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[.1.8. Cosets

» Def: Let H be a subgroup of G and let p € G but p ¢ H. Then, the
set pH is called a left coset of H. Similarly, Hp is a right coset of H.

» Obs: The cosets of H are not subgroups, because they do not
contain e.

» Obs: Each coset has exactly the same number of elements as H.

» Lemma: Two left (right) cosets of H either coincide completely, or
else they have no elements in common at all.
Proof: Let pH and gH be the two cosets. Assume ph; = gh; for
some h;, hj € H. Then
g ip=hhtecH=qgpH=H= pH=gqH. [

» Theorem (Lagrange): The order of a finite group must be an
integer multiple of the order of any of its subgroups.



1.1.9. Factor (quotient) groups

» Obs: If H is an invariant subgroup, then pHp~ = H and its left
cosets are also right cosets: pH = Hp.

» Obs: The cosets of an invariant subgroup form a group:

> (pH)(gH) = (pq)H, since phigh; = pq(q~"hiq)h; = pqhx, with
he € H;

> H = eH is the identity element;

> p~1H is the inverse of pH;

> pH(qH - rH) = (pH - qH) - rH) = (pqr)H.

» Theorem: If H is an invariant subgroup of G, the set of cosets
endowed with the law of multiplication pH - gH = (pg)H form a
group, called the factor (or quotient) group of G. The factor group
G/H is of order ng/ny.

» Ex: H = {e,a°} is an invariant group of C,. Together with its coset
M = {a, a}, they form the factor group C4/H. Since
HM =M = MH, HH = H and MM = H, both H and C;/H are of
order 2 and are ~ .



1.1.10. Homomorphisms

» Def: A homomorphism from a group G to another group G’ is a
mapping (not necessarily one-to-one) which preserves group
multiplication. In other words, if g; € G — g/ € G’ and g1g = g3,
then g1g; = g3.

» Obs: The isomorphism is a particular case of homomorphism.

» Theorem: Let f be a homomorphism from G to G’. Denote
K={aeG;a Lee G'}. Then K forms an invariant subgroup of
G. Moreover, the factor group G/K is isomorphic to G'.

Proof: (i) Since e £ e/, ec K. Fora,bc K, ab S = e’, hence ab € K.
If a€ K, then 2=t 5 (e')"! =€’ and a=! € K. Therefore, K is a subgroup.
(i) Let ac K and g € G. Then gag™! 1 g'e'(g’) ' =€ and gag7! € K.
Hence, K is an invariant subgroup.

(iii) The elements of G/K are the cosets pK. Let pK 2 p/ € G’, where

p L plo If p(pK) = p(gK), then p(q~1pK) = (¢~ 1p)' = p~L(aK)p(pK) = ¢,
hence g~ 1pK = K and pK = gK. Thus, the mapping G/K £, G’ is one-to-one.
Since p(pK)p(gK) = p(pgK), multiplication is preserved by p and p is an

isomorphism.

» Obs: K is called the kernel or center of the homomorphism f.



|.1.11.

v

Direct products

Def: Let H; and H, be subgroups of G with the properties: (i)

Vhy € Hy and hy € Hy, hiha = hahy (the elements commute); and
(i) Vg € G, 3hy € Hy and hy € Hp s.t. g = hihy. In this case, G is
said to be the direct product group of H; and H,; symbolically,

G =H; ® H,.

Obs: G = H; ® H, = H; and H, must be invariant subgroups of G.

Obs: G = H1®H2:>G/H2 H; and G/H]_NH2

Ex: Consider G5 = {e = a°, 3 a%,a% a* a%} with subgroups

H; = {e,a*} and H, = {e a2 34} Since G is abelian, hih, = hyhy.
Moreover, a = a%a* and a° = a3a?, hence G = H; ® Hs. Since
Hl ~ C2 and H2 >~ C3, we have C6 C2 & C3.



|.2. Group representations
|.2.2. Linear vector spaces. Bra-ket notation

>

>
>
>
>
>

v

Vectors in general linear vector spaces are denoted using Dirac’s |)
(ket) or {| (bra) symbols.

