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Lecture contents

Chapter 1. Discrete symmetry groups

▶ I.1. Basic notions of abstract group theory

▶ I.2. Group representations

▶ I.3. Wigner-Eckart theorem

▶ I.4. Representations of the symmetric group



1.2.6. Orthonormality of irrep matrices (REM)

▶ Theorem: Let µ label inequivalent, irreducible representations
Dµ(g) of G . The following orthonormality condition holds:

nµ
nG

∑
g

D†
µ(g)

k
iDν(g)

j
l = δµνδ

j
i δ

k
l , (1)

where nµ ≡ dimension of the µ-representation and nG = order of G .



I.2.7. Completeness of irrep matrices

▶ Cor: The number of inequivalent irreps of a finite group is restricted
by
∑

µ n
2
µ ≤ nG .

Proof: The matrix elements Dµ(g)
i
j can be regarded as vectors of

size nG , with elements corresponding to g ∈ G . The labels (i , j) take
n2µ values and

∑
µ n

2
µ represents the number of vectors in the set.

The inequality follows since the number of mutually orthogonal (also
linearly independent) vectors ≤ nG ≡ dimension of the vector space.
Theorem: (i) nµ for the inequivalent irreps satisfy

∑
µ n

2
µ = nG ; (ii)

The representation matrices satisfy the completeness relation:∑
µ,l,k

nµ
nG

Dµ(g)
l
kD

†
µ(g

′)k l = δgg ′ . (2)

Proof: for (i) will be given later [see Eq. (8)]; accepting (i), the
proof of (ii) is automatic, since Dµ(g)

l
k represent nG mutually

orthogonal vectors in a vector space of size nG , which must therefore
be complete.

▶ Obs: Since for abelian groups, nµ = 1, we must have nG
inequivalent irreps.



I.2.8. Orthonormality and completeness of irreducible χ
▶ Lemma: The sum of Uµ(g) over any (conjugation) class ζi is:

Aµ
i =

∑
h∈ζi

Uµ(h) =
ni
nµ

χµ
i E . (3)

Proof: It is easy to check that Uµ(g)A
µ
i Uµ(g)

−1 = Aµ
i , since

ghg−1 ∈ ζi , ∀h ∈ ζi and g ∈ G . By Schur’s lemma 1, Ai = ciE . Taking

the trace gives cinµ = niχ
µ
i .

▶ Theorem: The characters of ineq. irreps of G satisfy

Orthonormality: Completeness:∑
i

ni
nG

(χµ
i )

†χν
i = δµν ,

ni
nG

∑
µ

χµ
i (χ

µ
j )

† = δij . (4)

Proof: (i) Multiplying Eq. (1) by δikδ
l
j gives

nµ
nG

∑
g (χ

µ
g )

†χν
g = n2

µδµν .
Splitting now the sum over g with respect to the conjugation classes ζi
(1 ≤ i ≤ nc) and taking into account that χµ

g → χµ
i , ∀g ∈ ζi proves the

Orthonormality relation.
(ii) Summing Eq. (2) over g ∈ ζi and g ′ ∈ ζj and using Eq. (3) gives∑

µ,l,k

nµ
nG

ninj
n2
µ

χµ
i (χ

µ
j )

†δlkδ
k
l =

ninj
nG

∑
µ

χµ
i (χ

µ
j )

†.

Performing the same summation on the RHS of Eq. (3) gives niδij .



▶ χµ
i can be viewed as an nc × nc matrix (µ ≡ line index; i ≡ column

index).

▶ Defining the normalized characters via χ̃i = (ni/nG )
1/2χi , Eq. (4)

becomes
(χ̃µ

i )
†χ̃ν

i = δµν , (χ̃µ
i )

†χ̃µ
j = δij . (5)

▶ Cor: The number of inequivalent irreps for any finite group G is
equal to the number of distinct classes nc of G .

▶ Theorem: In the reduction for a given representation U(G ), the
number of times aν that Uν(G ) is equal to

aν =
∑
i

ni
nG

(χν
i )

†χi , χi = tr[U(g ∈ ζi )]. (6)

Proof: Since U(G ) =
∑

µ⊕ aµUµ(G ), we have χi =
∑

µ aµχ
µ
i .

Eq. (6) folllows after using the orthogonality relation (5).



