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Lecture contents
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▶ I.2. Group representations

▶ I.3. Wigner-Eckart theorem

▶ I.4. Representations of the symmetric group



1.4. Representations of the symmetric group
1.4.1. Group algebra

▶ The regular representation, gigj = gm(∆i )
m
j , involves a formal sum

over group elements.
▶ The regular representation provides the natural arena to introduce

the group algebra G̃ , defined by the elements r = gi r
i , with r i ∈ C.

▶ The group algebra G̃ represents a ring w.r.t.:
▶ Addition: r + q = |gi ⟩ (r i + qi );
▶ Multiplication: rq = gigj r

iqj = gm[r
i (∆i )

m
jq

j ].

▶ Def: A representation U of G̃ on V preservers the group algebra
structure: U(αq + βr) = αU(q) + βU(r) and U(qr) = U(q)U(r),

∀q, r ∈ G̃ .
▶ Def: An irrep of G̃ does not have any non-trivial inv. subsp. in V .
▶ Theorem: (i) A rep. of G̃ is a rep. of G and vice-versa; (ii) An

irrep of G̃ is an irrep of G and v-v.
▶ Def: The alternating group An consists of all even permutations of

n elements.
▶ The elements of G̃ can be denoted by |r⟩ = |gi ⟩ r i , where |gi ⟩ forms

a natural orthonormal basis: ⟨g j |gi ⟩ = δji .
▶ Each group element acts as an operator: r |q⟩ = |gk⟩ [r i (∆i )

k
j ]q

j .



I.4.2. Left ideals, projection operators
▶ Def: A subspace L of G̃ for which pr ∈ L,∀p ∈ G and r ∈ L is

called a left ideal of G̃ .
▶ Def: A minimial left ideal does not contain smaller left ideals.
▶ Obs: A minimal left ideal corresponds to an irr. inv. subspace.
▶ Let Lµa ≡ minimal L-id. in G̃ . The projector Pµ

a onto Lµa must satisfy:

Pµ
a |r⟩ ∈ Lµa ,∀r ∈ G̃ ; Pµ

a |q⟩ = |q⟩ ,∀q ∈ Lµa ;

Pµ
a r = rPµ

a ,∀r ∈ G̃ ; Pµ
a P

ν
b = δµνδabP

µ
a .

▶ Consider the decomposition e =
∑

µ,a e
µ
a of the identity e ∈ G , with

eµa ∈ Lµa the identity in Lµa .
▶ Theorem: Pµ

a can be realized by right multiplication with eµa :

Pµ
a |r⟩ ≡ |reµa ⟩ ,∀r ∈ G̃ .

Proof: (i) Pµ
a |αr + βq⟩ = αPµ

a |r⟩+ βPµ
a |q⟩ (linearity);

(ii) Writing r ∈ G̃ as r =
∑

µ,a r
µ
a , with rµa ∈ Lµa , we have

r = re =
∑

µ,a re
µ
a , thus P

µ
a r = reµa = rµa .

(iii) For r , q ∈ G̃ , we have Pµ
a q |r⟩ = |qreµa ⟩ = qPµ

a |r⟩.
(iv) By construction, eµa e

ν
b = δµνδabe

µ
a , such that

Pµ
a P

ν
b |r⟩ = |reνb eµa ⟩ = δµνδabP

µ
a |r⟩ ,∀r ∈ G̃ .



I.4.3. Idempotents
▶ Def: The elements of the group algebra eµa satisfying

eµa e
ν
a = λµ

a δ
µνδabe

µ
a are essentially idempotents. If λµ

a = 1, then eµa
are idempotents.

▶ Def: A primitive idempotent generates a minimal left ideal.
▶ Theorem: ei is primitive ⇔ ei rei = λrei ,∀r ∈ G̃ , with λr ∈ C.

