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I.1.8. Cosets

▶ Def: Let H be a subgroup of G and let p ∈ G but p /∈ H. Then, the
set pH is called a left coset of H. Similarly, Hp is a right coset of H.

▶ Obs: The cosets of H are not subgroups, because they do not
contain e.

▶ Obs: Each coset has exactly the same number of elements as H.

▶ Lemma: Two left (right) cosets of H either coincide completely, or
else they have no elements in common at all.
Proof: Let pH and qH be the two cosets. Assume phi = qhj for
some hi , hj ∈ H. Then
q−1p = hjh

−1
i ∈ H ⇒ q−1pH = H ⇒ pH = qH.

▶ Theorem (Lagrange): The order of a finite group must be an
integer multiple of the order of any of its subgroups.



I.1.9. Factor (quotient) groups

▶ Obs: If H is an invariant subgroup, then pHp−1 = H and its left
cosets are also right cosets: pH = Hp.

▶ Obs: The cosets of an invariant subgroup form a group:
▶ (pH)(qH) = (pq)H, since phiqhj = pq(q−1hiq)hj = pqhk , with

hk ∈ H;
▶ H = eH is the identity element;
▶ p−1H is the inverse of pH;
▶ pH(qH · rH) = (pH · qH) · rH) = (pqr)H.

▶ Theorem: If H is an invariant subgroup of G , the set of cosets
endowed with the law of multiplication pH · qH = (pq)H form a
group, called the factor (or quotient) group of G . The factor group
G/H is of order nG/nH .

▶ Ex: H = {e, a2} is an invariant group of C4. Together with its coset
M = {a, a3}, they form the factor group C4/H. Since
HM = M = MH, HH = H and MM = H, both H and C4/H are of
order 2 and are ≃ C2.



I.1.10. Homomorphisms

▶ Def: A homomorphism from a group G to another group G ′ is a
mapping (not necessarily one-to-one) which preserves group
multiplication. In other words, if gi ∈ G → g ′

i ∈ G ′ and g1g2 = g3,
then g ′

1g
′
2 = g ′

3.

▶ Obs: The isomorphism is a particular case of homomorphism.

▶ Theorem: Let f be a homomorphism from G to G ′. Denote

K = {a ∈ G ; a
f−→ e′ ∈ G ′}. Then K forms an invariant subgroup of

G . Moreover, the factor group G/K is isomorphic to G ′.

Proof: (i) Since e
f−→ e′, e ∈ K . For a, b ∈ K , ab

f−→ e′ · e′ = e′, hence ab ∈ K .

If a ∈ K , then a−1 f−→ (e′)−1 = e′ and a−1 ∈ K . Therefore, K is a subgroup.

(ii) Let a ∈ K and g ∈ G . Then gag−1 f−→ g ′e′(g ′)−1 = e′ and gag−1 ∈ K .
Hence, K is an invariant subgroup.

(iii) The elements of G/K are the cosets pK . Let pK
ρ−→ p′ ∈ G ′, where

p
f−→ p′. If ρ(pK) = ρ(qK), then ρ(q−1pK) = (q−1p)′ = ρ−1(qK)ρ(pK) = e′,

hence q−1pK = K and pK = qK . Thus, the mapping G/K
ρ−→ G ′ is one-to-one.

Since ρ(pK)ρ(qK) = ρ(pqK), multiplication is preserved by ρ and ρ is an

isomorphism.

▶ Obs: K is called the kernel or center of the homomorphism f .



I.1.11. Direct products

▶ Def: Let H1 and H2 be subgroups of G with the properties: (i)
∀h1 ∈ H1 and h2 ∈ H2, h1h2 = h2h1 (the elements commute); and
(ii) ∀g ∈ G , ∃h1 ∈ H1 and h2 ∈ H2 s.t. g = h1h2. In this case, G is
said to be the direct product group of H1 and H2; symbolically,
G = H1 ⊗ H2.

