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1.4. Representations of the symmetric group

1.4.1.
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Group algebra
The regular representation, gjgj = gm(A;)™;, involves a formal sum
over group elements.
The regular representation provides the natural arena to introduce
the group algebra G, defined by the elements r = g;r', with r' € C.
The group algebra G represents a ring w.r.t.:

> Addition: r+q = |g) (r' +q'); ' .

> Multiplication: rq = gigjir'q’ = gm[r'(Ai)7;¢].
Def: A representation U of GonV preservers the group algebra
structure: U(aq + Br) = aU(q) + BU(r) and U(gqr) = U(q)U(r),
Vq,r € G.
Def: An irrep of G does not have any non-trivial inv. subsp. in V.
Theorem: (i) A rep. of G is a rep. of G and vice-versa; (ii) An
irrep of G is an irrep of G and v-v.
Def: The alternating group A, consists of all even permutations of
n elements. B
The elements of G can be denoted by |r) = |g;) r/, where |g;) forms
a natural orthonormal basis: (g/|g;) = 6{
Each group element acts as an operator: r[q) = |gi) [r/(A:)%]¢.
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Def: A subspace L ofNE for which pr € L,Vpe Gand re Lis
called a left ideal of G.

Def: A minimial left ideal does not contain smaller left ideals.
Obs: A minimal left ideal corresponds to an irr. inv. subspace.
Let L% = minimal L-id. in G. The projector P4 onto LY must satisfy:

Pl|r) € Lh,Vr € G; Py lg) =1a).Vq € L};
Pir = Pt Vr € G; PEPY = 61§, PY.

Consider the decomposition e =3 el of the identity e € G, with
el € LY the identity in LY.

Theorem: P can be realized by right multiplication with e%:
PEr)y = |rel) ,Vr € G.

Proof: (i) P¥|ar + 58q) = aP! |r) + P! |q) (linearity);

(i) Writing r € G as r = Y, rk, with rf* € L¥, we have
r=re=>%_, ,rel' thus Pi'r = relf = rf.

(iii) For r,q € G, we have Ptq|r) = |qgrel) = qP¥ |r).

(iv) By construction, ef'ey = §"d,p€el, such that

PEPY |r) = |refel) = 6" 8,,Pk |r) ,Vr € G.



|.4.3. ldempotents

» Def: The elements of the group algebra e satisfying
eltel = AGHY o, pelt are essentially idempotents. If A¥ =1, then e/
are idempotents.

» Def: A primitive idempotent generates a minimal left ideal.

» Theorem: ¢; is primitive < eire; = Are;,Vr € G, with A\, € C.
Proof: =: Let R: G — G, defined by R|q) = |geire;) ,Vq € G, for some
r e G. Since Rs = sR,Vs € G, then R = A,ei (Schur L1, on L).
<: Assume e = e + e/, with e/ and e/’ idempotents. By definition,
eie] = ! and eie/e; = €. Also, eie/e; = Ne;. Then, ele/ = (\)?e and
ejel = e = Nej. Hence, N’ =0 (then e; = ¢/'), or ' =1 and & = €].

» Theorem: Two primitive idempotents e; and e, corresponding to
the minimal left ideals Ly and L, generate equiv. irreps < dr € G
s.t. erre; # 0. N
Proof: =: Let D;2(G) be the irreps corresponding to e1 2. Since e; =~ e,
35 : Ly — Ly s.it. SDi(p) = D2(p)S,Vp € G. Since
Di(p) = Da(p) =p€ G = Sp=pS.
Let |[s) = S|e1) € Ly. Since S|e1) = Sei|e1) = e1|s), we have s = e;s.
Also, s = sep, since s € L. Then, e15s = se&s = s = s = e156;.
<: Let ejre; = s # 0 for some r € G. Consider S : Ly — Ly, such that
q €Ly 3 > = q15 € Ly. Then, Sp|gi1) = pS|q1) and Schur-L2 implies
Di(G) ~ D>(G).



1.4.4.

>
>

>

One-dimensional representations of S,

Def: An even permutation is one that consists of an even number of
simple transpositions.

Def: The alternating group A, consists of all even permutations of
n elements.

Every symmetric group has the non-trivial subgroup A, (alternating
group). The factor group S,/A, = C, induces two 1D irreps: p — 1
and p — (—1)~.

Theorem: The two 1D representations correspond to the essentially
idempotent and primitive symmetrizer s = Zp p and
anti-symmetrizer a =} (—1)Pp.

Proof: (i) Using the rearrangement lemma, ps = s and

pa = (—1)Pa. Then, ss = n!s and aa = nla and thus s and a are
essentially idempotent.

(i) Since sqgs = ss = nls, while aga = (—1)9nla, s and a are
primitive idempotents.

(i) Since sga=sa= > (~1)Psp=1s>_ (—1)P =0, the two
representations are inequivalent.

(iv) The basis vectors are of the form g|s) = |gs) = |s) (hence

g — 1 under s); and g|a) = |ga) = (—1)7|a) (hence ¢ — (—1)¢
under a).
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Partitions and Young diagrams

Def: A partition A = {A1,...\;} of the integer n is a sequence of
positive integers A;, with A\; > A\;y1, such that Z;:I i = n.

