.10. Transformation of wave functions and operators

>

Theorem: The wave function of an arbitrary state transforms under
rotations as: 1(x) — ¥’(x) = Y(R™'x).

Proof: ¢/(x) = (x|U(R)|¥)) = (R™'x[¢) = ¥(R™'x).

Def: A set of multi-component functions {¢™(x), m = —j,...j} forms an
irreducible wave function or irreducible field of spin j if they transform
under rotations as

¢7(x) %> ¢ (x) = D[R]"n¢"(R™"x), (19)
where Dj[R]™, is the angular momentum j irrep matrix of SO(3).
Ex: The two-component Pauli wave function 7 (x) of a particle with spin
1/2 transforms as ¢/ (x) = (x|U(R)|%°) = D1 2[R] x¢* (R 'x).
Theorem: The components of the coordinate vector operator X transform
under rotations as X/ = U[R]X;U[R]™* = X;R/..
Proof: X/ |x) = U[R]X; |R™'x) = |x) (R™1)x; = (X;R)}) |x).
Def: Any set of operators transforming under rotations as the
components of the coordinate operator constitute a vector operator.

Ex: Consider the field operator (0|W7(x)|y) = 17 (x), where
|0) = U(R) |0) is the rotationally-invariant vacuum state. Then,
¥ (x) = (O|U[RIV (x) U[R™]|%") = Di[R™"]7x%"*(Rx), by which

UIRIV? (x)U[R] " = Dj[R™7 AW (Rx). (20)



[1.2.11. Direct product representations

» The vector |jm;j'm’) = |jm) ® |j'm’) transforms with the direct
product representation:

U(R) ljm; j'm'y = |jm; j'n"y D;(R)"mDjr(R)" - (21)

» Theorem: The generators of a direct product representation are the
sums of the corresponding generators of its constituent
representations: J, = J @ E/' + El @ Ji .

» The resulting representation is in general reducible to |JM), with
J2 UMY = |UM) J(J + 1) and J3 |IM) = |JM) M, where

h=AoE+E0S, P=RPoE+E® +2)-J. (22)

PRk
S i3y = iy G+, YT = i) G+ G+ +1), (23)
1t ma e 3 o J3
where we used J; - Jy = 3(J" @ S, + U7 @ J7) + S @ S5
» The states |j + j’, M) can be generated by repeated application of
I =V +EHQ/F eg

H ;!
7 =) = = L i+ LT =1
U+Jsi+i =1 =1i-1jj) T ;i = 1) T

» The maximum value j + j' of J3 corresponds to




Decomposition into irreps
» There is one more eigenvector of J3 corresp.

2\,

////\_'_’3_

tOM_J+j—1 Mz=jej o e el Jj+J’
AN NN\
i+ =L+ -1 = ININININING .
F AN NN NN
i/ = 1) 4| = INININININS
JtJ M= -j-j -j M= j-j
N l
=L =
| > ji+J

» This is the highest-M vector for the J = + ' — 1 rep.
> The inequivalent irreps continue down to J = |j — j|. Each irrep
appears exactly once. The total number of basis elements is:
i+’
> o@I+1) =4 +2+2) =2/ +1)(2) +1). (24)
J=li—=J"]

> In general, the irreps basis vectors can be obtained from the direct
product basis vectors via the C-G coeffs:

M) = > Ljmi ' m') {mm' G} IM) - Ljm; /'y =D 1, M) (MG )mm)
m,m’ J,M
with (JM(jj"ymm'y = (mm’ (jj')IM)*.
» In the Condon-Shortley convention, (mm’(jj')JM) € R and
U, d =GN ) = ('S = jldd) > 0.



Exercises

1. Particle in a central potential. Consider H = T + V with
T =P2%/2mand V = V(r).
a) Show that [H, U(R)] = 0,VR € SO(3) = [H, J;] = 0.
b) Show that |x) = |r,0,¢) = >, |rm) Y;: (0, ¢).
c) Consider |Elm) a simultaneous eigenstate of {H,J?, J;}:

H|Elm) = |Elm) E, J?|Elm) = |Elm) I(1 + 1), J5|Elm) = |Elm) m.

Show that ¢gim(x) = (x|EIm) = g/(r)Yim(0, ), where the radial
wavefunction ¥g/(r) depends only on r.

2. Show that Y,(R7R) = Yim (R)D/[R]™ m.

3. Consider [¢)) = |p). Using (x|p) = e#*P/(27h)3/2, show that under
a rotation, ¥’(x) = U[R]¥(x) = ¥(R™1x), where 1 (x) = (x|1).



Exercises

4. Partial wave decomposition. Consider a particle with definite
initial momentum |p;) = |p,0,0), scattering off a central potential
V(r) into a state |pr) = |p, 0, d).

a) Show that |p,0,¢) = >, |plm) Y;.(6, ¢).
b) Show that the scattering amplitude (ps| T|p;) reduces to

Pl Tl = 32 ) 2o Vin(6, 0) {plm| T1I'0)
pr p,—”/m 2 Ym(0,0) (pIm|T|pl'0).

c) In the case of a rotationally-invariant interaction,
U(R)TUT(R) = T, show that {pIm|T|p/'m') = T;(p)duSmum -
d) Thus prove the partial wave decomposition formula:

el Tloi) = Y- 22 (). (25)
i

5. Let |¢) = |EIm), with (x|9)) = ¥g/(r)Yim(0, ). Show that

W' (%) = Ver(r) Yim(R™%) = Yei(r) Vi () DI[R]™ . (26)



Exercises

WKT7.7

WKT7.8

(i) From the definition of the canonical basis vectors and the Lie
algebra of SO(3), show that U[Rx(7)] [jm) = |j, —m) n,, where
|77jm|2 =1and njmj:l = _njm' )

(ii) Using nig =1, prove that nj’- = 1,V}, by math. induction.

(iii) Combine (i) and (ii) to show that Dj[Rg(ﬁ)]’"/m = (—l)j_"’(ST;,,.
(iv) Derive the explicit expression for D;[Ry()].

Verify that |jj;j’j’) is an eigenvector of J? with eigenvalue
U+0+J +1).

Explicitly construct the decomposition into irreps of the direct
product representation Dy, ® Dy, = D1 © Dg. Use the result to
express the relevant Clebsch-Gordan coefficients.

Explicitly construct the decomposition into irreps of the direct
product representation Dy, ® Dy = D3/, @ Dy /5 and evaluate the
relevant Clebsch-Gordan coefficients.

Use the results from 7 and 8 above to construct the decomposition
into irreps Of D1/2 X D1/2 ® D1/2 = D3/2 (&) D1/2 D D1/2-



