Symmetries in Physics Lecture 3

Victor E. Ambruș

Universitatea de Vest din Timișoara

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lecture contents

Chapter 1. Discrete symmetry groups

- ▶ I.1. Basic notions of abstract group theory
- ► 1.2. Group representations
- ► 1.3. Wigner-Eckart theorem
- ▶ I.4. Representations of the symmetric group

(日) (個) (돈) (돈) (돈)

1.2.6. Orthonormality of irrep matrices (REM)

Theorem: Let μ label inequivalent, irreducible representations D_μ(g) of G. The following orthonormality condition holds:

$$\frac{n_{\mu}}{n_{G}}\sum_{g}D_{\mu}^{\dagger}(g)^{k}{}_{i}D_{\nu}(g)^{j}{}_{l}=\delta_{\mu\nu}\delta_{i}^{j}\delta_{l}^{k},\qquad(1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $n_{\mu} \equiv$ dimension of the μ -representation and $n_{G} =$ order of G.

I.2.7. Completeness of irrep matrices

Cor: The number of inequivalent irreps of a finite group is restricted by ∑_µ n²_µ ≤ n_G.

Proof: The matrix elements $D_{\mu}(g)^{i}{}_{j}$ can be regarded as vectors of size n_{G} , with elements corresponding to $g \in G$. The labels (i, j) take n_{μ}^{2} values and $\sum_{\mu} n_{\mu}^{2}$ represents the number of vectors in the set. The inequality follows since the number of mutually orthogonal (also linearly independent) vectors $\leq n_{G} \equiv$ dimension of the vector space. **Theorem:** (i) n_{μ} for the inequivalent irreps satisfy $\sum_{\mu} n_{\mu}^{2} = n_{G}$; (ii) The representation matrices satisfy the *completeness relation*:

$$\sum_{\mu,l,k} \frac{n_{\mu}}{n_{G}} D_{\mu}(g)'_{k} D_{\mu}^{\dagger}(g')^{k}{}_{l} = \delta_{gg'}.$$
 (2)

Proof: for (i) will be given later [see Eq. (8)]; accepting (i), the proof of (ii) is automatic, since $D_{\mu}(g)^{I}_{k}$ represent n_{G} mutually orthogonal vectors in a vector space of size n_{G} , which must therefore be complete.

▶ Obs: Since for abelian groups, n_µ = 1, we must have n_G inequivalent irreps.

I.2.8. Orthonormality and completeness of irreducible χ

Lemma: The sum of $U^{\mu}(g)$ over any (conjugation) class ζ_i is:

$$A_i^{\mu} = \sum_{h \in \zeta_i} U_{\mu}(h) = \frac{n_i}{n_{\mu}} \chi_i^{\mu} E.$$
(3)

Proof: It is easy to check that $U_{\mu}(g)A_{i}^{\mu}U_{\mu}(g)^{-1} = A_{i}^{\mu}$, since $ghg^{-1} \in \zeta_{i}, \forall h \in \zeta_{i}$ and $g \in G$. By Schur's lemma 1, $A_{i} = c_{i}E$. Taking the trace gives $c_{i}n_{\mu} = n_{i}\chi_{i}^{\mu}$.

Theorem: The characters of ineq. irreps of G satisfy

Orthonormality: Completeness:

$$\sum_{i} \frac{n_{i}}{n_{G}} (\chi_{i}^{\mu})^{\dagger} \chi_{i}^{\nu} = \delta_{\mu\nu}, \qquad \frac{n_{i}}{n_{G}} \sum_{\mu} \chi_{i}^{\mu} (\chi_{j}^{\mu})^{\dagger} = \delta_{ij}. \quad (4)$$

Proof: (i) Multiplying Eq. (1) by $\delta_k^i \delta_j^i$ gives $\frac{n_\mu}{n_G} \sum_g (\chi_g^\mu)^\dagger \chi_g^\nu = n_\mu^2 \delta_{\mu\nu}$. Splitting now the sum over g with respect to the conjugation classes ζ_i $(1 \le i \le n_c)$ and taking into account that $\chi_g^\mu \to \chi_i^\mu, \forall g \in \zeta_i$ proves the Orthonormality relation.