▶ Obs: G = H1 ⊗H2 ⇒ H1 and H2 must be invariant subgroups of G .

▶ Obs: G = H1 ⊗ H2 ⇒ G/H2 ≃ H1 and G/H1 ≃ H2.

▶ Ex: Consider C6 = {e = a6, a, a2, a3, a4, a5} with subgroups
H1 = {e, a3} and H2 = {e, a2, a4}. Since G is abelian, h1h2 = h2h1.
Moreover, a = a3a4 and a5 = a3a2, hence C6 = H1 ⊗ H2. Since
H1 ≃ C2 and H2 ≃ C3, we have C6 = C2 ⊗ C3.



I.2. Group representations
I.2.2. Linear vector spaces. Bra-ket notation

▶ Vectors in general linear vector spaces are denoted using Dirac’s |⟩
(ket) or ⟨| (bra) symbols.

▶ Multiplication by scalars is |αx⟩ = α · |x⟩ = |x⟩α.
▶ A basis of the vector space is denoted by |ei ⟩.
▶ Its dual basis ⟨e i | is defined such that ⟨e i |ej⟩ = δij .

▶ A vector x has components |x⟩ = |ei ⟩ x i .
▶ Its dual is defined by Hermitian conjugation, ⟨x | = (|x⟩)† ≡ x†i ⟨e i |,

s.t. x†i = (x i )∗.

▶ The bra-ket between two vectors defines the scalar product on the
vector space, ⟨x |y⟩ = x†i y

i .

▶ An operator A is a linear functional A : V → V s.t.
A |x⟩ = |Ax⟩ ∈ V .

▶ Ai
j = ⟨e i |A|ej⟩ represent the components of A.

▶ The product of two operators is defined by AB |x⟩ = A |Bx⟩ and
(AB)i j = Ai

kB
k
j .



I.2.2. Representations

▶ In physics, we are interested in the effect of symmetry
transformations on the solutions of partial differential or integral eqs.

▶ These solutions usually form a linear vector space (e.g., the Hilbert
space in QM).

▶ Group theory describes the realization of group transformations as
linear transformations on vector spaces.

▶ Linear transformations (or operators) on linear vector spaces form a
(generally non-abelian) group.

▶ Def: If there is a homomorphism from a group G to a group of
operators U(G ) on a linear vector space V , we say U(G ) forms a
representation of the group G .

▶ The dimension of U(G ) is the dimension of V .

▶ U(G ) is faithful if the homomorphism is also an isomorphism.

▶ A degenerate representation is one which is not faithful.

▶ g ∈ G → U(g), s.t. U(g1)U(g2) = U(g1g2).



Finite-dimensional representations
▶ Consider a basis {êi , i = 1, 2, . . . n} in Vn.

▶ The operators U(g) are realized as n × n matrices D(g), defined via
U(g) |ei ⟩ = |ej⟩D(g)j i .

▶ Because U(g1)U(g2) = U(g1g2), we have D(g1)D(g2) = D(g1g2) ⇒
the matrices D(G ) form the matrix representation of G .

▶ |x⟩ transforms as U(g) |x⟩ = |x ′⟩ = |ei ⟩ x ′i , with x ′i = D(g)i jx
j .

▶ Ex: {D2 : e, h(refl. about y), v(refl. about x), r(rot. by π)} and
V = span(ê1, ê2). Then D(e) = diag(1, 1) and

D(h) = diag(−1, 1); D(v) = diag(1,−1); D(r) = diag(−1,−1).

▶ Ex: G = {R(ϕ), 0 ≤ ϕ < 2π} is the group of 2D rotations and:

x′ = U(ϕ)x = êix
′i , x ′i = D(ϕ)i jx

j , D(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

▶ Consider a function f : R2 → C. Under a rotation,

f
g∈G−−−→ f ′(x) = f (x′), x′ = U(g−1)x.