Proof: ⇒: Let R : G̃ → G̃ , defined by R |q⟩ = |qei rei ⟩ ,∀q ∈ G̃ , for some

r ∈ G̃ . Since Rs = sR, ∀s ∈ G , then R = λrei (Schur L1, on Lµ
a ).

⇐: Assume ei = e′i + e′′i , with e′i and e′′i idempotents. By definition,

eie
′
i = e′i and eie

′
i ei = e′i . Also, eie

′
i ei = λ′ei . Then, e

′
i e

′
i = (λ′)2ei and

e′i e
′
i = e′i = λ′ei . Hence, λ

′ = 0 (then ei = e′′i ), or λ
′ = 1 and ei = e′i .

▶ Theorem: Two primitive idempotents e1 and e2, corresponding to
the minimal left ideals L1 and L2, generate equiv. irreps ⇔ ∃r ∈ G̃
s.t. e1re2 ̸= 0.
Proof: ⇒: Let D1,2(G̃) be the irreps corresponding to e1,2. Since e1 ≃ e2,
∃S : L1 → L2 s.t. SD1(p) = D2(p)S , ∀p ∈ G . Since

D1(p) = D2(p) = p ∈ G̃ ⇒ Sp = pS .
Let |s⟩ = S |e1⟩ ∈ L2. Since S |e1⟩ = Se1 |e1⟩ = e1 |s⟩, we have s = e1s.
Also, s = se2, since s ∈ L2. Then, e1s = se2 = s ⇒ s = e1se2.

⇐: Let e1re2 = s ̸= 0 for some r ∈ G̃ . Consider S : L1 → L2, such that

q1 ∈ L1
S−→ q2 = q1s ∈ L2. Then, Sp |q1⟩ = pS |q1⟩ and Schur-L2 implies

D1(G) ≃ D2(G).



1.4.4. One-dimensional representations of Sn
▶ Def: An even permutation is one that consists of an even number of

simple transpositions.
▶ Def: The alternating group An consists of all even permutations of

n elements.
▶ Every symmetric group has the non-trivial subgroup An (alternating

group). The factor group Sn/An
∼= C2 induces two 1D irreps: p → 1

and p → (−1)p.
▶ Theorem: The two 1D representations correspond to the essentially

idempotent and primitive symmetrizer s =
∑

p p and
anti-symmetrizer a =

∑
p(−1)pp.

Proof: (i) Using the rearrangement lemma, ps = s and
pa = (−1)pa. Then, ss = n!s and aa = n!a and thus s and a are
essentially idempotent.
(ii) Since sqs = ss = n!s, while aqa = (−1)qn!a, s and a are
primitive idempotents.
(iii) Since sqa = sa =

∑
p(−1)psp = s

∑
p(−1)p = 0, the two

representations are inequivalent.
(iv) The basis vectors are of the form q |s⟩ = |qs⟩ = |s⟩ (hence
q → 1 under s); and q |a⟩ = |qa⟩ = (−1)q |a⟩ (hence q → (−1)q

under a).



1.4.5. Partitions and Young diagrams

▶ Def: A partition λ ≡ {λ1, . . . λr} of the integer n is a sequence of
positive integers λi , with λi ≥ λi+1, such that

∑r
i=1 λi = n.

▶ λ = µ if λi = µi ,∀i .
▶ λ > µ (λ < µ) if the first non-zero number in the sequence

λi − µi > 0 (< 0).

▶ Def: λ is represented graphically by a Young Diagram, which
consists of n squares arranged in r rows, with the ith one containing
λi squares.

▶ For n = 3, the distinct partitions are:

{3} {2, 1} {1, 1, 1}

▶ For n = 4:

{4} {3, 1} {2, 2} {2, 1, 1} {1, 1, 1, 1}



1.4.6. Young tableaux

▶ Theorem: The number of Young diagrams for any given n is equal
to the number of classes of Sn, and therefore to the number of irreps
of Sn.
Proof: Every class of Sn is characterized by a cycle structure, say ν1
1-cycles; ν2 2-cycles; . . . . Then, n = ν1 + 2ν2 + 3ν3 + . . . .
Denoting: λ1 = ν1 + ν2 + . . . , λ2 = ν2 + ν3 + . . . , etc., we see that
λ becomes a partition of n.