(ii) Summing Eq. (2) over $g \in \zeta_i$ and $g' \in \zeta_j$ and using Eq. (3) gives

$$\sum_{\mu,l,k} \frac{n_{\mu}}{n_{G}} \frac{n_{i}n_{j}}{n_{\mu}^{2}} \chi_{i}^{\mu} (\chi_{j}^{\mu})^{\dagger} \delta_{k}^{l} \delta_{l}^{k} = \frac{n_{i}n_{j}}{n_{G}} \sum_{\mu} \chi_{i}^{\mu} (\chi_{j}^{\mu})^{\dagger}.$$

Performing the same summation on the RHS of Eq. (3) gives $n_i \delta_{ij} = \dots = 0 \circ 0$

- ▶ χ_i^{μ} can be viewed as an $n_c \times n_c$ matrix ($\mu \equiv$ line index; $i \equiv$ column index).
- Defining the normalized characters via χ̃_i = (n_i/n_G)^{1/2}χ_i, Eq. (4) becomes

$$(\tilde{\chi}_i^{\mu})^{\dagger} \tilde{\chi}_i^{\nu} = \delta_{\mu\nu}, \quad (\tilde{\chi}_i^{\mu})^{\dagger} \tilde{\chi}_j^{\mu} = \delta_{ij}.$$
(5)

- **Cor:** The number of inequivalent irreps for any finite group G is equal to the number of distinct classes n_c of G.
- Theorem: In the reduction for a given representation U(G), the number of times a_{\u03c0} that U_{\u03c0}(G) is equal to

$$a_{\nu} = \sum_{i} \frac{n_i}{n_G} (\chi_i^{\nu})^{\dagger} \chi_i, \qquad \chi_i = \operatorname{tr}[U(g \in \zeta_i)].$$
 (6)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof: Since $U(G) = \sum_{\mu \oplus} a_{\mu} U_{\mu}(G)$, we have $\chi_i = \sum_{\mu} a_{\mu} \chi_i^{\mu}$. Eq. (6) follows after using the orthogonality relation (5).

I.2.9. Condition for irreducibility

Theorem: A necessary and sufficient condition for a representation U(G) with characters {\chi_i} to be irreducible is that

$$\sum_{i} \frac{n_i}{n_G} |\chi_i|^2 = \tilde{\chi}^{\dagger} \cdot \tilde{\chi} = 1$$
(7)

Proof: Using Eq. (5), $\tilde{\chi}^{\dagger} \cdot \tilde{\chi} = \sum_{\mu,\nu} (a_{\mu} \tilde{\chi}^{\mu})^{\dagger} \cdot (a_{\nu} \tilde{\chi}^{\nu}) = \sum_{\mu} |a_{\mu}|^2$. If there is only one irrep, then clearly $\sum_{\mu} |a_{\mu}|^2 = 1$. If $\tilde{\chi}^{\dagger} \cdot \tilde{\chi} = 1$, then there is one and only one irrep for which $a_{\mu} = 1$.

I.2.10. The regular representation

- ▶ **Def:** The regular representation of the group G with multiplication law $g_i g_j = g_k$ is given by the matrix $(\Delta_i)^m_j = \delta_k^m$.
- Theorem (decomposition of the regular representation): the regular representation contains every inequivalent irrep μ precisely n_μ times, and

$$\sum_{\mu} n_{\mu}^2 = n_G. \tag{8}$$

Proof: Let $(\Delta_a)^i{}_j$ be the representation matrix corresponding to element *a*. For the identity, $(\Delta_e)^i{}_j = \delta^i_j$ and $\chi_e = n_G$. For any other element $b \neq e$, we have $bg_i \neq g_i$ and $\chi_b = (\Delta_b)^i_i = 0$. Eq. (6) implies:

$$a_{\nu}^{R} = \sum_{i} \frac{n_i}{n_G} (\chi_i^{\nu})^{\dagger} \chi_i^{R} = \frac{n_e}{n_G} (\chi_e^{\nu})^{\dagger} n_G = n_{\nu},$$

where we used that $\chi_e^{\nu} = n_{\nu}$, $n_e = 1$ and $\chi_e^R = 1$. Since $n_G = \sum_{\mu} a_{\mu} n_{\mu}$, we have $n_G = \sum_{\mu} n_{\mu}^2$. As a consequence, one can get all irreps by reducing the RR.

