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Lecture contents

Chapter 2. Continuous symmetry groups
> 11.1. Abelian groups: SO(2) and T(3)
» 11.2. The rotation group SO(3)
> 11.3. The group SU(2)

» 1.4, The Euclidean group E;
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The rotation group SO(2)

The rotations about the z axis of angle ¢ act on the basis vectors &;
and &; of the xOy plane as follows:

R(¢)&é1 = &1 cos ¢ + & sin ¢, _ [cos¢ —sinqb)
R(¢)&; = —&; sin ¢ + &; cos ¢, = R(@) = (sind) cosg ) (1)

The basis vectors transform as &; — & = & R(¢);;
The components of x = x&; transform as x' — x"" = R(¢);x/.
Rotations preserve lengths: |x|? = |x/|?, such that

R(#YiR(9)* = [RT(#)R()]"; = o7 ()

Since det R(¢) = 1 and RTR = E, they are special orthogonal
matrices of rank 2 = SO(2) matrices.

Theorem: There is a 1: 1 correspondence between rotations in a
plane and SO(2) matrices.

Theorem: Given: R(¢2)R(¢1) = R(¢1 + ¢2); R(¢ =0) = E; and
R7Y(¢) = R(—¢) = R(2m — ¢) = {R(¢)} form a group: R, or
50(2).

Since R(¢1)R(¢2) = R(¢2)R(41), the group is abelian.
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The generator of SO(2)

By definition, R(0) = E. Close to E, we define the generator J of
the group via

dR —i
RGo) = E—isss = J=i| — (% 7). (3
do $=0 i 0
Theorem: All 2D rotations can be expressed as R(¢) = e=/%.
For unitary representations, R1(¢) = Rf(¢) = JI = J.
Imposing det R(¢) = 1 and using detexp(A) = exp tr(A) = trJ = 0.
The generators J are hermitian (unitary representation) and
traceless (unit determinant) matrices.
The eigenvalues AL = +1 of J are real numbers.

The eigenvectors of J, satisfying J|é1) = +é., are also
eigenvectors of R(¢):

R(¢) l6x) = [ex) ™. (4)

Since the subspaces spanned by |&1) = %(el + jey) are invariant
under R(¢), they correspond to two irreps of SO(2).
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Irreps of SO(2)

Let U(¢) be a representation of R(¢) on V and J = i(dU/d¢)g=o.
Since U(0) = E, we have U(¢) = e~/%/, acting as an operator on V.
Since SO(2) is abelian, all its irreps are 1D.

Consider |a) a vector in a minimal invariant subspace:

Jlay =laya,  U()|a) = |a) e~ (5)

Due to the global (topological) constraint U(¢ + 27) = U(¢), we
have eT2™® =1 and hence o — m € Z.

Theorem: The single-valued irreps of SO(2) are given by
J=meZand Un(p) = e ™.

Obs: Only the m = +1 irreps are faithful representations.

Obs: |é1) correspond to the representations m = +1.

Def: Relaxing the constraint to Up/n(¢ +2n¢) = Up/n(9) gives the
n-valued representation of SO(2):

R(¢) = Upyn(8) = e=™mo/", (6)

where (n, m) are coprime numbers (i.e., with no common factors).
In physics, only single-valued (classical; quantum, bosonic) and
double-valued (quantum, fermion) representations are relevant.



[1.1.4. Invariant integration measure

» In analogy to finite groups, compact groups have finite “volume”.

» Integration over group elements must be compatible with the
rearrangement lemma:

/ drrf[R] = / drrf[STIR] = / drsrf|[R]. (7)

» For SO(2), this is achieved via d7g = d¢.
» Theorem: The SO(2) representation functions U"(¢) satisfy:
2—Un(¢)Um(¢) = Omn, (orthogonality)
0 m

D Un(@)Ui(#:) =d(¢ —¢'),  (completeness). (8)



[1.1.5. Translations

» Consider the translation f(xq) — T(x)f(x0) = f(xo + x).
» The generators of translations satisfy
iIV[T(x)f(xo)]x=0 = [V ]y, = P=1iV. (9)

» Since T(x)T(x") = T(x')T(x), the translation group is abelian and
its irreps are 1D.

> Consider P |p) = |p) p = UP(x) |p) = |p) e P*.
» Theorem: The irreps of T(p) satisfy:

/_oo d®x U;(X)Uq(x) = (27)%6*(p — q), (orthogonality)

/OO d*p Up(x)U;(y) = (27)33(x —y), (completeness). (10)

— 00
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Conjugate basis vectors: rotations

Consider a state |1)) and the coordinate basis |r, ) = |¢) (r is
unchanged by rotations).

Its Fourier and inverse Fourier transforms read:

Gy = 3 }<m|¢> () = jﬂ e ™ (B} . (11)

m=—o0

Using E = fo do o) (¢| = > o |m) (m]|, we find

(ml6) = (olm)" = ——e"". (12)

Since J|m) = |m) m, we have
JIg) = m) me '"""—/flcw (13)

such that (¢|J]1)) = —id/d.

J = —i0y is just the (dimensionless) angular momentum operator
along z!



11.1.7. Conjugate basis vectors: translations

> Consider a state |¢) and the coordinate basis |x).
» Its Fourier and inverse Fourier transforms read:

3 .
o) = [ et i),

3 ]
wiv) = [ e P el

> Using E = [ d®x |x) (x| = [d%p |p) (p],

* 1 —ip.x
(plx) = (x[p)” = We P
» Since P |p) = |p) p, we have
Pix)= [ dplp)pe iP" = inV|x),

such that (x|P|y) = —ihAV .
» P = —iAV is just the momentum operator!

