Symmetries in Physics Lecture 4

Victor E. Ambruș

Universitatea de Vest din Timișoara

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lecture contents

Chapter 1. Discrete symmetry groups

- ▶ I.1. Basic notions of abstract group theory
- ► I.2. Group representations
- ► I.3. Wigner-Eckart theorem
- ▶ 1.4. Representations of the symmetric group

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1.4. Representations of the symmetric group

1.4.1. Group algebra

- The regular representation, g_ig_j = g_m(Δ_i)^m_j, involves a formal sum over group elements.
- The regular representation provides the natural arena to introduce the group algebra G̃, defined by the elements r = g_irⁱ, with rⁱ ∈ C.
- The group algebra \widetilde{G} represents a *ring* w.r.t.:
 - Addition: $r + q = |g_i\rangle (r^i + q^i);$
 - Multiplication: $rq = g_i g_j r^i q^j = g_m [r^i (\Delta_i)^m q^j].$
- Def: A representation U of G̃ on V preservers the group algebra structure: U(αq + βr) = αU(q) + βU(r) and U(qr) = U(q)U(r), ∀q, r ∈ G̃.
- **Def:** An *irrep* of \widetilde{G} does not have any non-trivial inv. subsp. in V.
- Theorem: (i) A rep. of G is a rep. of G and vice-versa; (ii) An irrep of G is an irrep of G and v-v.
- Def: The alternating group A_n consists of all even permutations of n elements.
- ▶ The elements of \widetilde{G} can be denoted by $|r\rangle = |g_i\rangle r^i$, where $|g_i\rangle$ forms a natural orthonormal basis: $\langle g^j | g_i \rangle = \delta_i^j$.
- ► Each group element acts as an operator: $r |q\rangle = |g_k\rangle [r_i^i (\Delta_i)_{ij}^k] q^j$.

I.4.2. Left ideals, projection operators

- Def: A subspace L of G for which pr ∈ L, ∀p ∈ G and r ∈ L is called a *left ideal* of G.
- **Def:** A **minimial** left ideal does not contain smaller left ideals.
- Obs: A minimal left ideal corresponds to an irr. inv. subspace.
- ▶ Let $L_a^{\mu} \equiv$ minimal L-id. in \tilde{G} . The projector P_a^{μ} onto L_a^{μ} must satisfy:

$$\begin{split} P_{a}^{\mu} \left| r \right\rangle &\in L_{a}^{\mu}, \forall r \in \widetilde{G}; \\ P_{a}^{\mu} r &= r P_{a}^{\mu}, \forall r \in \widetilde{G}; \\ \end{split} \qquad \begin{array}{l} P_{a}^{\mu} \left| q \right\rangle &= \left| q \right\rangle, \forall q \in L_{a}^{\mu} \\ P_{a}^{\mu} P_{b}^{\nu} &= \delta^{\mu\nu} \delta_{ab} P_{a}^{\mu}. \end{split}$$

- Consider the decomposition $e = \sum_{\mu,a} e_a^{\mu}$ of the identity $e \in G$, with $e_a^{\mu} \in L_a^{\mu}$ the identity in L_a^{μ} .
- ► Theorem: P_a^{μ} can be realized by right multiplication with e_a^{μ} : $P_a^{\mu} |r\rangle \equiv |re_a^{\mu}\rangle$, $\forall r \in \widetilde{G}$. Proof: (i) $P_a^{\mu} |\alpha r + \beta q\rangle = \alpha P_a^{\mu} |r\rangle + \beta P_a^{\mu} |q\rangle$ (linearity); (ii) Writing $r \in \widetilde{G}$ as $r = \sum_{\mu,a} r_a^{\mu}$, with $r_a^{\mu} \in L_a^{\mu}$, we have $r = re = \sum_{\mu,a} re_a^{\mu}$, thus $P_a^{\mu} r = re_a^{\mu} = r_a^{\mu}$. (iii) For $r, q \in \widetilde{G}$, we have $P_a^{\mu} q |r\rangle = |qre_a^{\mu}\rangle = qP_a^{\mu} |r\rangle$. (iv) By construction, $e_a^{\mu} e_b^{\nu} = \delta^{\mu\nu} \delta_{ab} e_a^{\mu}$, such that $P_a^{\mu} P_b^{\nu} |r\rangle = |re_b^{\nu} e_a^{\mu}\rangle = \delta^{\mu\nu} \delta_{ab} P_a^{\mu} |r\rangle, \forall r \in \widetilde{G}$.