I.2.9. Condition for irreducibility

▶ Theorem: A necessary and sufficient condition for a representation
U(G ) with characters {χi} to be irreducible is that∑

i

ni
nG

|χi |2 = χ̃† · χ̃ = 1 (7)

Proof: Using Eq. (5), χ̃† · χ̃ =
∑

µ,ν(aµχ̃
µ)† · (aν χ̃ν) =

∑
µ |aµ|2. If

there is only one irrep, then clearly
∑

µ |aµ|2 = 1. If χ̃† · χ̃ = 1, then
there is one and only one irrep for which aµ = 1.



I.2.10. The regular representation

▶ Def: The regular representation of the group G with multiplication
law gigj = gk is given by the matrix (∆i )

m
j = δmk .

▶ Theorem (decomposition of the regular representation): the regular
representation contains every inequivalent irrep µ precisely nµ times,
and ∑

µ

n2µ = nG . (8)

Proof: Let (∆a)
i
j be the representation matrix corresponding to

element a. For the identity, (∆e)
i
j = δij and χe = nG . For any other

element b ̸= e, we have bgi ̸= gi and χb = (∆b)
i
i = 0. Eq. (6)

implies:

aRν =
∑
i

ni
nG

(χν
i )

†χR
i =

ne
nG

(χν
e )

†nG = nν ,

where we used that χν
e = nν , ne = 1 and χR

e = 1. Since
nG =

∑
µ aµnµ, we have nG =

∑
µ n

2
µ.

▶ As a consequence, one can get all irreps by reducing the RR.



I.2.11. Direct product representations
▶ Def: The direct product vector space W = U ⊗ V of U and V

consists of W = span{ŵk ; k = (i , j); i = 1, . . . nu; j = 1, . . . nv},
where nu = dim(U) and nv = dim(V ).

▶ Def: The direct product representation of the representations
Dµ(G ) on U and Dν(G ) on V is Dµ×ν(G ), defined on W , and

satisfies: D(g) |wk⟩ = |wk′⟩D(g)k
′
k , with D(g)k

′
k = (Dµ)

i ′
i (Dν)

j′
j .

▶ It is clear that χµ×ν
i = χµ

i χ
ν
i .

▶ Dµ×ν ∼
∑

λ⊕ Dλ is usually reducible, even if Dµ and Dν are
irreducible.

▶ Def: The Clebsch-Gordan coefficients are the matrix elements
⟨ij(µν)αλl⟩ defined by |wαλl⟩ =

∑
i,j |wi,j⟩ ⟨ij(µ, ν)αλl⟩, where

1 ≤ α ≤ aλ and 1 ≤ l ≤ nλ.
▶ Theorem: The C-B coeffs ⟨αλl(µν)ij⟩ = ⟨ij(µν)αλl⟩∗ satisfy

Orthonormality:
∑
αλl

⟨i ′j ′(µν)αλl⟩ ⟨αλl(µν)ij⟩ = δi
′
i δ

j′

j , (9)

Completeness:
∑
ij

⟨α′λ′l ′(µν)ij⟩ ⟨ij(µν)αλl⟩ = δα
′

α δλ
′

λ δl
′
l .

Proof: Follows directly from the orthonormality and completeness of the

bases ŵi,j and ŵλ
α,l .



I.2.12. Reduction of product representations

▶ Theorem: The similarity transformation composed of C-B coeffs.
decomposes Dµ×ν into its irreducible components. The following
reciprocal relations hold:

Dµ(g)
i ′
iDν(g)

j′
j = ⟨i ′j ′(µν)αλl ′⟩Dλ(g)

l′
l ⟨αλl(µν)ij⟩ ,

δα
′

α δλ
′

λ Dλ(g)
l′
l = ⟨α′λ′l ′(µν)i ′j ′⟩Dµ(g)

i ′
iDν(g)

j′
j ⟨ij(µν)αλl⟩ .

(10)

Proof: We have U(g) |wi,j⟩ = |wi ′,j′⟩Dµ(g)
i ′
iDν(g)

j′
j and

U(g) |wαλl⟩ = |wαλl′⟩Dλ(g)
l′
l . Noting that

|wi,j⟩ =
∑

α,λ,l |wαλl⟩ ⟨αλl(µν)ij⟩ proves the first relation. Then
writing |wαλl⟩ =

∑
i,j |wi,j⟩ ⟨ij(µν)αλl⟩ and using Eq. (9) gives the

second eq.



I.2.13. Irreducible basis vectors

▶ Def: A set of basis vectors {êµ;i , i = 1, . . . nµ} which transforms
under U(G ) as U(g) |eµ;i ⟩ = |eµ;j⟩Dµ(g)

j
i forms an irreducible set

transforming according to the µ-representation of G .