Multiplication by scalars is |ax) = a - |x) = |x) a.

A basis of the vector space is denoted by |e;).

Its dual basis (e’ is defined such that (e'le;) = 7.
A vector x has components |x) = |e;) x'.

Its dual is defined by Hermitian conjugation, (x| = (|x))! = xI (],
s.t. X,-Jr = (x")*.

The bra-ket between two vectors defines the scalar product on the
vector space, (x|y) = X,-eri.

An operator A is a linear functional A: V — V s.t.

Alx) = |Ax) e V.

Al; = (e'|Ale;) represent the components of A.

The product of two operators is defined by AB |x) = A|Bx) and
(AB)'; = Al Bk;.



|.2.2. Representations

» In physics, we are interested in the effect of symmetry
transformations on the solutions of partial differential or integral egs.

» These solutions usually form a linear vector space (e.g., the Hilbert
space in QM).

» Group theory describes the realization of group transformations as
linear transformations on vector spaces.

» Linear transformations (or operators) on linear vector spaces form a
(generally non-abelian) group.

» Def: If there is a homomorphism from a group G to a group of
operators U(G) on a linear vector space V, we say U(G) forms a
representation of the group G.

The dimension of U(G) is the dimension of V.
U(G) is faithful if the homomorphism is also an isomorphism.
A degenerate representation is one which is not faithful.

g€ G— U(g) st Ulg)U(g2) = Ulg1g2)-

vvyyvyy



Finite-dimensional representations

>
>

>

Consider a basis {&;,i =1,2,...n} in V.
The operators U(g) are realized as n x n matrices D(g), defined via
U(g) lei) = lej) D(g)i.

Because U(g1)U(g2) = U(g1g2), we have D(g1)D(g2) = D(g182) =
the matrices D(G) form the matrix representation of G.

|x) transforms as U(g) |x) = |x') = |e;) x7, with X' = D(g)/;x/.
Ex: {D, : e, h(refl. about y), v(refl. about x), r(rot. by )} and
V = span(é,&;). Then D(e) = diag(1,1) and

D(h) = diag(—1,1); D(v)=diag(1l,—1); D(r) = diag(-1,-1).

Ex: G = {R(¢),0 < ¢ <27} is the group of 2D rotations and:

X/ — U(¢)x = é;X”7 X/i = D((b)ijxj, D(¢) = <§?ns((;: CCS)ISn¢¢> '

Consider a function f : R2 — C. Under a rotation,

FESS F(x) = F(X), X =U(g "



» Theorem: (i) If the group G has a non-trivial invariant subgroup H,
then any representation of the factor group K = G/H is also a
(degenerate) representation of G; (ii) Conversely, if U(G) is a
degenerate representation of G, then G has at least one invariant
subgroup H such that U(G) defines a faithful representation of the
factor group G/H.

Proof: Let {K : gH,g € G} be the set of cosets of H. Then

g€ G— k=gHeK— U(k) on V is a homomorphism from G to
U(K), forming a representation. Since H is a non-trivial invariant
subgroup, g — k = gH is a many-to-one mapping = the
representation is not faithful. (i) Proof already given.



1.2.3. lIrreducible, inequivalent representations

>

>

>

Def: Two representations U(G) and U'(G) are equivalent if they are
related by a similarity transformation S, i.e. U'(G) = SU(G)S~L.
Def: The character x(g) of g € G in a representation U(G) is
defined as x(g) = Tr[U(g)]

Obs: All elements in a given class of G have the same characters,
because TrU(p)U(g)U(p~1) = TrU(g).

Direct sum representations: If for some choice of basis on V,,,
D(g € G) = diag(D1(g), D2(g)) is block diagonal, then

D = D; & D,.

Def: Vi is an invariant subspace of V w.r.t. U(G) if

U(g) |x) € Vi,¥x € V4 and g € G. An invariant subspace is
minimal (proper) if it does not contain any non-trivial invariant
subspace w.r.t. U(G).