▶ Def: A Young tableau is obtained by filling a Young diagram with
distinct numbers between 1 and n, in any order.

▶ Def: A normal Young tableau Θλ if one in which the numbers
appear in increasing order from left to right and from top to bottom
and it is unique for a given partition λ.

▶ Def: A standard Young tableau is one in which the numbers appear
in increasing order on each row and on each column, but not in
strict order.

▶ Obs: Any Young tableau can be obtained from Θλ by applying a
given permutation p on the numbers 1, . . . n, giving Θp

λ.



1.4.7. (Anti-)Symmetrizers of Young tableaux
▶ Def: A horizontal permutation hpλ leaves invariant the sets of

numbers appearing in each row of Θp
λ.

▶ Def: A vertical permutation hpλ leaves invariant the sets of numbers
appearing in each column of Θp

λ.

▶ Def: The symmetrizer spλ, anti-symmetrizer apλ and irreducible
(Young) symmetrizer epλ associated with the Young tableau Θp

λ are

spλ =
∑
h

hpλ, apλ =
∑
v

(−1)vλvp
λ , epλ =

∑
h,v

(−1)vλhpλv
p
λ . (1)

▶ Example for S3:

Θ1 = 1 2 3 : {hλ} = S3 ⇒ s1 = s; {vλ} = {e} ⇒ a1 = e; e1 = s.

Θ2 = 1 2
3

: {hλ} = {e, (12)} ⇒ s2 = e + (12); {vλ} = {e, (13)} ⇒
a1 = e − (13); e2 = e + (12)− (13)− (132).

Θ3 = 1
2
3

: {hλ} = {e} ⇒ s3 = e; {vλ} = S3 ⇒ a3 = a; e3 = a.

Θ
(23)
2 = 1 3

2
: {hp

λ} = {e, (13)} ⇒ sp2 = e + (13); {vp
λ} = {e, (12)} ⇒

ap1 = e − (12); ep2 = e + (13)− (12)− (123).



▶ For each Θp
λ, {h

p
λ} and {vp

λ} each form a subgroup of Sn;

▶ spλh
p
λ = hpλs

p
λ = spλ and apλv

p
λ = vp

λa
p
λ = (−1)v

p
λapλ, as well as

spλs
p
λ = nλs

p
λ (nλ = λ1!λ2! · · ·λr !) and apλa

p
λ = ñλa

p
λ

(ñλ = (1!)ν1(2!)ν2 · · · (r !)νr ) ⇒ spλ and apλ are essentially idempotent
(but not primitive).

▶ epλ are primitive idempotents.

▶ eλ generate all inequivalent irreducible representations; epλ generate
irreducible representations that are equivalent to eλ.

▶ The left ideals generated by epλ corresponding to the standard Young

tableaux Θp
λ are non-overlapping, spanning (through direct sum) S̃n.

▶ For S3, e1 and e3 generate the 1D irreps; while e2 and e
(12)
2 generate:

ee2 = (12)e2 = e2, (23)e2 = (132)e2 = r2, (13)e2 = (123)e2 = −e2 − r2,

eep2 = (13)ep2 = ep2 , (23)ep2 = (123)ep2 = rp2 , (12)ep2 = (132)ep2 = −ep2 − rp2 ,

where r2 = (23) + (132)− (123)− (12) and rp2 = (23) + (123)− (132)− (13).

▶ It can be checked that {e1, e2, r2, ep2 , r
p
2 , e3} are mutually orthogonal

and together, they span S̃3:

e =
1

6
e1 +

1

3
e2 +

1

3
ep2 +

1

6
e3. (2)



I.4.8. Useful lemmas
▶ Lemma: Consider a Young tableau θλ and θpλ = pθλ. Then,

{hpλ, v
p
λ , s

p
λ, a

p
λ, e

p
λ} = p{hλ, vλ, sλ, aλ, eλ}p−1.