▶ Theorem: Let {ûµ;i , i = 1, . . . nµ} and {v̂ν;j , j = 1, . . . nν} be two
sets of irreducible basis vectors w.r.t. G on V . If the irreps. µ and ν
are not equivalent, then the two invariant subspaces are orthogonal.
Proof: Let us compute the scalar product of two basis vectors:

⟨v j
ν |uµ;i ⟩ =

1

nG

∑
g

⟨v j
ν |U†(g)U(g)|uµ;i ⟩

=

(
nµ
nG

∑
g

D†
ν(g)

j
kDµ(g)

l
i

)
︸ ︷︷ ︸

Orthogonality relation:δµνδ
j
i δ

l
k

1

nµ
⟨vk

ν |uµ;l⟩

= δµνδ
j
i n

−1
µ ⟨vk

ν |uk;µ⟩ . (11)



I.2.14. Projection operators

▶ Let U(G ) be a rep. of G on V and Dµ(G ) a matrix irrep of G . The
operators

P j
µi =

nµ
nG

∑
g

D−1
µ (g)j iU(g) (12)

transform irreducibly according to the µ representation (keeping j
fixed).
Proof: Consider |x⟩ ∈ V and g ∈ G . Then

U(g)P j
µi |x⟩ =

nµ
nG

∑
g ′

U(gg ′) |x⟩D−1
µ (g ′)j i

=
nµ
nG

∑
g ′′

U(g ′′) |x⟩D−1
µ (g ′′)j kD

−1
µ (g−1)k i

= P j
µk |x⟩Dµ(g)

k
i . (13)

▶ Cor: An irreducible invariant subspace corresponding to the µ irrep
can be generated using the basis {P j

µi |x⟩ , i = 1, . . . nµ}, starting
from some (arbitrary) |x⟩ ∈ V .



▶ Theorem: Consider the irreducible basis {êν;k , k = 1, . . . nν}. Then

P j
µi |eν;k⟩ = |eν;i ⟩ δµνδjk . (14)

Proof: P j
µi |eν;k⟩ = |eν;l⟩ nµ

nG

∑
g D

ν(g)l kD
†
µ(g)

j
i = |e⟩νi δµνδ

j
k .

▶ Cor: P j
µiP

l
νk = δµνδ

j
kP

l
µi .

Proof: since P l
νk |x⟩ is an irreducible set ∀ |x⟩ ∈ V , Eq. (14) implies

the relation in the corollary.

▶ Cor: U(g) =
∑

µ,i,j P
j
µiDµ(g)

i
j ,∀g ∈ G .

▶ Cor: U(g)P l
νk =

∑
i P

l
νiDν(g)

i
k .

▶ Def: Pµi ≡ P j=i
µi are projection operators onto the basis {êµ;i}.

Proof: PµiPνk = P j=i
µi P l=k

νk = δµνδ
j=i
k P l=k

µi = δµνδikPµk .

▶ Def: Pµ =
∑

i Pµi =
nµ
nG

∑
g [χµ(g)]

−1U(g) are projection operators
onto the irreducible invariant space Vµ.

Proof: PµPν = P i
µiP

j
νj = δµνδ

i
jP

j
νi = δµνPν .

▶ Theorem: Pµ and Pµi are complete in the sense that
∑

µ Pµ = E .
Proof: Consider {êν;k} the basis vectors of any irr. inv. subsp. of
V . Then Pµ |eν;k⟩ = P i

µi |eν;k⟩ = |eν;i ⟩ δµνδik = |eν;k⟩ δµν . Summing
over all invariant spaces of V gives

∑
µ Pµ |eν;k⟩ = |eν;k⟩.



I.2.15. Wigner-Eckart theorem

▶ Def: A set of operators {Oµ;i , i = 1, . . . nµ} on V , transforming
under G as

U(g)Oµ;iU(g)−1 = Oµ;jDµ(g)
j
i , (15)

with g ∈ G and Dµ(G ) an irr. matrix rep. of G , forms a set of
irreducible operators corresponding to the µ-representation (a.k.a.
irreducible tensors).

▶ Acting with Oµ;i on |eν;j⟩ gives a vector transforming under the
product representation Dµ×ν , since

U(g)Oµ;i |eν;j⟩ = U(g)Oµ;iU
−1(g)U(g) |eν;j⟩

= Oµ;k |eν;l⟩Dµ(g)
k
iDν(g)

l
j . (16)

▶ Theorem: (Wigner-Eckart) Let {Oµ;i} be a set of irreducible tensor
operators. Then:

⟨e lαλ|Oµ;i |eνj ⟩ = ⟨αλl(µν)ij⟩ ⟨λ|Oµ|ν⟩α , (17)

where ⟨λ|Oµ|ν⟩α = n−1
λ

∑
k ⟨ekλ|Ψαλk⟩ ≡ reduced matrix element.