▶ Theorem: (i) If the group G has a non-trivial invariant subgroup H,
then any representation of the factor group K = G/H is also a
(degenerate) representation of G ; (ii) Conversely, if U(G ) is a
degenerate representation of G , then G has at least one invariant
subgroup H such that U(G ) defines a faithful representation of the
factor group G/H.
Proof: Let {K : gH, g ∈ G} be the set of cosets of H. Then
g ∈ G → k = gH ∈ K → U(k) on V is a homomorphism from G to
U(K ), forming a representation. Since H is a non-trivial invariant
subgroup, g → k = gH is a many-to-one mapping ⇒ the
representation is not faithful. (ii) Proof already given.



I.2.3. Irreducible, inequivalent representations
▶ Def: Two representations U(G ) and U ′(G ) are equivalent if they are

related by a similarity transformation S , i.e. U ′(G ) = SU(G )S−1.
▶ Def: The character χ(g) of g ∈ G in a representation U(G ) is

defined as χ(g) = Tr[U(g)].
▶ Obs: All elements in a given class of G have the same characters,

because TrU(p)U(g)U(p−1) = TrU(g).
▶ Direct sum representations: If for some choice of basis on Vn,

D(g ∈ G ) = diag(D1(g),D2(g)) is block diagonal, then
D = D1 ⊕ D2.

▶ Def: V1 is an invariant subspace of V w.r.t. U(G ) if
U(g) |x⟩ ∈ V1,∀x ∈ V1 and g ∈ G . An invariant subspace is
minimal (proper) if it does not contain any non-trivial invariant
subspace w.r.t. U(G ).

▶ Def: U(G ) on V is irreducible if there is no non-trivial invariant
subspace in V w.r.t. U(G ). Otherwise, the representation is
reducible and, if the orthogonal complement of the invariant
subspace is also invariant w.r.t. U(G ), then the representation is
fully reducible or decomposable.

▶ Ex: R2 on E2: ê± = 1√
2
(∓ê1 − i ê2) span 1-dimensional invariant

subspaces, since U(ϕ)ê± = ê±e∓iϕ.



Reducible representations

▶ Consider an invariant subspace V1 of V w.r.t. U(G ), having
dim(V1) = n1 < n = dim(V ). Arranging the basis vectors such that
êi ∈ V1 for 1 ≤ i ≤ n1, we have

U(g) |ei ⟩ = |ej⟩D(g)j i ∈ V1 ⇒ D(g) =

(
D1(g) D ′(g)

0 D2(g)

)
,

(1)
where Di (g) are ni × ni matrices (n2 = n − n1).

▶ If V2 = span(êi , i = n1 + 1, . . . n) is also invariant, then D ′(g) = 0
and D(g) becomes block-diagonal.

▶ If V µ is an invariant subspace of V , restricting U(G ) to V µ gives a
lower-dimensional representation Uµ(G ) of G .

▶ If V µ cannot be further reduced, Uµ(G ) is an irreducible
representation and V µ is a proper (irreducible invariant) subspace
w.r.t. G .



I.2.4. Unitary representations

▶ Def: If V is an inner product space and if U(g)† = U(g)−1 are
unitary ∀g ∈ G , then U(G ) is a unitary representation. Equivalently,

⟨U(g)x |U(g)y⟩ = ⟨x |y⟩ . (2)

▶ Def: For completeness: an operator is Hermitian if A† = A, i.e.
⟨Ax |y⟩ = ⟨x |Ay⟩.

▶ Theorem: If a unitary representation is reducible, then it is also
decomposable (i.e., fully reducible).
Proof: Let V1 = span(êi , i = 1, 2 . . . n1) be an invariant subspace
and V2 = span(êi , i = n1 + 1, . . . n) be its complement. Since V1 is
invariant, |ei (g)⟩ = U(g) |ei ⟩ ∈ V1 for 1 ≤ i ≤ n1. Since U(G ) is
unitary, ⟨e j(g)|ei (g)⟩ = ⟨e j |U†(g)U(g)|ei ⟩ = δj i vanishes for all
n1 < j ≤ n and 1 ≤ i ≤ n1. Since |e1(g)⟩ ∈ V1, this means
|e2(g)⟩ ∈ V2 ⇒ U(g) |x⟩ ∈ V2∀x ∈ V2 and V2 is an invariant
subspace w.r.t. U(g).