・ロト・西ト・モン・モー シック

I.2.11. Direct product representations

- ▶ **Def:** The direct product vector space $W = U \otimes V$ of U and V consists of $W = \text{span}\{\hat{\mathbf{w}}_k; k = (i, j); i = 1, ..., n_u; j = 1, ..., n_v\}$, where $n_u = \dim(U)$ and $n_v = \dim(V)$.
- Def: The direct product representation of the representations D_µ(G) on U and D_ν(G) on V is D_{µ×ν}(G), defined on W, and satisfies: D(g) |w_k⟩ = |w_{k'}⟩ D(g)^{k'}_k, with D(g)^{k'}_k = (D_µ)^{i'}_i(D_ν)^{j'}_j.
 It is clear that χ^{µ×ν}_i = χ^µ_iχ^ν_i.
- $D_{\mu \times \nu} \sim \sum_{\lambda \oplus} D_{\lambda}$ is usually reducible, even if D_{μ} and D_{ν} are irreducible.
- ▶ **Def:** The Clebsch-Gordan coefficients are the matrix elements $\langle ij(\mu\nu)\alpha\lambda I\rangle$ defined by $|w_{\alpha\lambda I}\rangle = \sum_{i,j} |w_{i,j}\rangle \langle ij(\mu,\nu)\alpha\lambda I\rangle$, where $1 \le \alpha \le a_{\lambda}$ and $1 \le I \le n_{\lambda}$.

• **Theorem:** The C-B coeffs $\langle \alpha \lambda I(\mu \nu) i j \rangle = \langle i j(\mu \nu) \alpha \lambda I \rangle^*$ satisfy

Orthonormality:
$$\sum_{\alpha\lambda l} \langle i'j'(\mu\nu)\alpha\lambda l\rangle \langle \alpha\lambda l(\mu\nu)ij\rangle = \delta_i^{i'}\delta_j^{j'}, \quad (9)$$

Completeness:
$$\sum_{ij} \langle \alpha'\lambda'l'(\mu\nu)ij\rangle \langle ij(\mu\nu)\alpha\lambda l\rangle = \delta_{\alpha}^{\alpha'}\delta_{\lambda}^{\lambda'}\delta_l^{l'}.$$

Proof: Follows directly from the orthonormality and completeness of the bases $\hat{w}_{i,j}$ and $\hat{w}^{\lambda}_{\alpha,l}$.

I.2.12. Reduction of product representations

Theorem: The similarity transformation composed of C-B coeffs. decomposes D^{µ×ν} into its irreducible components. The following reciprocal relations hold:

$$D_{\mu}(g)^{i'}{}_{i}D_{\nu}(g)^{j'}{}_{j} = \langle i'j'(\mu\nu)\alpha\lambda l'\rangle D_{\lambda}(g)^{l'}{}_{l}\langle\alpha\lambda l(\mu\nu)ij\rangle,$$

$$\delta^{\alpha'}_{\alpha}\delta^{\lambda'}_{\lambda}D_{\lambda}(g)^{l'}{}_{l} = \langle \alpha'\lambda'l'(\mu\nu)i'j'\rangle D_{\mu}(g)^{i'}{}_{i}D_{\nu}(g)^{j'}{}_{j}\langle ij(\mu\nu)\alpha\lambda l\rangle.$$

(10)