A= 1% if )\,‘ = /,L,',Vi.

A > p (XA < p) if the first non-zero number in the sequence
)\,'—/J,'>O(<O).

Def: )\ is represented graphically by a Young Diagram, which
consists of n squares arranged in r rows, with the ith one containing
A; squares.

{3y {21 {111}
l

For n = 3, the distinct partitions are: HEN

{4} (3,1} {22} {2,1,1} {1,1,1,1}
[ 1] L] l

L]

For n = 4:




1.4.6. Young tableaux
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Theorem: The number of Young diagrams for any given n is equal
to the number of classes of S,,, and therefore to the number of irreps
of S,,.

Proof: Every class of S, is characterized by a cycle structure, say v
1-cycles; v, 2-cycles; .... Then, n=1v7 + 254+ 3v3+....
Denoting: \i =1 +1vo+ ..., o =1 +1v3+ ..., etc., we see that
A becomes a partition of n.

Def: A Young tableau is obtained by filling a Young diagram with
distinct numbers between 1 and n, in any order.

Def: A normal Young tableau ©) if one in which the numbers
appear in increasing order from left to right and from top to bottom
and it is unique for a given partition \.

Def: A standard Young tableau is one in which the numbers appear
in increasing order on each row and on each column, but not in
strict order.

Obs: Any Young tableau can be obtained from ©, by applying a
given permutation p on the numbers 1,...n, giving ©F.
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(Anti-)Symmetrizers of Young tableaux
Def: A horizontal permutation hf leaves invariant the sets of
numbers appearing in each row of ©%.

Def: A vertical permutation hf leaves invariant the sets of numbers
appearing in each column of ©F.

Def: The symmetrizer sf, anti-symmetrizer a and irreducible
(Young) symmetrizer e} associated with the Young tableau ©% are

S=> M, A=Y (D", =Y ()M (1)
h v h,v

Example for Ss:

©; = [1]2]3]. {}=S=sa=s{w={e})=>a=¢ a=s.
2

0, =[1]2] {h} = {e,(12)} = 5 = e+ (12); {wx} = {e,(13)} =
Kl a=e— (13); & = e + (12) — (13) — (132).

93:%: {h={e}=ss=¢{n}=S=a=ae&=a
3]

o =13} (M) = (e.(13)) = & = e+ (13); {}) = {e,(12)} =
2] P =e— (12); & = e+ (13) — (12) — (123).




For each ©F, {hY} and {v{} each form a subgroup of Sj;

shhY = h¥sh =¥ and v = viaf = (—1)"535\, as well as

shsP = sy (na = A a!--- A1) and afaf = Ayah o

(ix = (1) (2N72 -+ - (r1)) = s and &% are essentially idempotent
(but not primitive).

ey are primitive idempotents.

ey generate all inequivalent irreducible representations; ef generate
irreducible representations that are equivalent to ey.

The left ideals generated by e corresponding to the standard Young
tableaux ©% are non-overlapping, spanning (through direct sum) S,,.

For S3, e; and e; generate the 1D irreps; while e; and eéu) generate:

ee; = (12)ex = ey, (23)e; = (132)ex = 1y, (13)er = (123)ey = —ex — 12,
ee) = (13)eh = €f, (23)ef = (123)ef =1y, (12)eh = (132)ef) = —eb — 1,
where r; = (23) 4 (132) — (123) — (12) and rf = (23) 4 (123) — (132) — (13).
It can be checked that {e;, e, 2, €5, 15, €3} are mutually orthogonal
and together, they span Ss:

1 1 1 1
e:6e1+§e2+§e§+6e3. (2)



[.4.8. Useful lemmas

» Lemma: Consider a Young tableau 6, and 65 = pf,. Then,
{hiv Vfa Sfa aia ei} = p{hka VX5 Sx) dx, eA}pil'

Proof: Obvious, since for each f, on 6y, there is an associated
P = pfip~! acting on 65 as f, acts on 0, i.e.
208 = pp= P ply = phHb,.

» Lemma: Given 0, and p € S, defining 0¥, a necessary and sufficient
condition that p # hyvy is that there are at least two numbers in
one row of 5 which appear in the same column of ¢5.

Proof: <: Consider p = hyvy. Notice v){“ = h>\v,\h;1 is a vertical
permutation for 9{’\* = hy0,. Neither hy nor v;\’* bring two numbers
from the same column onto the same row, thus p # hyvy.

= Assuming 0% does not have on any column two elements from
the same row in 9?, we construct 92* = hy0, such that each column
in §7 has the same elements as in 05. Then, 05 = v/ is
obtained by applying a vertical permutation, arranging the elements
in each column. Conversely, if p # hyvy, then there must be a pair
of numbers appearing in one row of ¢ and one column of 65.