Proof: Obvious, since for each fλ on θλ, there is an associated
f pλ = pfλp

−1 acting on θpλ as fλ acts on θλ, i.e.
f pλ θ

p
λ = pp−1f pλ pθλ = pfλθλ.

▶ Lemma: Given θλ and p ∈ Sn defining θpλ, a necessary and sufficient
condition that p ̸= hλvλ is that there are at least two numbers in
one row of θλ which appear in the same column of θpλ.

Proof: ⇐: Consider p = hλvλ. Notice vhλ
λ = hλvλh

−1
λ is a vertical

permutation for θhλλ = hλθλ. Neither hλ nor vhλ
λ bring two numbers

from the same column onto the same row, thus p ̸= hλvλ.
⇒: Assuming θpλ does not have on any column two elements from

the same row in θpλ, we construct θhλλ = hλθλ such that each column

in θhλλ has the same elements as in θpλ. Then, θ
p
λ = vhλ

λ θhλλ is
obtained by applying a vertical permutation, arranging the elements
in each column. Conversely, if p ̸= hλvλ, then there must be a pair
of numbers appearing in one row of θλ and one column of θpλ.



▶ Lemma: If p ̸= hλvλ, ∃ the transpositions h̃λ and ṽλ s.t.
p = h̃λpṽλ.
Proof: Since p ̸= hλvλ, there is a pair of numbers on some row of
θλ that appears on the same column in θpλ. Conversely, there will be
a pair of numbers on some column in θλ that appear on the same
row in θpλ. Let ṽλ and h̃pλ be the vertical and horizontal
transpositions swapping these numbers in θλ and θpλ, such that

h̃pλp = pṽλ. Then, h̃
p
λpṽλ = p.

Example: Consider n = 8 and p = (13472):

1 2 3 4
5 6
7
8

p−−−−−→ 2 7 1 3
5 6
4
8

. (3)

Then, ṽλ = (17) and h̃λ = (23), such that

1 2 3 4
5 6
7
8

ṽλ−→ 7 2 3 4
5 6
1
8

p−→ 2 1 7 3
5 6
4
8

h̃pλ−→ 2 7 1 3
5 6
4
8

. (4)



▶ Lemma: If hλrvλ = (−1)vλr ,∀hλ, vλ defined on θλ, then r = ξreλ
for some number ξr .
Proof: Consider the decomposition r =

∑
p αpp. Then:

hλrvλ =
∑
q

αq(hλqvλ) =
∑
p

αh−1
λ pv−1

λ
p.

Equating with (−1)vλp, we find αh−1
λ pv−1

λ
= (−1)vλαp. If p ̸= hλvλ,

then we can find h̃λ and ṽλ s.t. p = h̃λpṽλ and
αp = (−1)ṽλαp = −αp, by which αp = 0. If p = hλvλ, then
αp = (−1)vλξ, with ξ = αe . Then, r = ξ

∑
hλ,vλ

(−1)vλhλvλ = ξeλ.



I.4.9. Irreps of Sn
▶ Theorem: Within Θp

λ, s
p
λra

p
λ = ξre

p
λ,∀r ∈ S̃n and with ξr an

r -dependent number. Moreover, epλe
p
λ = ηepλ, with η ̸= 0. Hence, eλ

is an idempotent.
Proof: (i) Omitting p, let q = sλraλ. Since hλsλ = sλ and
aλvλ = (−1)vλaλ, hλqvλ = (−1)vλq,∀hλ, vλ. Hence, by Lemma,
q = sλraλ = ξeλ.
(ii) Writing eλeλ = (sλaλ)(sλaλ), we can apply (i) with r = aλsλ to
conclude eλeλ = ηeλ.
(iii) As a matter of principle, eλ contains e, whose coefficient is
nonvanishing. Therefore, eλeλ also contains e with a nonvanishing
coefficient ⇒ η ̸= 0.

