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Lecture contents

Chapter 2. Continuous symmetry groups

▶ II.1. Abelian groups: SO(2) and T (3)

▶ II.2. The rotation group SO(3)

▶ II.3. The group SU(2)

▶ II.4. The Euclidean group E3



II.1.1. The rotation group SO(2)
▶ The rotations about the z axis of angle ϕ act on the basis vectors ê1

and ê2 of the xOy plane as follows:

R(ϕ)ê1 = ê1 cosϕ+ ê2 sinϕ,

R(ϕ)ê2 = −ê1 sinϕ+ ê2 cosϕ,
⇒ R(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. (1)

▶ The basis vectors transform as êi → ê′i = êjR(ϕ)j i ;
▶ The components of x = x i êi transform as x i → x ′i = R(ϕ)i jx

j .

▶ Rotations preserve lengths: |x|2 = |x′|2, such that

R(ϕ)j iR(ϕ)j
k = [RT (ϕ)R(ϕ)]k i = δki . (2)

▶ Since detR(ϕ) = 1 and RTR = E , they are special orthogonal
matrices of rank 2 ≡ SO(2) matrices.

▶ Theorem: There is a 1 : 1 correspondence between rotations in a
plane and SO(2) matrices.

▶ Theorem: Given: R(ϕ2)R(ϕ1) = R(ϕ1 + ϕ2); R(ϕ = 0) = E ; and
R−1(ϕ) = R(−ϕ) = R(2π − ϕ) ⇒ {R(ϕ)} form a group: R2 or
SO(2).

▶ Since R(ϕ1)R(ϕ2) = R(ϕ2)R(ϕ1), the group is abelian.



II.1.2. The generator of SO(2)
▶ By definition, R(0) = E . Close to E , we define the generator J of

the group via

R(δϕ) = E − iJδϕ ⇒ J = i
dR

dϕ

∣∣∣∣
ϕ=0

=

(
0 −i
i 0

)
. (3)

Theorem: All 2D rotations can be expressed as R(ϕ) = e−iϕJ .

▶ For unitary representations, R−1(ϕ) = R†(ϕ) ⇒ J† = J.

▶ Imposing detR(ϕ) = 1 and using det exp(A) = exp tr(A) ⇒ trJ = 0.

▶ The generators J are hermitian (unitary representation) and
traceless (unit determinant) matrices.

▶ The eigenvalues λ± = ±1 of J are real numbers.

▶ The eigenvectors of J, satisfying J |ê±⟩ = ±ê±, are also
eigenvectors of R(ϕ):

R(ϕ) |ê±⟩ = |ê±⟩ e±iϕ. (4)

▶ Since the subspaces spanned by |ê±⟩ = 1√
2
(e1 ± ie2) are invariant

under R(ϕ), they correspond to two irreps of SO(2).



II.1.3. Irreps of SO(2)
▶ Let U(ϕ) be a representation of R(ϕ) on V and J = i(dU/dϕ)ϕ=0.
▶ Since U(0) = E , we have U(ϕ) = e−iϕJ , acting as an operator on V .
▶ Since SO(2) is abelian, all its irreps are 1D.
▶ Consider |α⟩ a vector in a minimal invariant subspace:

J |α⟩ = |α⟩α, U(ϕ) |α⟩ = |α⟩ e−iϕα. (5)

▶ Due to the global (topological) constraint U(ϕ+ 2π) = U(ϕ), we
have e∓2πiα = 1 and hence α→ m ∈ Z.

▶ Theorem: The single-valued irreps of SO(2) are given by
J = m ∈ Z and Um(ϕ) = e−imϕ.

▶ Obs: Only the m = ±1 irreps are faithful representations.
▶ Obs: |ê±⟩ correspond to the representations m = ±1.
▶ Def: Relaxing the constraint to Um/n(ϕ+ 2nϕ) = Um/n(ϕ) gives the

n-valued representation of SO(2):

R(ϕ) → Um/n(ϕ) = e−imϕ/n, (6)

where (n,m) are coprime numbers (i.e., with no common factors).
▶ In physics, only single-valued (classical; quantum, bosonic) and

double-valued (quantum, fermion) representations are relevant.



II.1.4. Invariant integration measure

▶ In analogy to finite groups, compact groups have finite “volume”.

▶ Integration over group elements must be compatible with the
rearrangement lemma:∫

dτR f [R] =

∫
dτR f [S

−1R] =

∫
dτSR f [R]. (7)

▶ For SO(2), this is achieved via dτR = dϕ.

▶ Theorem: The SO(2) representation functions Un(ϕ) satisfy:∫ 2π

0

dϕ

2π
U†
n(ϕ)Um(ϕ) = δmn, (orthogonality)∑

n

Un(ϕ)U
†
n(ϕ; ) = δ(ϕ− ϕ′), (completeness). (8)



II.1.5. Translations

▶ Consider the translation f (x0) → T (x)f (x0) = f (x0 + x).