I.4.3. Idempotents

- **Def:** The elements of the group algebra e_{a}^{μ} satisfying $e^{\mu}_{2}e^{\nu}_{2} = \lambda^{\mu}_{2}\delta^{\mu\nu}\delta_{ab}e^{\mu}_{2}$ are essentially idempotents. If $\lambda^{\mu}_{2} = 1$, then e^{μ}_{2} are *idempotents*.
- **Def:** A *primitive idempotent* generates a minimal left ideal.
- **•** Theorem: e_i is primitive $\Leftrightarrow e_i r e_i = \lambda_r e_i, \forall r \in \widetilde{G}$, with $\lambda_r \in \mathbb{C}$. **Proof:** \Rightarrow : Let $R: \tilde{G} \to \tilde{G}$, defined by $R|q\rangle = |qe_i re_i\rangle, \forall q \in \tilde{G}$, for some $r \in \tilde{G}$. Since $Rs = sR, \forall s \in G$, then $R = \lambda_r e_i$ (Schur L1, on L^{μ}_{a}). \Leftarrow : Assume $e_i = e'_i + e''_i$, with e'_i and e''_i idempotents. By definition, $e_i e'_i = e'_i$ and $e_i e'_i e_i = e'_i$. Also, $e_i e'_i e_i = \lambda' e_i$. Then, $e'_i e'_i = (\lambda')^2 e_i$ and $e'_i e'_i = e'_i = \lambda' e_i$. Hence, $\lambda' = 0$ (then $e_i = e''_i$), or $\lambda' = 1$ and $e_i = e'_i$. **Theorem:** Two primitive idempotents e_1 and e_2 , corresponding to the minimal left ideals L_1 and L_2 , generate equiv. irreps $\Leftrightarrow \exists r \in \widetilde{G}$ s.t. $e_1 r e_2 \neq 0$. **Proof:** \Rightarrow : Let $D_{1,2}(\widetilde{G})$ be the irreps corresponding to $e_{1,2}$. Since $e_1 \simeq e_2$, $\exists S: L_1 \rightarrow L_2 \text{ s.t. } SD_1(p) = D_2(p)S, \forall p \in G.$ Since $D_1(p) = D_2(p) = p \in \widetilde{G} \Rightarrow Sp = pS.$ Let $|s\rangle = S |e_1\rangle \in L_2$. Since $S |e_1\rangle = Se_1 |e_1\rangle = e_1 |s\rangle$, we have $s = e_1s$. Also, $s = se_2$, since $s \in L_2$. Then, $e_1s = se_2 = s \Rightarrow s = e_1se_2$. \Leftarrow : Let $e_1 r e_2 = s \neq 0$ for some $r \in \widetilde{G}$. Consider $S : L_1 \to L_2$, such that $q_1 \in L_1 \xrightarrow{S} q_2 = q_1 s \in L_2$. Then, $Sp |q_1\rangle = pS |q_1\rangle$ and Schur-L2 implies ・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の $D_1(G) \simeq D_2(G).$

1.4.4. One-dimensional representations of S_n

- Def: An even permutation is one that consists of an even number of simple transpositions.
- **Def:** The alternating group A_n consists of all even permutations of *n* elements.
- \triangleright Every symmetric group has the non-trivial subgroup A_n (alternating group). The factor group $S_n/A_n \cong C_2$ induces two 1D irreps: $p \to 1$ and $p \to (-1)^p$.
- **Theorem:** The two 1D representations correspond to the essentially idempotent and primitive symmetrizer $s = \sum_{n} p$ and anti-symmetrizer $a = \sum_{p} (-1)^{p} p$.

Proof: (i) Using the rearrangement lemma, ps = s and $pa = (-1)^p a$. Then, ss = n!s and aa = n!a and thus s and a are essentially idempotent.

(ii) Since sqs = ss = n!s, while $aqa = (-1)^q n!a$, s and a are primitive idempotents.

(iii) Since $sqa = sa = \sum_{p} (-1)^{p} sp = s \sum_{p} (-1)^{p} = 0$, the two representations are inequivalent.