▶ Theorem: eλ associated with Θλ is a primitive idempotent,
generating an irrep of Sn on S̃n.
Proof: We already know that eλ is idempotent. It is primitive
because eλreλ = sλ(aλrsλ)aλ = ξeλ,∀r ∈ S̃n.

▶ Theorem: The irreps generated by eλ and epλ,∀p ∈ Sn, are
equivalent.
Proof: Since epλ = peλp

−1, we have epλpeλ = peλeλ = ηpeλ ̸= 0.
Hence, epλ and eλ generate equivalent irreps.



▶ Lemma: For two distinct Young diagrams with λ > µ, we have
aqµs

p
λ = spλa

q
µ = 0 and eqµe

p
λ = 0.

Proof: There is at least one pair of numbers that appears
simultaneously in one row of θpλ and in one column of θqµ. Let h̃

p
λ

and ṽq
µ be the transpositions associated with these numbers. By

Lemma, h̃pλs
p
λ = spλh̃

p
λ = spλ and ṽq

µa
q
µ = aqµṽ

q
µ = −aqµ. Then,

▶ Theorem: eλ and eµ generate inequivalent irreps if the
corresponding Young diagrams are different (i.e., if λ > µ).
Proof: For p ∈ Sn, we have eµpeλ = eµ(peλp

−1)p = eµe
p
λp = 0,

s.t. eµreλ = 0,∀r ∈ S̃n. Then Theorem guarantees eµ and eλ
generate inequivalent representations.

▶ Corr: If λ ̸= µ, epλe
q
µ = 0,∀p, q ∈ Sn.

▶ Theorem: The irreducible symmetrizers {eλ} associated with the
normal Young tableaux {Θλ} generate all inequivalent irreps of Sn.
Proof: (i) The number of ineq. irreps of Sn = no. of Young
diagrams.
(ii) There is one eλ associated with each Young diagram.
(iii) Every eλ generates an ineq. irrep.

▶ Theorem: (i) The left ideals generated by the idempotents
associated with distinct standard Young tableaux are linearly
independent; (ii) the direct sum of the left ideals generated by all

standard tableaux spans the whole S̃n.



Exercises

1. Consider the group algebra C̃3 of the cyclic group, {C3 : e, a, a
−1}.

Compute the reduction of the regular representation of C3, following
these steps:
a) Show that e1 =

1
3 (e + a+ a−1) is a primitive idempotent.

b) Construct e2 = xe + ya+ za−1 and find x , y and z such that
e1e2 = 0 and e2e2 = e2.
c) Check that e2 is a primitive idempotent, i.e. that
e2re2 = λre2,∀r ∈ C3.

2. Find the coefficients α, β, γ, δ, β′ and γ′ such that
e = αe1 + βe2 + γep2 + δe3 + β′r2 + γ′rp2 , i.e. derive Eq. (2).

3. Derive the representation matrices D2(p) and D ′
2(p) for S3,

corresponding to the normal Young tableau Θ2 and Θ
(23)
2 . Find the

similarity transformation S such that D ′
2(p) = SD2(p)S

−1,∀p ∈ S3.
[R: S = D2(23)]



Exercises

WKT5.1 Display all the standard Young tableaux of the group S4. Enumerate
the inequivalent irreducible representations of S4 and specify their
dimensions. Check the validity of the hook formula (see below).

WKT5.2 Repeat the above for S5.

The hook formula: Consider a Young diagram Θλ corresponding
to Sn. For each box (i , j) in the diagram, the hook length hλ(i , j) is
defined as the number of boxes to the right, plus the number of
boxes below, plus 1, for example:

8 6 5 3 2
7 5 4 2 1
4 2 1
1

Then the dimension of the irreducible representation associated with
this Young diagram is:

dim(Vλ) = n!
∏

(i,j)∈Θλ

1

hλ(i , j)
. (5)