Unitary representations of finite groups
▶ Maschke’s theorem: Every representation D(G ) of a finite group

on an inner product space is equivalent to a unitary representation.
Proof: We need the similarity transformation S s.t.
SD(g)S−1 = U(g) is unitary ∀g ∈ G . Since unitarity is established
based on a scalar product, we introduce a new scalar product
(x , y) ≡ ⟨Sx |Sy⟩ =

∑
g ⟨D(g)x |D(g)y⟩. Then, S can be regarded

as a transformation from the basis orthogonal w.r.t. ⟨|⟩ to one
orthogonal w.r.t. (, ). We now show U(g) is unitary:

⟨U(g)x |U(g)y⟩ = ⟨SD(g)S−1x |SD(g)S−1y⟩

=
∑
g ′

⟨D(g ′)D(g)S−1x |D(g ′)D(g)S−1y⟩

=
∑
g ′′

⟨D(g ′′)S−1x |D(g ′′)S−1y⟩

= (S−1x ,S−1y) = ⟨x |y⟩ .

Key elements in the above proof include: (i) the summation over all
group elements (non-trivial for continuous groups); and (ii) the
validity of the rearrangement lema.

▶ Corr: All reducible reps. of finite groups are fully reducible.



1.2.5. Schur’s lemmas
▶ Def: Let V1 and V2 be complementary subspaces w.r.t. U(G ), and

U1(G ), U2(G ) denote operators which coincide with U(G ) on these
subspaces. Then clearly V = V1 ⊕ V2 and U(g) = U1(g) + U2(g) is
the direct sum representation of U1(G ).

▶ If either V1 and V2 are reducible w.r.t. G , the representation can be
further decomposed, until U(G ) is fully reduced:
U(G ) =

∑
µ⊕ aµUµ(G ), where µ = 1, 2, . . . labels the inequivalent

irreducible representations Uµ(G ) and aµ ≡ their multiplicity.
▶ Schur’s Lemma 1: Let U(G ) be an irreducible representation of G

on V , and A an arbitrary operator on V . If
AU(g) = U(g)A,∀g ∈ G , then ∃λ ∈ C s.t. A = λE .
Proof: (i) Without loss of generality, we take U(G ) unitary and A
hermitian.
(ii) We take a basis {ûα,i} of V consisting of the eigenvectors of A:
A |uα,i ⟩ = |uα,i ⟩λi , with λi being the distinct eigenvalues of A and α
labels different vectors with the same λi .
(iii) Consider Vi = span(ûα,i , α = 1, 2, . . . ). Then AU(g) |uα,i ⟩
= U(g) |uα,i ⟩λi ∈ Vi , s.t. Vi is an invariant subspace of V .
(iv) Since U(G ) is irreducible on V , V has no non-trivial invariant
subspaces ⇒ Vi = V and A = λE has a single eigenvalue λ.



▶ Schur’s lemma 2: Let U(G ) and U ′(G ) be two irreps of G on V
and V ′, resp, and let A : V ′ → V be a linear transf. satisfying
AU ′(g) = U(g)A,∀g ∈ G . It follows that either (i) A = 0, or (ii)
V ≃ V ′ and U(G ) is equivalent to U ′(G ).
Proof: (i) Consider the range
R = AV ′ = {x ∈ V ; x = Ax′ for some x′ ∈ V ′}. Then,
U(g) |x⟩ = U(g)A |x ′⟩ = AU ′(g) |x ′⟩ = A |U ′(g)x ′⟩ ∈ R,∀g ∈ G ,
hence R is an invariant subspace of V . Since U(G ) is irreducible,
R = 0 (hence A = 0) or R = V .
(ii) Let N ′ = {x′ ∈ V ′ s.t. Ax′ = 0} be the null space of A. Then
AU ′(g) |x ′⟩ = U(g)A |x ′⟩ = U(g) |0⟩ = 0, s.t.
U ′(g) |x ′⟩ ∈ N ′,∀g ∈ G , implying N ′ is an invariant subspace of V ′.
Since U ′(G ) is irreducible ⇒ N ′ = V ′ (hence A = 0) or N ′ = 0.
(iii) if R = V and N ′ = 0, then A |x ′⟩ = A |y ′⟩ implies |x ′⟩ = |y ′⟩
and A is an isomorphism, while U(G ) = AU ′(G )A−1 is equivalent to
U ′(G ).