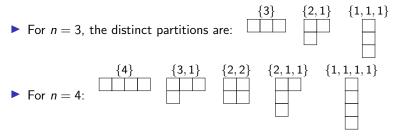
(iv) The basis vectors are of the form $q \ket{s} = \ket{qs} = \ket{s}$ (hence $q \rightarrow 1$ under s); and $q |a\rangle = |qa\rangle = (-1)^q |a\rangle$ (hence $q \rightarrow (-1)^q$ under a). ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1.4.5. Partitions and Young diagrams

▶ **Def:** A partition $\lambda \equiv {\lambda_1, ..., \lambda_r}$ of the integer *n* is a sequence of positive integers λ_i , with $\lambda_i \ge \lambda_{i+1}$, such that $\sum_{i=1}^r \lambda_i = n$.

$$\blacktriangleright \ \lambda = \mu \text{ if } \lambda_i = \mu_i, \forall i.$$

- ► $\lambda > \mu$ ($\lambda < \mu$) if the first non-zero number in the sequence $\lambda_i \mu_i > 0$ (< 0).
- Def: λ is represented graphically by a Young Diagram, which consists of n squares arranged in r rows, with the ith one containing λ_i squares.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1.4.6. Young tableaux

▶ **Theorem:** The number of Young diagrams for any given *n* is equal to the number of classes of *S_n*, and therefore to the number of irreps of *S_n*.

Proof: Every class of S_n is characterized by a cycle structure, say ν_1 1-cycles; ν_2 2-cycles; Then, $n = \nu_1 + 2\nu_2 + 3\nu_3 +$ Denoting: $\lambda_1 = \nu_1 + \nu_2 + ..., \lambda_2 = \nu_2 + \nu_3 + ...,$ etc., we see that

belowing: $\lambda_1 = \nu_1 + \nu_2 + \dots, \lambda_2 = \nu_2 + \nu_3 + \dots$, etc., we see if λ becomes a partition of *n*.

- ▶ **Def:** A *Young tableau* is obtained by filling a Young diagram with distinct numbers between 1 and *n*, in any order.
- Def: A normal Young tableau Θ_λ if one in which the numbers appear in increasing order from left to right and from top to bottom and it is unique for a given partition λ.
- Def: A standard Young tableau is one in which the numbers appear in increasing order on each row and on each column, but not in strict order.
- Obs: Any Young tableau can be obtained from Θ_λ by applying a given permutation p on the numbers 1,...n, giving Θ^p_λ.

1.4.7. (Anti-)Symmetrizers of Young tableaux

- Def: A horizontal permutation h^p_λ leaves invariant the sets of numbers appearing in each row of Θ^p_λ.
- **Def:** A vertical permutation h_{λ}^{p} leaves invariant the sets of numbers appearing in each column of Θ_{λ}^{p} .
- Def: The symmetrizer s^p_λ, anti-symmetrizer a^p_λ and irreducible (Young) symmetrizer e^p_λ associated with the Young tableau Θ^p_λ are

$$s_{\lambda}^{p} = \sum_{h} h_{\lambda}^{p}, \quad a_{\lambda}^{p} = \sum_{v} (-1)^{v_{\lambda}} v_{\lambda}^{p}, \quad e_{\lambda}^{p} = \sum_{h,v} (-1)^{v_{\lambda}} h_{\lambda}^{p} v_{\lambda}^{p}.$$
 (1)

For each Θ_{λ}^{p} , $\{h_{\lambda}^{p}\}$ and $\{v_{\lambda}^{p}\}$ each form a subgroup of S_{n} ;

- $s_{\lambda}^{p}h_{\lambda}^{p} = h_{\lambda}^{p}s_{\lambda}^{p} = s_{\lambda}^{p}$ and $a_{\lambda}^{p}v_{\lambda}^{p} = v_{\lambda}^{p}a_{\lambda}^{p} = (-1)^{v_{\lambda}^{p}}a_{\lambda}^{p}$, as well as $s_{\lambda}^{p}s_{\lambda}^{p} = n_{\lambda}s_{\lambda}^{p}$ $(n_{\lambda} = \lambda_{1}!\lambda_{2}!\cdots\lambda_{r}!)$ and $a_{\lambda}^{p}a_{\lambda}^{p} = \tilde{n}_{\lambda}a_{\lambda}^{p}$ $(\tilde{n}_{\lambda} = (1!)^{\nu_{1}}(2!)^{\nu_{2}}\cdots(r!)^{\nu_{r}}) \Rightarrow s_{\lambda}^{p}$ and a_{λ}^{p} are essentially idempotent (but not primitive).
- e_{λ}^{p} are primitive idempotents.
- e_{λ} generate all inequivalent irreducible representations; e_{λ}^{p} generate irreducible representations that are equivalent to e_{λ} .
- The left ideals generated by e^p_λ corresponding to the standard Young tableaux Θ^p_λ are non-overlapping, spanning (through direct sum) S⁻_n.
- For S_3 , e_1 and e_3 generate the 1D irreps; while e_2 and $e_2^{(12)}$ generate: $ee_2 = (12)e_2 = e_2$, $(23)e_2 = (132)e_2 = r_2$, $(13)e_2 = (123)e_2 = -e_2 - r_2$,