▶ The generators of translations satisfy

i∇[T (x)f (x0)]x=0 = [i∇f ]x0 ⇒ P = i∇. (9)

▶ Since T (x)T (x′) = T (x′)T (x), the translation group is abelian and
its irreps are 1D.

▶ Consider P |p⟩ = |p⟩p ⇒ Up(x) |p⟩ = |p⟩ e−ip·x.

▶ Theorem: The irreps of T (p) satisfy:∫ ∞

−∞
d3x U†

p(x)U
q(x) = (2π)3δ3(p− q), (orthogonality)∫ ∞

−∞
d3p Up(x)U†

p(y) = (2π)3δ3(x− y), (completeness). (10)



II.1.6. Conjugate basis vectors: rotations
▶ Consider a state |ψ⟩ and the coordinate basis |r , ϕ⟩ ≡ |ϕ⟩ (r is

unchanged by rotations).

▶ Its Fourier and inverse Fourier transforms read:

⟨ϕ|ψ⟩ =
∞∑

m=−∞

e imϕ√
2π

⟨m|ψ⟩ , ⟨m|ψ⟩ =
∫ 2π

0

dϕ√
2π

e−imϕ ⟨ϕ|ψ⟩ . (11)

▶ Using E =
∫ 2π

0
dϕ |ϕ⟩ ⟨ϕ| =

∑∞
m=−∞ |m⟩ ⟨m|, we find

⟨m|ϕ⟩ = ⟨ϕ|m⟩∗ =
1√
2π

e−imϕ. (12)

▶ Since J |m⟩ = |m⟩m, we have

J |ϕ⟩ =
∑
m

|m⟩me−imϕ = i
d

dϕ
|ϕ⟩ , (13)

such that ⟨ϕ|J|ψ⟩ = −idψ/dϕ.

▶ J = −i∂ϕ is just the (dimensionless) angular momentum operator
along z!



II.1.7. Conjugate basis vectors: translations
▶ Consider a state |ψ⟩ and the coordinate basis |x⟩.
▶ Its Fourier and inverse Fourier transforms read:

⟨x|ψ⟩ =
∫

d3p

(2πℏ)3/2
e

i
ℏ p·x ⟨p|ψ⟩ ,

⟨p|ψ⟩ =
∫

d3p

(2πℏ)3/2
e−

i
ℏ p·x ⟨x|ψ⟩ . (14)

▶ Using E =
∫
d3x |x⟩ ⟨x| =

∫
d3p |p⟩ ⟨p|, we find

⟨p|x⟩ = ⟨x|p⟩∗ =
1

(2πℏ)3/2
e−

i
ℏ p·x. (15)

▶ Since P |p⟩ = |p⟩p, we have

P |x⟩ =
∫

d3p |p⟩pe− i
ℏ p·x = iℏ∇ |x⟩ , (16)

such that ⟨x|P|ψ⟩ = −iℏ∇ψ.

▶ P = −iℏ∇ is just the momentum operator!



II.2. The rotation group.
II.2.1. Description of SO(3)

▶ Def: The SO(3) group consists of all continuous linear
transformations in 3D Euclidean space which leave the length of
coordinate vectors invariant.

▶ Under a rotation R ∈ SO(3), êi → ê′i = êjR j
i and x i → x ′i = R i

jx
j .

▶ The requirement |x| = |x′| imposes RTR = RRT = E .

▶ The above implies detR = ±1 [the O(3) group].

▶ Matrices continuously connected to E have detR = 1 [SO(3) group].

▶ Any matrix with detM = −1 can be written as M = IsR, with
Is = diag(−1,−1,−1) the spatial reflection.

▶ The properties RTR = E and detR = 1 can be written as

Rl
iR l

j = δi j , R i
lR

j
mR

k
nε

lmn = εijkdetR = εijk . (17)

▶ The matrices describing rotations about the coordinate axes are:

R1(ψ) =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 , R2(ψ) =

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

 , R3(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 .



II.2.2. Angle-axis and Euler angle parametrizations

▶ Any rotation can be characterized by an angle ψ ∈ [0, π] and a
direction n̂ ≡ n̂(θ, φ).

▶ Graphically, Rn(ψ) can be seen as a vector with polar coordinates
(θ, φ) and magnitude ψ, covering the sphere of radius 0 ≤ ψ ≤ π.

▶ Since Rn(π) = R−n(π), the sphere is doubly-connected.

▶ If n̂i = R(n)i j êjz , then Rn(ψ) = RnR3(ψ)R
−1
n .

▶ Theorem: All rotations by the same angle ψ belong to a single class
of the group SO(3).
Proof: Let R i

j n̂j = n̂′i = R(n′)i j êjz . Since R(n′) = RR(n), we have

Rn′(ψ) = R(n′)R3(ψ)R
−1(n′) = R[R(n)R3(ψ)R

−1(n)]R−1

= RRn(ψ)R
−1.