1.2.6. Orthonormality of irrep matrices
▶ Theorem: Let µ label inequivalent, irreducible representations

Dµ(g) of G . The following orthonormality condition holds:

nµ
nG

∑
g

D†
µ(g)

k
iDν(g)

j
l = δµνδ

j
i δ

k
l , (3)

where nµ ≡ dimension of the µ-representation and nG = order of G .
Proof: (i) Without loss of generality, we consider
D†

µ(g) = D−1
µ (g),∀g ∈ G . In order to apply Schur’s 2nd lemma, we

construct Mx =
∑

g D
†
µ(g)XD

ν(g), with X some nµ × nν matrix.

Since D−1
µ (p)MxD

ν(p) = Mx ,∀p ∈ G , Schur’s second lemma
implies either µ ̸= ν and Mx = 0, or µ = ν and Mx = cxE .
(ii) We take X → (X k

l )
i
j = δkj δ

i
l . Then:

(Mk
l )

m
n = δµν

∑
g

D†
µ(g)

m
i (X

k
l )

i
jDµ(g)

j
n = δµν

∑
g

D†
µ(g)

m
lDµ(g)

k
n.

By (i), Mk
l = ckl E and ckl can be found by tracing both sides:

nµc
k
l =

∑
g

[Dµ(g)D
†
µ(g)]

k
l = nGδ

k
l ,

by which ckl = (nG/nµ)δ
k
l .



Examples of irreps

▶ For abelian groups, where all irreps are 1D, the orthonormality of
irreducible representation matrices theorem implies
n−1
G

∑
g d

†
µ(g)dν(g) = δµν .

▶ For {C2 : e, a}, we have the identity representation (e, a)
d1−→ (1, 1).

A second inequivalent representation d2 must be orthogonal to d1:

(e, a)
d2−→ (1,−1). There is no other irreducible representation of C2.

▶ For {D2 : e, a, b, c}, with a2 = b2 = c2 = e and ab = c , we have:
µ\g e a b c
1 1 1 1 1
2 1 1 −1 −1
3 1 −1 1 −1
4 1 −1 −1 1

d1: The identity representation:

(e, a, b, c)
d1−→ (1, 1, 1, 1);

d2: The invariant subgroup {e, a} induces
the factor group {(e, a), (b, c)} ∼ C2.
C2 has 2 inequivalent irreps: identity
(equivalent to d1) and (1,−1), such that

(e, a, b, c)
d2−→ (1, 1,−1,−1).

d3: Same for {e, b}: (e, a, b, c) d3−→ (1,−1, 1,−1).

d4: Same for {e, c}: (e, a, b, c) d3−→ (1,−1,−1, 1).



Exercises

WKT2.7 Prove that G = H1 ⊗ H2 implies G/H1 ≃ H2 and G/H2 ≃ H1.

WKT3.1 Consider the six transformations associated with the dihedral group
D3. Let V = span{êx , êy} be the 2D Euclidean space. Write down
the matrix rep. D(g) on V for all g ∈ D3.

WKT3.2 Let R2 = {R(ϕ), 0 ≤ ϕ < 2π} be the group of continuous rotations
in a plane around the origin and V = E2 the 2D Euclidean plane.
a) Write down the 2D representation of these rotations with respect
to the basis {êx , êy}.
b) Show that the representation at a) can be decomposed into two
1D representations.