Proof of the Wigner-Eckart theorem: I
▶ Since Oµ;i |eν;j⟩ transforms under U(G) as the direct product

representation Dµ×ν(g), it can be expanded w.r.t. a set of vectors |Ψλ
α,l⟩:

Oµ,i |eν,j⟩ =
∑
αλl

|Ψαλl⟩ ⟨αλl(µν)ij⟩ , (18)

with ⟨αλl(µν)ij⟩ being the C-G coeffs. connecting representation the copy
α of representation λ to the direct product basis |eµi ⟩ ⊗ |eνj ⟩.

▶ Now we show that |Ψαλl⟩ forms an irreducible set transforming under the
λ representation of G , by applying U(g) on Eq. (18):∑
αλl

U(g) |Ψαλl⟩ ⟨αλl(µν)ij⟩ =
∑

αλl ;i′j′

|Ψαλl⟩ ⟨αλl(µν)i ′j ′⟩Dµ(g)
i′
iDν(g)

j′
j .

▶ Multiplying by ⟨ij(µν)αλl⟩, summing over i , j and using the orthogonality
relation (9) for the C-G coeffs. gives:

U(g) |Ψλαl⟩ =
∑

α′λ′ l′

|Ψα′λ′ l′⟩
∑
i′j′;ij

⟨α′λ′l ′(µν)i ′j ′⟩Dµ(g)
i′
iDν(g)

j′
j ⟨ij(µν)αλl⟩ .

▶ The last sum represents just δαα′δλλ′Dλ(g)
l′
l = ⟨e l

′
α′,λ′ |U(g)|eαλl⟩:

⟨e l
′
α′λ′ |U(g)|eαλl⟩ =

∑
ij,i′j′

⟨α′λ′l ′(µν)i ′j ′⟩Dµ(g)
i′
iDν(g)

j′
j ⟨ij(µν)αλl⟩ .



Proof of the Wigner-Eckart theorem: II

▶ Now we show that |Ψαλl⟩ ∼ |eαλl⟩, where |eαλl⟩ is an orthogonal basis.

▶ Writing |Ψαλl⟩ ≡ Ψ |eαλl⟩ = |eαλl′⟩Ψl′
l and using

U(g) |Ψαλl⟩ = |Ψαλl′⟩Dλ(g)
l′
l , we find

U(g) |Ψαλl⟩ = |eαλn⟩Dλ(g)
n
mΨ

m
l = |eαλn⟩Ψn

mDλ(g)
m
l , (19)

which shows that ΨDλ(g) = Dλ(g)Ψ.

▶ According to Schur’s lemma 1, Ψ is proportional to the identity operator
on the subspace {êαλl , l = 1, . . . nλ}, with the proportionality constant
being ⟨λ|Oµ|ν⟩α, the reduced matrix element:

Oµ
i |eν,j⟩ =

∑
αλl

|eαλl⟩ ⟨αλl(µν)ij⟩ ⟨λ|Oµ|ν⟩α . (20)



Exercises

WKT3.5 Find the set of unitary representation matrices Dµ(p), with p ∈ S3
for the 2D irreps of S3 (µ = 1, 2, 3) and list the corresponding
character table.

WKT3.6 Find the similarity transformation that reduces the following 2D
representation of the C2 = {e, a} group into diagonal form:

e →
(
1 0
0 1

)
, a →

(
0 1
1 0

)
. (21)

WKT3.8 Let (x1, y1) and (x2, y2) be coordinates of two 2-vectors which
transform independently under D3 transformations. Consider the
function space V spanned by the monomials x1x2, x1y2, y1x2 and
y1y2. Show that the realization of the group D3 on this 4D space is
the direct product representation of that on the 2D space with itself.

WKT3.9 Reduce the 4D rep. of D3 from the previous problem into its
irreducible comps. Evaluate the Clebsch-Gordan coeffs.



Exercises

WKT3.11 Construct the character table for S4. [Hint: Make use of the irreps
of any factor groups that may exist. Then complete the table by
using the orthonormality and completeness relations.]

WKT4.2 Let G = S3 and V = V2 × V2 (V2 ≡ 2D vector space). Starting
with the basis vectors êx êx , êx êy , êy êx and êy êy , construct four
new basis vectors which transform irreducibly under S3. Use the
projection operator technique.