 $ee_2^p = (13)e_2^p = e_2^p$, $(23)e_2^p = (123)e_2^p = r_2^p$, $(12)e_2^p = (132)e_2^p = -e_2^p - r_2^p$,

where $r_2 = (23) + (132) - (123) - (12)$ and $r_2^p = (23) + (123) - (132) - (13)$.

▶ It can be checked that $\{e_1, e_2, r_2, e_2^p, r_2^p, e_3\}$ are mutually orthogonal and together, they span \tilde{S}_3 :

$$e = \frac{1}{6}e_1 + \frac{1}{3}e_2 + \frac{1}{3}e_2^p + \frac{1}{6}e_3.$$
 (2)

I.4.8. Useful lemmas

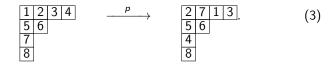
Lemma: Consider a Young tableau θ_{λ} and $\theta_{\lambda}^{p} = p\theta_{\lambda}$. Then,

$$\{h_{\lambda}^{p}, v_{\lambda}^{p}, s_{\lambda}^{p}, a_{\lambda}^{p}, e_{\lambda}^{p}\} = p\{h_{\lambda}, v_{\lambda}, s_{\lambda}, a_{\lambda}, e_{\lambda}\}p^{-1}.$$

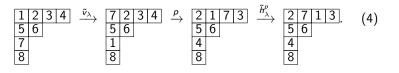
Proof: Obvious, since for each f_{λ} on θ_{λ} , there is an associated $f_{\lambda}^{p} = pf_{\lambda}p^{-1}$ acting on θ_{λ}^{p} as f_{λ} acts on θ_{λ} , i.e. $f_{\lambda}^{p}\theta_{\lambda}^{p} = pp^{-1}f_{\lambda}^{p}p\theta_{\lambda} = pf_{\lambda}\theta_{\lambda}$.

Lemma: Given θ_{λ} and $p \in S_n$ defining θ_{λ}^p , a necessary and sufficient condition that $p \neq h_{\lambda}v_{\lambda}$ is that there are at least two numbers in one row of θ_{λ} which appear in the same column of θ_{λ}^{p} . **Proof:** \Leftarrow : Consider $p = h_{\lambda} v_{\lambda}$. Notice $v_{\lambda}^{h_{\lambda}} = h_{\lambda} v_{\lambda} h_{\lambda}^{-1}$ is a vertical permutation for $\theta_{\lambda}^{h_{\lambda}} = h_{\lambda}\theta_{\lambda}$. Neither h_{λ} nor $v_{\lambda}^{h_{\lambda}}$ bring two numbers from the same column onto the same row, thus $p \neq h_{\lambda} v_{\lambda}$. $\Rightarrow:$ Assuming $\theta^{\textit{p}}_{\lambda}$ does not have on any column two elements from the same row in θ_{λ}^{p} , we construct $\theta_{\lambda}^{h_{\lambda}} = h_{\lambda}\theta_{\lambda}$ such that each column in $\theta_{\lambda}^{h_{\lambda}}$ has the same elements as in θ_{λ}^{p} . Then, $\theta_{\lambda}^{p} = v_{\lambda}^{h_{\lambda}} \theta_{\lambda}^{h_{\lambda}}$ is obtained by applying a vertical permutation, arranging the elements in each column. Conversely, if $p \neq h_{\lambda} v_{\lambda}$, then there must be a pair of numbers appearing in one row of θ_{λ} and one column of θ_{λ}^{p} . ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・ ▶ Lemma: If $p \neq h_{\lambda}v_{\lambda}$, \exists the transpositions \tilde{h}_{λ} and \tilde{v}_{λ} s.t. $p = \tilde{h}_{\lambda}p\tilde{v}_{\lambda}$.