Proof: We have $U(g) |w_{i,j}\rangle = |w_{i',j'}\rangle D_{\mu}(g)^{i'} i D_{\nu}(g)^{j'} j$ and $U(g) |w_{\alpha\lambda l}\rangle = |w_{\alpha\lambda l'}\rangle D_{\lambda}(g)^{l'} l$. Noting that $|w_{i,j}\rangle = \sum_{\alpha,\lambda,l} |w_{\alpha\lambda l}\rangle \langle \alpha\lambda l(\mu\nu) jj \rangle$ proves the first relation. Then writing $|w_{\alpha\lambda l}\rangle = \sum_{i,j} |w_{i,j}\rangle \langle ij(\mu\nu)\alpha\lambda l\rangle$ and using Eq. (9) gives the second eq.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I.2.13. Irreducible basis vectors

- ▶ **Def:** A set of basis vectors $\{\hat{\mathbf{e}}_{\mu;i}, i = 1, ..., n_{\mu}\}$ which transforms under U(G) as $U(g) |e_{\mu;i}\rangle = |e_{\mu;j}\rangle D_{\mu}(g)^{j}_{i}$ forms an *irreducible set* transforming according to the μ -representation of G.
- Theorem: Let {û_{µ;i}, i = 1, ... n_µ} and {ŷ_{ν;j}, j = 1, ... n_ν} be two sets of irreducible basis vectors w.r.t. G on V. If the irreps. µ and ν are not equivalent, then the two invariant subspaces are orthogonal. Proof: Let us compute the scalar product of two basis vectors:

$$\begin{split} \langle \mathbf{v}_{\nu}^{j} | u_{\mu;i} \rangle &= \frac{1}{n_{G}} \sum_{g} \langle \mathbf{v}_{\nu}^{j} | U^{\dagger}(g) U(g) | u_{\mu;i} \rangle \\ &= \underbrace{\left(\frac{n_{\mu}}{n_{G}} \sum_{g} D_{\nu}^{\dagger}(g)^{j}{}_{k} D_{\mu}(g)^{l}{}_{i} \right)}_{\text{Orthogonality relation:} \delta_{\mu\nu} \delta_{i}^{j} \delta_{k}^{j}} \frac{1}{n_{\mu}} \left\langle \mathbf{v}_{\nu}^{k} | u_{\mu;l} \right\rangle \\ &= \delta_{\mu\nu} \delta_{i}^{j} n_{\mu}^{-1} \left\langle \mathbf{v}_{\nu}^{k} | u_{k;\mu} \right\rangle.$$
 (11)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I.2.14. Projection operators

▶ Let U(G) be a rep. of G on V and D_µ(G) a matrix irrep of G. The operators

$$P^{j}_{\mu i} = \frac{n_{\mu}}{n_{G}} \sum_{g} D^{-1}_{\mu}(g)^{j}{}_{i}U(g)$$
(12)

transform irreducibly according to the μ representation (keeping *j* fixed).

Proof: Consider $|x\rangle \in V$ and $g \in G$. Then

$$U(g)P_{\mu i}^{j}|x\rangle = \frac{n_{\mu}}{n_{G}} \sum_{g'} U(gg')|x\rangle D_{\mu}^{-1}(g')^{j}{}_{i}$$
$$= \frac{n_{\mu}}{n_{G}} \sum_{g''} U(g'')|x\rangle D_{\mu}^{-1}(g'')^{j}{}_{k}D_{\mu}^{-1}(g^{-1})^{k}{}_{i}$$
$$= P_{\mu k}^{j}|x\rangle D_{\mu}(g)^{k}{}_{i}.$$
(13)

Cor: An irreducible invariant subspace corresponding to the µ irrep can be generated using the basis {P^j_{µi} |x⟩, i = 1, ... n_µ}, starting from some (arbitrary) |x⟩ ∈ V.

Theorem: Consider the irreducible basis $\{\hat{\mathbf{e}}_{\nu;k}, k = 1, \dots, n_{\nu}\}$. Then

$$P^{j}_{\mu i} | \mathbf{e}_{\nu;k} \rangle = | \mathbf{e}_{\nu;i} \rangle \, \delta_{\mu\nu} \delta^{j}_{k}. \tag{14}$$

V. Then $P_{\mu} | e_{\nu;k} \rangle = P^{i}_{\mu i} | e_{\nu;k} \rangle = | e_{\nu;k} \rangle \, \delta_{\mu\nu} \delta^{i}_{k} = | e_{\nu;k} \rangle \, \delta_{\mu\nu}$. Summing over all invariant spaces of V gives $\sum_{\mu} P_{\mu} | e_{\nu;k} \rangle = | e_{\nu;k} \rangle$.