(15)



11.2. The rotation group.
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Description of SO(3)

Def: The SO(3) group consists of all continuous linear
transformations in 3D Euclidean space which leave the length of
coordinate vectors invariant.

Under a rotation R € SO(3), & — & = &R/; and x' — x"" = R'jx/.
The requirement |x| = |x| imposes RTR = RRT = E.

The above implies det R = £1 [the O(3) group].

Matrices continuously connected to E have det R =1 [SO(3) group].

Any matrix with det M = —1 can be written as M = 4R, with
Is = diag(—1, —1, —1) the spatial reflection.

The properties RTR = E and det R = 1 can be written as
R'R'; =06";, RRI ,R¥,eM = el detR = £, (17)
The matrices describing rotations about the coordinate axes are:

1 0 0 cos 0 siny cosyp  —singp 0
Ri(¥)= [0 cosyp —sing |, Ry(v)= 0 1 0 |, Ry)=[siny cos P o).
0 sinv cos —singy 0 cos 0 0 1
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Angle-axis and Euler angle parametrizations

Any rotation can be characterized by an angle ¢ € [0, 7] and a
direction i = (6, ).

Graphically, Ry(%) can be seen as a vector with polar coordinates
(0, ¢) and magnitude v, covering the sphere of radius 0 < ¢ < 7.
Since Rn(m) = R_n(7), the sphere is doubly-connected.

If A" = R(n)';&}, then Ry(¥) = RaR3(¥)Ry 1.

Theorem: All rotations by the same angle i) belong to a single class
of the group SO(3).

Proof: Let R;i¥ = i’ = R(n’)";&]. Since R(n’) = RR(n), we have

Ro(¢¥) = R(n")Rs(¥)R™'(n") = R[R(n)Rs(¢)R™ ()] R~
= RR.(¥)R™L.

Any rotation can be parametrized using the Euler angles as

R(c, B,7) = Rs(a)Ra(B)R3().



11.2.3. The Lie algebra of SO(3)

» The generators J; of the rotations along the coordinate axes i are:

00 0 0 0 0 —i ©
h=[0 0 —i|, =[O0 0 0], K=[|i 0 o). (@18)
0 i 0 —i 0 0 0 0 ©

» The components of the generators satisfy (J;)/, = —iclk.

» Lemma: Writing Ry()) = e~ ¥, we have RJ,R™! = Jgy.
Proof: Follows by noting that Re=/¥/R~1 = ¢~ /WRIR™",

» Theorem: Under rotations, J, behave as the basis vectors:
RJkR71 = J/le.
Proof: Follows after multiplying Eq. (17) by —iR;' and using

Imn _ ; m

gmn = i(J)m,.

» Theorem: The generator of rotations around fi is J, =i - J.
Proof: The generator around &, is J, = J-&,. Let h = R€,. Then,
o = RJZRil = JkRk3 =n-J.

» Theorem: The generators Ji satisfy the following Lie algebra:

[Jk, J/] = JkJ/ — J/./k = I'€k/me. (19)

Proof: By direct computation or by using RJx\R™! = JiR\.
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Casimir operator: J?

Def: An operator which commutes with all elements of a Lie group
is a Casimir operator.

J? is a Casimir operator of the SO(3) group, since [Jk, J?] = 0.

By Schur's Lemma 1, J2 ~ E and all vectors in an irrep are
eigenvectors of J2 with the same eigenvalue.

The basis vectors defining the irrep are taken as eigenvectors of J;
and J2; while J. =, £ ik = ./:TF represent the raising and lowering
operators, satisfying:

[Js, Je] = +tJu, [J,J ] =2k, P =L —h+ ) =5 +h+J J,.
Consider |m) s.t. J3|m) = |m) m. Then J3Jy |m) = Ji [m) (m+ 1).

Applying Ji on |m) will generate a vector proportional to |m + k).
Imposing J, |j) = 0 implies

P =140 +1). (20)

Similarly, imposing J_ |j/) = 0= j(j+1) =/(j'—1), hence j/ = —j.
|—J) is obtained by applying J_ on |j) an integer number of times
=2/=n=0,1,2,---=j=0,3,1,....



Exercises

1. Compute J? in the standard (3D) representation (18) and thus find
the associated value of j.
2. Show that Ji |jm) = |[jm + 1) [j(j + 1) — m(m=+1)]/2e”, where 6 is
a real number. The case 6§ = 0 corresponds to the Condon-Shortley
convention.
WKT7.1 Derive the general expression for the 3 x 3 matrix R(«, 3,7).
WKTT7.2 Derive the relation between the Euler angle variables («, 3,+) and
the angle-axis parameters (1, 0, ¢) for a general rotation:

Tt a-—vy _ tan(B/2)
N RG]
cos1p = 2 cos? <§) cos? (a;v) -1 (21)

WKT7.3 From geometrical considerations, derive the following result which
describes the effect of the rotation R,(t)) on an arbitrary vector ¥:

Ra(9)f = fcosp + (1 — costp)(F - i) + (A x F)sin . (22)



Exercises

WKT7.4 An alternative way of writing the Lie algebra for SO(3) can be
obtained by defining J¥' = &kmJ, (i.e., J1? = J3, etc) as the
generator for rotations in the k — / plane. Show that

[Jk/’Jmn] — i(5kaln o 5knJlm o 5/kan + 5ankm)' (23)

WKT7.6 Find the similarity transformation relating the Cartesian generators
Ji in Eq. (18) with those in the canonical basis {|m),—1 < m <1}

shown below:
0 0 0 0 o0
0 0 V2], J=1|v2 0 of.
0 0 0 0 V2 0

10 0
ks=(0 0 0], U=
00 -1
(24)