> Lem[na: If p # hyvy, 3 the transpositions hy and ¥, s.t.
p = hapVy.
Proof: Since p # hyvy, there is a pair of numbers on some row of
0 that appears on the same column in 65. Conversely, there will be
a pair of numbers on some column in 8, that appear on the same
row in 65. Let ¥\ and l~1§ be the vertical and horizontal
transpositions swapping these numbers in 6 and 6%, such that
Kp = pix. Then, B3 piy = p.
Example: Consider n =8 and p = (13472):

12[3[4 _* . [2[7[1]3] (3)
516 5[6
7] 4]
8] 8]
Then, ¥y = (17) and hy = (23), such that
112[3[4] 2, [7]2[3]4] & [2[1]713] B, [2[7[13] (a)
516 516 516 5/6
7] 1] 4] 4]
8] 8] 8] 18]




» Lemma: If hyrvy = (—1)"*r,Vhy, vy defined on 65, then r = &, e
for some number &,.
Proof: Consider the decomposition r = Zp app. Then:

hyrvy = Zaq(h)‘q‘/)‘) = Zahglpv;lp
P

q

Equating with (—1)"*p, we find Wptpyt = (=1)>ap. If p# hyvy,
then we can find h)\ and V) s.t. p= h>\pv>\ and

ap = (—=1)™a, = —a,, by which a, = 0. If p = hyv,, then

ap = (—1)"¢ with { = ae. Then, r=¢%7, | (=1)"hyvy = Een.



1.4.9. Irreps of S,

» Theorem: Within ©F, s{raf = ¢ el ,Vr e S, and with &, an
r-dependent number. Moreover, efef = nef, with n # 0. Hence, ey
is an idempotent.

Proof: (i) Omitting p, let ¢ = syray. Since hysy = s\ and

ayvy = (—=1)"ay, hagva = (—1)"gq, Vhy, vx. Hence, by Lemma,

q = syray = &ey.

(i) Writing exex = (sxax)(sxan), we can apply (i) with r = ays) to
conclude eyey = ney.

(iii) As a matter of principle, ey contains e, whose coefficient is
nonvanishing. Therefore, eye) also contains e with a nonvanishing

coefficient = n # 0.

> Theorem: e, associated with ©, is a primitive idempotent,
generating an irrep of S, on S,.
Proof: We already know that e is idempotent. It is primitive
because eyrey = sx(axrsy)ay = Eey,Vr € S,.

> Theorem: The irreps generated by e and e},Vp € S, are
equivalent.
Proof: Since ef = peyp~!, we have efpey = perex = npey # 0.
Hence, €} and e, generate equivalent irreps.



Lemma: For two distinct Young diagrams with A > u, we have
alsy = syal =0and elel = 0.

Proof: There is at least one pair of numbers that appears
simultaneously in one row of #5 and in one column of 0. Let h
and V] be the transpositions associated with these numbers. By

Lemma, Afsf = sPhS = sf and 79ad = aqd = —ad. Then,
Theorem: e, and e, generate inequivalent irreps if the
corresponding Young diagrams are different (i.e., if A > pu).
Proof: For p € S,, we have e, pey = e,(pexp~!)p = e,elp =0,
s.t. eyrey =0,Vr € g,,. Then Theorem guarantees e, and ey
generate inequivalent representations.

Corr: If A\ # p, efed = 0,VYp,q € S,

Theorem: The irreducible symmetrizers {e)} associated with the
normal Young tableaux {©,} generate all inequivalent irreps of S,.
Proof: (i) The number of ineq. irreps of S, = no. of Young
diagrams.

(i) There is one ey associated with each Young diagram.

(iii) Every ey generates an ineq. irrep.

Theorem: (i) The left ideals generated by the idempotents
associated with distinct standard Young tableaux are linearly
independent; (ii) the direct sum of the left ideals generated by all

standard tableaux spans the whole g,,.



Exercises

1. Consider the group algebra 53 of the cyclic group, {G; : e,a,a"1}.
Compute the reduction of the regular representation of Cs, following
these steps:

a) Show that e; = 2(e+a+a ') is a primitive idempotent.

b) Construct e; = xe + ya+ za~! and find x, y and z such that
e16 = 0 and ey, = 6.

c) Check that e, is a primitive idempotent, i.e. that

exre; = Ay, Vr € Gs.

2. Find the coefficients «, 3, v, d, 8’ and 7/ such that
e = e + Bex+veb +des + B+ 7'y, i.e. derive Eq. (2).

3. Derive the representation matrices Dy(p) and Dj(p) for Ss,
corresponding to the normal Young tableau ©; and @§23). Find the
similarity transformation S such that D(p) = SD2(p)S—1,Vp € Ss.



Exercises

WKT5.1

WKT5.2

Display all the standard Young tableaux of the group S;. Enumerate
the inequivalent irreducible representations of S, and specify their
dimensions. Check the validity of the hook formula (see below).
Repeat the above for Ss.

The hook formula: Consider a Young diagram ©, corresponding
to S,. For each box (i,)) in the diagram, the hook length hy(i,) is
defined as the number of boxes to the right, plus the number of
boxes below, plus 1, for example:

6
5
2

[~[&][~]e0

Then the dimension of the irreducible representation associated with
this Young diagram is:

dim(Va) =nl ] (5)

(.)eon ha(i,J)