I.2.15. Wigner-Eckart theorem

▶ Def: A set of operators { O_{µ;i}, i = 1, ... n_µ} on V, transforming under G as

$$U(g)O_{\mu;i}U(g)^{-1} = O_{\mu;j}D_{\mu}(g)^{j}{}_{i}, \qquad (15)$$

with $g \in G$ and $D_{\mu}(G)$ an irr. matrix rep. of G, forms a set of irreducible operators corresponding to the μ -representation (a.k.a. irreducible tensors).

 Acting with O_{μ;i} on |e_{ν;j} gives a vector transforming under the product representation D^{μ×ν}, since

$$U(g)O_{\mu;i} |e_{\nu;j}\rangle = U(g)O_{\mu;i}U^{-1}(g)U(g) |e_{\nu;j}\rangle$$

= $O_{\mu;k} |e_{\nu;l}\rangle D_{\mu}(g)^{k}{}_{i}D_{\nu}(g)^{l}{}_{j}.$ (16)

Theorem: (Wigner-Eckart) Let {O_{µ;i}} be a set of irreducible tensor operators. Then:

$$\langle e_{\alpha\lambda}^{\prime}|O_{\mu;i}|e_{j}^{\nu}\rangle = \langle \alpha\lambda I(\mu\nu)ij\rangle \langle \lambda|O_{\mu}|\nu\rangle_{\alpha}, \qquad (17)$$

where $\langle \lambda | O_{\mu} | \nu \rangle_{\alpha} = n_{\lambda}^{-1} \sum_{k} \langle e_{\lambda}^{k} | \Psi_{\alpha \lambda k} \rangle \equiv \text{reduced matrix element.}$

Proof of the Wigner-Eckart theorem: I

Since O_{µ;i} |e_{ν:j}⟩ transforms under U(G) as the direct product representation D_{µ×ν}(g), it can be expanded w.r.t. a set of vectors |Ψ^λ_{α,l}⟩:

$$\mathcal{O}_{\mu,i} | \mathbf{e}_{\nu,j} \rangle = \sum_{\alpha \lambda l} | \Psi_{\alpha \lambda l} \rangle \langle \alpha \lambda l(\mu \nu) i j \rangle , \qquad (18)$$

with $\langle \alpha \lambda I(\mu \nu) i j \rangle$ being the C-G coeffs. connecting representation the copy α of representation λ to the direct product basis $|e_i^{\mu}\rangle \otimes |e_j^{\nu}\rangle$.

Now we show that $|\Psi_{\alpha\lambda l}\rangle$ forms an irreducible set transforming under the λ representation of *G*, by applying U(g) on Eq. (18):

$$\sum_{\alpha\lambda l} U(g) |\Psi_{\alpha\lambda l}\rangle \langle \alpha\lambda l(\mu\nu) ij\rangle = \sum_{\alpha\lambda l; i'j'} |\Psi_{\alpha\lambda l}\rangle \langle \alpha\lambda l(\mu\nu) i'j'\rangle D_{\mu}(g)^{i'} D_{\nu}(g)^{j'} D_{\nu}(g)^{j'}$$

Multiplying by (ij(μν)αλl), summing over i, j and using the orthogonality relation (9) for the C-G coeffs. gives:

$$U(g) \ket{\Psi_{\lambda lpha l}} = \sum_{lpha' \lambda' l'} \ket{\Psi_{lpha' \lambda' l'}} \sum_{i'j'; ij} \langle lpha' \lambda' l'(\mu
u) i'j'
angle D_{\mu}(g)^{i'}{}_{i} D_{
u}(g)^{j'}{}_{j} \langle ij(\mu
u) lpha \lambda l
angle.$$