WKT3.4 Prove that if D(G ) is any representation of a finite group G on an
inner product space V , and x, y ∈ V , then
(x , y) =

∑
g∈G ⟨D(g)x |D(g)y⟩ defines a new scalar product on V .



Appendix 1: Linear vector spaces
▶ Def: A linear vector space V is a set {|x⟩ , |y⟩ , . . . } on which two

operations, + (addition) and · (multiplication by a number) are
defined, s.t. the following basic axioms hold:

(i) If |x⟩ ∈ V and |y⟩ ∈ V , then |x⟩+ |y⟩ ≡ |z⟩ ∈ V ;

(ii) If |x⟩ ∈ V and α is a (real or complex) number, then
|αx⟩ = |x⟩α ∈ V ;

(iii) There exists a null vector |0⟩ s.t. |x⟩+ |0⟩ = |x⟩ ,∀ |x⟩ ∈ V .

(iv) ∀ |x⟩ ∈ V , ∃ |−x⟩ ∈ V s.t. |x⟩+ |−x⟩ = |0⟩.
(v) The operation + is commutative and associative:

|x⟩+ |y⟩ = |y⟩+ |x⟩ , (|x⟩+ |y⟩) + |z⟩ = |x⟩+ (|y⟩+ |z⟩).

(vi) 1 · |x⟩ = |x⟩;
(vii) Multiplication by a number is associative:

α · |βx⟩ = (αβ) · |x⟩ = |x⟩ (αβ).
(viii) The two operations are distributive:

(α+ β) · |x⟩ = |x⟩α+ |x⟩β, α · (|x⟩+ |y⟩) = |x⟩α+ |y⟩α.



▶ Def: A set of vectors {xi ∈ V , i = 1, . . .m} are linearly independent
if |xi ⟩αi = 0 implies αi = 0∀i . Conversely, the vectors xi are linearly
dependent if ∃{αi} not all zero, s.t. |xi ⟩αi = 0.

▶ Def: A set of vectors {êi , i = 1, . . . n} forms a basis of V if (i) they
are linearly independent; and (ii) ∀x ∈ V ,∃{x i} s.t. |x⟩ = |ei ⟩ x i .

▶ The numbers x i are the components of x w.r.t. the basis {êi}.
▶ Vector spaces which have a basis with a finite number of elements

are finite dimensional.

▶ Theorem: All bases of a finite dimensional vector space have the
same number of elements.

▶ Def: The number of elements n in a basis of a finite dimensional
vector space V is called the dimension of V .

▶ Def: Two vector spaces V and V ′ are said to be isomorphic to each
other if there exists a 1 : 1 mapping x ∈ V → x′ ∈ V ′ s.t.
(|x⟩+ |y⟩α)′ = |x ′⟩+ |y ′⟩α,∀x, y and α.

▶ Theorem: Every n-dimensional linear vector space Vn is isomorphic
to the space of n ordered complex numbers Cn; hence all
n-dimensional linear vector spaces are isomorphic to each other.



▶ Def: A subset Vn of V forming a linear vector space w.r.t. the same
+ and · as in V is called a subspace of V .

▶ Theorem: Given Vn and a subspace Vm (m < n), one can always
choose a basis {êi , i = 1, . . . n} for Vn s.t. the first m basis vectors
lie in Vm.

▶ Def: Let V1 and V2 be subspaces of V . We say V = V1 ⊕ V2 is the
direct sum of V1 and V2, provided (i) V1 ∩ V2 = 0; and (ii) ∀x ∈ V ,
∃x1 ∈ V1 and x2 ∈ V2 s.t. |x⟩ = |x1⟩+ |x2⟩.

▶ If m1 and m2 are the dimensions of V1 and V2, then V has
dimension n = m1 +m2.