Proof: Since $p \neq h_{\lambda}v_{\lambda}$, there is a pair of numbers on some row of θ_{λ} that appears on the same column in θ_{λ}^{p} . Conversely, there will be a pair of numbers on some column in θ_{λ} that appear on the same row in θ_{λ}^{p} . Let \tilde{v}_{λ} and \tilde{h}_{λ}^{p} be the vertical and horizontal transpositions swapping these numbers in θ_{λ} and θ_{λ}^{p} , such that $\tilde{h}_{\lambda}^{p}p = p\tilde{v}_{\lambda}$. Then, $\tilde{h}_{\lambda}^{p}p\tilde{v}_{\lambda} = p$. **Example:** Consider n = 8 and p = (13472):



Then, $\tilde{v}_{\lambda} = (17)$ and $\tilde{h}_{\lambda} = (23)$, such that



▶ Lemma: If $h_{\lambda}rv_{\lambda} = (-1)^{v_{\lambda}}r, \forall h_{\lambda}, v_{\lambda}$ defined on θ_{λ} , then $r = \xi_r e_{\lambda}$ for some number ξ_r . **Proof:** Consider the decomposition $r = \sum_{p} \alpha_p p$. Then:

$$h_{\lambda} r v_{\lambda} = \sum_{q} \alpha_{q} (h_{\lambda} q v_{\lambda}) = \sum_{p} \alpha_{h_{\lambda}^{-1} p v_{\lambda}^{-1}} p$$

Equating with $(-1)^{\nu_{\lambda}}p$, we find $\alpha_{h_{\lambda}^{-1}p\nu_{\lambda}^{-1}} = (-1)^{\nu_{\lambda}}\alpha_{p}$. If $p \neq h_{\lambda}\nu_{\lambda}$, then we can find \tilde{h}_{λ} and $\tilde{\nu}_{\lambda}$ s.t. $p = \tilde{h}_{\lambda}p\tilde{\nu}_{\lambda}$ and $\alpha_{p} = (-1)^{\tilde{\nu}_{\lambda}}\alpha_{p} = -\alpha_{p}$, by which $\alpha_{p} = 0$. If $p = h_{\lambda}\nu_{\lambda}$, then $\alpha_{p} = (-1)^{\nu_{\lambda}}\xi$, with $\xi = \alpha_{e}$. Then, $r = \xi \sum_{h_{\lambda},\nu_{\lambda}} (-1)^{\nu_{\lambda}}h_{\lambda}\nu_{\lambda} = \xi e_{\lambda}$.

1.4.9. Irreps of S_n

▶ **Theorem:** Within Θ_{λ}^{p} , $s_{\lambda}^{p}ra_{\lambda}^{p} = \xi_{r}e_{\lambda}^{p}$, $\forall r \in \widetilde{S}_{n}$ and with ξ_{r} an *r*-dependent number. Moreover, $e_{\lambda}^{p}e_{\lambda}^{p} = \eta e_{\lambda}^{p}$, with $\eta \neq 0$. Hence, e_{λ} is an idempotent.

Proof: (i) Omitting p, let $q = s_{\lambda}ra_{\lambda}$. Since $h_{\lambda}s_{\lambda} = s_{\lambda}$ and $a_{\lambda}v_{\lambda} = (-1)^{v_{\lambda}}a_{\lambda}$, $h_{\lambda}qv_{\lambda} = (-1)^{v_{\lambda}}q$, $\forall h_{\lambda}, v_{\lambda}$. Hence, by **Lemma**, $q = s_{\lambda}ra_{\lambda} = \xi e_{\lambda}$.

(ii) Writing $e_{\lambda}e_{\lambda} = (s_{\lambda}a_{\lambda})(s_{\lambda}a_{\lambda})$, we can apply (i) with $r = a_{\lambda}s_{\lambda}$ to conclude $e_{\lambda}e_{\lambda} = \eta e_{\lambda}$.

(iii) As a matter of principle, e_{λ} contains e, whose coefficient is nonvanishing. Therefore, $e_{\lambda}e_{\lambda}$ also contains e with a nonvanishing coefficient $\Rightarrow \eta \neq 0$.