▶ Any rotation can be parametrized using the Euler angles as
R(α, β, γ) = R3(α)R2(β)R3(γ).



II.2.3. The Lie algebra of SO(3)
▶ The generators Ji of the rotations along the coordinate axes i are:

J1 =

0 0 0
0 0 −i
0 i 0

 , J2 =

 0 0 i
0 0 0
−i 0 0

 , J3 =

0 −i 0
i 0 0
0 0 0

 . (18)

▶ The components of the generators satisfy (Ji )
j
k = −iεijk .

▶ Lemma: Writing Rn(ψ) = e−iψJn , we have RJnR
−1 = JRn.

Proof: Follows by noting that Re−iψJR−1 = e−iψRJR−1

.

▶ Theorem: Under rotations, Jk behave as the basis vectors:
RJkR

−1 = JlR
l
k .

Proof: Follows after multiplying Eq. (17) by −iRi
l and using

εlmn = i(Jl)
m
n.

▶ Theorem: The generator of rotations around n̂ is Jn = n̂ · J.
Proof: The generator around êz is Jz = J · êz . Let n̂ = R êz . Then,
Jn = RJzR

−1 = JkR
k
3 = n̂ · J.

▶ Theorem: The generators Jk satisfy the following Lie algebra:

[Jk , Jl ] = JkJl − JlJk = iεklmJm. (19)

Proof: By direct computation or by using RJkR
−1 = JlR

l
k .



II.2.4. Casimir operator: J2

▶ Def: An operator which commutes with all elements of a Lie group
is a Casimir operator.

▶ J2 is a Casimir operator of the SO(3) group, since [Jk , J2] = 0.

▶ By Schur’s Lemma 1, J2 ∼ E and all vectors in an irrep are
eigenvectors of J2 with the same eigenvalue.

▶ The basis vectors defining the irrep are taken as eigenvectors of J3
and J2; while J± = J1 ± iJ2 = J†∓ represent the raising and lowering
operators, satisfying:

[J3, J±] = ±J±, [J+, J−] = 2J3, J2 = J2
3 − J3 + J+J− = J2

3 + J3 + J−J+.

▶ Consider |m⟩ s.t. J3 |m⟩ = |m⟩m. Then J3J+ |m⟩ = J+ |m⟩ (m + 1).

▶ Applying Jk+ on |m⟩ will generate a vector proportional to |m + k⟩.
Imposing J+ |j⟩ = 0 implies

J2 |j⟩ = |j⟩ j(j + 1). (20)

▶ Similarly, imposing J− |j ′⟩ = 0 ⇒ j(j +1) = j ′(j ′−1), hence j ′ = −j .

▶ |−j⟩ is obtained by applying J− on |j⟩ an integer number of times
⇒ 2j = n = 0, 1, 2, · · · ⇒ j = 0, 12 , 1, . . . .



Exercises

1. Compute J2 in the standard (3D) representation (18) and thus find
the associated value of j .

2. Show that J± |jm⟩ = |jm ± 1⟩ [j(j +1)−m(m± 1)]1/2e iθ, where θ is
a real number. The case θ = 0 corresponds to the Condon-Shortley
convention.

WKT7.1 Derive the general expression for the 3× 3 matrix R(α, β, γ).

WKT7.2 Derive the relation between the Euler angle variables (α, β, γ) and
the angle-axis parameters (ψ, θ, ϕ) for a general rotation:

ϕ =
π + α− γ

2
, tan θ =

tan(β/2)

sin[(γ + α)/2]
,

cosψ = 2 cos2
(
β

2

)
cos2

(
α+ γ

2

)
− 1. (21)

WKT7.3 From geometrical considerations, derive the following result which
describes the effect of the rotation Rn(ψ) on an arbitrary vector r̂:

Rn(ψ)r̂ = r̂ cosψ + n̂(1− cosψ)(r̂ · n̂) + (n̂× r̂) sinψ. (22)



Exercises

WKT7.4 An alternative way of writing the Lie algebra for SO(3) can be
obtained by defining Jkl = εklmJm (i.e., J12 = J3, etc) as the
generator for rotations in the k − l plane. Show that

[Jkl , Jmn] = i(δkmJ ln − δknJ lm − δlmJkn + δlnJkm). (23)

WKT7.6 Find the similarity transformation relating the Cartesian generators
Jk in Eq. (18) with those in the canonical basis {|m⟩ ,−1 ≤ m ≤ 1}
shown below:

J3 =

1 0 0
0 0 0
0 0 −1

 , J+ =

0
√
2 0

0 0
√
2

0 0 0

 , J− =

 0 0 0√
2 0 0

0
√
2 0

 .

(24)