▶ Let V = V1 ⊕ V2. The elements of V can be denoted (x1, x2),
where x1 ∈ V1 and x2 ∈ V2. Then,

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2), α(x1, x2) = (αx1, αx2).



Linear functionals and dual space
▶ Def: Linear functionals f : V → C satisfy

f (αx+ βy) = αf (x) + βf (y).

▶ The set of linear functionals f : V → C forms the vector space Ṽ
dual to V , such that f becomes ⟨f | and f (x) = ⟨f |x⟩, satisfying

⟨f |αx + βy⟩ = α ⟨f |x⟩+β ⟨f |y⟩ , ⟨αf + βg |x⟩ = α∗ ⟨f |x⟩+β∗ ⟨g |x⟩ .

▶ The dual basis êj ∈ Ṽ is defined by ⟨ẽ j |ei ⟩ = δj i .

▶ Theorem: (i) the linear functionals ẽj are linearly independent and

(ii) ∃f †i s.t. f → ⟨f | = f †i ⟨ẽ j |.
▶ It follows that (i) Ṽ has dimension n and (ii) it is isomorphic to V .

▶ Def: An inner (scalar) product on V , ⟨|⟩ : V × V → C satisfies: (i)
⟨x |y⟩ = ⟨y |x⟩∗; (ii) ⟨x |α1y1 + α2y2⟩ = α1 ⟨x |y1⟩+ α2 ⟨x |y2⟩; (iii)
⟨x |x⟩ ≥ 0; and (iv) ⟨x |x⟩ = 0 ⇔ x = 0.

▶ Def: The length (norm) of a vector x ∈ V is |x | = ⟨x |x⟩1/2.
▶ Def The angle θ between two vectors x, y of a real vector space

satisfies cos θ = ⟨x |y⟩ /|x ||y |.
▶ V + ⟨|⟩ ≡ inner product space.



▶ Def: ⟨x |y⟩ = 0 ⇔ x and y = 0 are orthogonal.

▶ Theorem: Any set of n orhtonormal vectors {ûi} in an
n-dimensional vector space Vn forms an orthonormal basis, s.t. (i)

|x⟩ = |ui ⟩ x i with x i = ⟨ui |x⟩; (ii) ⟨x |y⟩ = x†i y
i = ⟨x |ui ⟩ ⟨ui |y⟩; (iii)

|x |2 = x†i x
i , ∀x, y ∈ Vn.

▶ Theorem: Let Ei = |ei ⟩ ⟨e i | (no summation) be the mapping
|x⟩ → Ei |x⟩ = |ei ⟩ x i (no summation). Then: (i) Ei = 1, 2, . . . n are
linear operators on V ; (ii) Ei are projection operators (idempotents);
(iii)

∑n
i=1 Ei = |ei ⟩ ⟨e i | = E is the identity operator (the

completeness relation).

▶ Theorem: Let {êi} and {ûi} be two orthonormal bases on Vn. If
|uk⟩ = |ei ⟩S i

k , with (S†)k j = (S j
k)

∗, then: (i) (S†), iS
i
k = δl k ; (ii)

S i
k(S

†)k j = δi j ; and (iii) |ei ⟩ = |uk⟩ (S†)k i . Hence, S
† = S−1 and S

is a unitary matrix.



Linear transformations (operators) on vector spaces

▶ Def: Linear functionals F : V → C satisfy
F (αx+ βy) = αF (x) + βF (y).

▶ Denoting f †i = F (êi ) the components of F w.r.t. the basis êi , we

have F (x) = f †i x
i = ⟨f |x⟩, where ⟨f | = f †i ⟨e i |.

▶ Def: A linear transformation (operator) A : V → V ′ satisfies: (i)
|x⟩ −→

A
|Ax⟩ ≡ A |x⟩ ∈ V ′; and (ii) if |y⟩ = |x1⟩α1 + |x2⟩α2 ∈ V

then |Ay⟩ = |Ax1⟩α1 + |Ax2⟩α2 ∈ V ′.