Theorem: e_λ associated with Θ_λ is a primitive idempotent, generating an irrep of S_n on S̃_n.
 Proof: We already know that e_λ is idempotent. It is primitive because e_λre_λ = s_λ(a_λrs_λ)a_λ = ξe_λ, ∀r ∈ S̃_n.

▶ **Theorem:** The irreps generated by e_{λ} and e_{λ}^{p} , $\forall p \in S_{n}$, are equivalent.

Proof: Since $e_{\lambda}^{p} = pe_{\lambda}p^{-1}$, we have $e_{\lambda}^{p}pe_{\lambda} = pe_{\lambda}e_{\lambda} = \eta pe_{\lambda} \neq 0$. Hence, e_{λ}^{p} and e_{λ} generate equivalent irreps. Lemma: For two distinct Young diagrams with λ > μ, we have a^q_μs^ρ_λ = s^ρ_λa^q_μ = 0 and e^q_μe^ρ_λ = 0.
Proof: There is at least one pair of numbers that appears simultaneously in one row of θ^ρ_λ and in one column of θ^q_μ. Let *h*^ρ_λ and *v*^q_μ be the transpositions associated with these numbers. By Lemma, *h*^ρ_λs^ρ_λ = s^ρ_λ*h*^ρ_λ = s^ρ_λ and *v*^q_μa^q_μ = a^q_μ*v*^q_μ = -a^q_μ. Then,
Theorem: e_λ and e_μ generate inequivalent irreps if the corresponding Young diagrams are different (i.e., if λ > μ).
Proof: For p ∈ S_n, we have e_μpe_λ = e_μ(pe_λp⁻¹)p = e_μe^ρ_λp = 0, s.t. e_μre_λ = 0, ∀r ∈ S̃_n. Then Theorem guarantees e_μ and e_λ generate inequivalent representations.

• Corr: If
$$\lambda \neq \mu$$
, $e_{\lambda}^{p}e_{\mu}^{q} = 0, \forall p, q \in S_{n}$.

Theorem: The irreducible symmetrizers {e_λ} associated with the normal Young tableaux {Θ_λ} generate all inequivalent irreps of S_n.
 Proof: (i) The number of ineq. irreps of S_n = no. of Young diagrams.

(ii) There is one e_{λ} associated with each Young diagram.

(iii) Every e_{λ} generates an ineq. irrep.

► Theorem: (i) The left ideals generated by the idempotents associated with distinct standard Young tableaux are linearly independent; (ii) the direct sum of the left ideals generated by all standard tableaux spans the whole S_n.

Exercises

- 1. Consider the group algebra \widetilde{C}_3 of the cyclic group, $\{C_3 : e, a, a^{-1}\}$. Compute the reduction of the regular representation of C_3 , following these steps:
 - a) Show that $e_1 = \frac{1}{3}(e + a + a^{-1})$ is a primitive idempotent.
 - b) Construct $e_2 = xe + ya + za^{-1}$ and find x, y and z such that $e_1e_2 = 0$ and $e_2e_2 = e_2$.
 - c) Check that e_2 is a primitive idempotent, i.e. that $e_2re_2 = \lambda_r e_2, \forall r \in C_3.$
- 2. Find the coefficients α , β , γ , δ , β' and γ' such that $e = \alpha e_1 + \beta e_2 + \gamma e_2^p + \delta e_3 + \beta' r_2 + \gamma' r_2^p$, i.e. derive Eq. (2).
- 3. Derive the representation matrices $D_2(p)$ and $D'_2(p)$ for S_3 , corresponding to the normal Young tableau Θ_2 and $\Theta_2^{(23)}$. Find the similarity transformation S such that $D'_2(p) = SD_2(p)S^{-1}, \forall p \in S_3$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exercises

WKT5.1 Display all the standard Young tableaux of the group S_4 . Enumerate the inequivalent irreducible representations of S_4 and specify their dimensions. Check the validity of the hook formula (see below).

WKT5.2 Repeat the above for S_5 .

The hook formula: Consider a Young diagram Θ_{λ} corresponding to S_n . For each box (i, j) in the diagram, the hook length $h_{\lambda}(i, j)$ is defined as the number of boxes to the right, plus the number of boxes below, plus 1, for example:

Then the dimension of the irreducible representation associated with this Young diagram is:

$$\dim(V_{\lambda}) = n! \prod_{(i,j)\in\Theta_{\lambda}} \frac{1}{h_{\lambda}(i,j)}.$$
 (5)