► The last sum represents just $\delta_{\alpha\alpha'}\delta_{\lambda\lambda'}D_{\lambda}(g)^{l'}{}_{l} = \langle e_{\alpha',\lambda'}^{l'}|U(g)|e_{\alpha\lambda l}\rangle$:

$$\langle \mathbf{e}_{\alpha'\lambda'}^{l'}|U(g)|\mathbf{e}_{\alpha\lambda l}\rangle = \sum_{ij,i'j'} \langle \alpha'\lambda'l'(\mu\nu)i'j'\rangle D_{\mu}(g)^{i'}{}_{i}D_{\nu}(g)^{j'}{}_{j}\langle ij(\mu\nu)\alpha\lambda l\rangle.$$

Proof of the Wigner-Eckart theorem: II

► Now we show that $|\Psi_{\alpha\lambda l}\rangle \sim |e_{\alpha\lambda l}\rangle$, where $|e^{\alpha\lambda l}\rangle$ is an orthogonal basis.

• Writing
$$|\Psi_{\alpha\lambda l}\rangle \equiv \Psi |e_{\alpha\lambda l}\rangle = |e_{\alpha\lambda l'}\rangle \Psi^{l'}{}_{l}$$
 and using
 $U(g) |\Psi_{\alpha\lambda l}\rangle = |\Psi_{\alpha\lambda l'}\rangle D_{\lambda}(g)^{l'}{}_{l}$, we find
 $U(g) |\Psi_{\alpha\lambda l}\rangle = |e_{\alpha\lambda n}\rangle D_{\lambda}(g)^{n}{}_{m}\Psi^{m}{}_{l} = |e_{\alpha\lambda n}\rangle \Psi^{n}{}_{m}D_{\lambda}(g)^{m}{}_{l}$, (19)

which shows that $\Psi D_{\lambda}(g) = D_{\lambda}(g) \Psi$.

According to Schur's lemma 1, Ψ is proportional to the identity operator on the subspace {ê_{αλl}, l = 1,...n_λ}, with the proportionality constant being ⟨λ|O_μ|ν⟩_α, the reduced matrix element:

$$O_{i}^{\mu} | \boldsymbol{e}_{\nu, j} \rangle = \sum_{\alpha \lambda l} | \boldsymbol{e}_{\alpha \lambda l} \rangle \left\langle \alpha \lambda l(\mu \nu) j j \right\rangle \left\langle \lambda | O_{\mu} | \nu \right\rangle_{\alpha}.$$
(20)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exercises

- WKT3.5 Find the set of unitary representation matrices $D_{\mu}(p)$, with $p \in S_3$ for the 2D irreps of S_3 ($\mu = 1, 2, 3$) and list the corresponding character table.
- WKT3.6 Find the similarity transformation that reduces the following 2D representation of the $C_2 = \{e, a\}$ group into diagonal form:

$$e \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad a \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
 (21)

- WKT3.8 Let (x_1, y_1) and (x_2, y_2) be coordinates of two 2-vectors which transform independently under D_3 transformations. Consider the function space V spanned by the monomials x_1x_2 , x_1y_2 , y_1x_2 and y_1y_2 . Show that the realization of the group D_3 on this 4D space is the direct product representation of that on the 2D space with itself.
- WKT3.9 Reduce the 4D rep. of D_3 from the previous problem into its irreducible comps. Evaluate the Clebsch-Gordan coeffs.

Exercises

- WKT3.11 Construct the character table for S_4 . [Hint: Make use of the irreps of any factor groups that may exist. Then complete the table by using the orthonormality and completeness relations.]
- WKT4.2 Let $G = S_3$ and $V = V_2 \times V_2$ ($V_2 \equiv 2D$ vector space). Starting with the basis vectors $\hat{\mathbf{e}}_x \hat{\mathbf{e}}_x$, $\hat{\mathbf{e}}_x \hat{\mathbf{e}}_y$, $\hat{\mathbf{e}}_y \hat{\mathbf{e}}_x$ and $\hat{\mathbf{e}}_y \hat{\mathbf{e}}_y$, construct four new basis vectors which transform irreducibly under S_3 . Use the projection operator technique.