Def: U(G) on V is irreducible if there is no non-trivial invariant
subspace in V w.r.t. U(G). Otherwise, the representation is
reducible and, if the orthogonal complement of the invariant
subspace is also invariant w.r.t. U(G), then the representation is
fully reducible or decomposable.

Ex: R, on E>: &4 = %(:Fél — i&,) span 1-dimensional invariant
subspaces, since U(¢p)ér = éreT/?.



Reducible representations

» Consider an invariant subspace V; of V w.r.t. U(G), having
dim(V4) = m < n=dim(V). Arranging the basis vectors such that
€ € Vj for 1 </ < nq, we have

el = o) oiei<ve = o= (% BlE),

where D;(g) are n; X n; matrices (n, = n— ny).
» If V, =span(é;,i=ny +1,...n) is also invariant, then D’(g) =0
and D(g) becomes block-diagonal.

» If V# is an invariant subspace of V, restricting U(G) to V* gives a
lower-dimensional representation U*(G) of G.
> If V# cannot be further reduced, U*(G) is an irreducible

representation and V* is a proper (irreducible invariant) subspace
w.rt. G.



|.2.4. Unitary representations

» Def: If V is an inner product space and if U(g)" = U(g)~! are
unitary Vg € G, then U(G) is a unitary representation. Equivalently,

(U(g)x|U(g)y) = (xly) - (2)

» Def: For completeness: an operator is Hermitian if AT = A, i.e.
(Axly) = (x|Ay).

» Theorem: If a unitary representation is reducible, then it is also
decomposable (i.e., fully reducible).
Proof: Let V; =span(&;,i =1,2...n1) be an invariant subspace
and Vo =span(&;,i = ny + 1,...n) be its complement. Since V; is
invariant, |ei(g)) = U(g) |eiy € Vi for 1 < i < ny. Since U(G) is
unitary, (e/(g)lei(g)) = (¢/|UT(g)U(g)|e;) = &; vanishes for all
m <j<nand1l<i<ns. Since |e;(g)) € V4, this means
lea(g)) € Vo = U(g) |x) € Vu¥x € V, and V3 is an invariant
subspace w.r.t. U(g).



Unitary representations of finite groups

» Maschke’s theorem: Every representation D(G) of a finite group
on an inner product space is equivalent to a unitary representation.
Proof: We need the similarity transformation S s.t.

SD(g)S~! = U(g) is unitary Vg € G. Since unitarity is established
based on a scalar product, we introduce a new scalar product
(x,y) = (Sx|Sy) = >_, (D(g)x|D(g)y)- Then, S can be regarded
as a transformation from the basis orthogonal w.r.t. {|) to one
orthogonal w.r.t. (,). We now show U(g) is unitary:

(U(g)x|U(g)y) = (SD(g)5_1X|SD( )S~ty)
= Z g)S 'x|D(g")D(g)S—1y)

—Z g")s 'x|D(g")S )

=(5 ', 57ty) = (xly).

Key elements in the above proof include: (i) the summation over all
group elements (non-trivial for continuous groups); and (ii) the
validity of the rearrangement lema.

» Corr: All reducible reps. of finite groups are fully reducible.



1.2.5. Schur's lemmas

» Def: Let V4 and V; be complementary subspaces w.r.t. U(G), and
U1(G), Uy(G) denote operators which coincide with U(G) on these
subspaces. Then clearly V = V4 & V, and U(g) = Ui(g) + Uz(g) is
the direct sum representation of Ui(G).

» If either V; and V5, are reducible w.r.t. G, the representation can be
further decomposed, until U(G) is fully reduced:

U(G) =>_,0 3 Uu(G), where p=1,2,... labels the inequivalent
irreducible representations U,,(G) and a, = their multiplicity.

» Schur’s Lemma 1: Let U(G) be an irreducible representation of G
on V, and A an arbitrary operator on V. If
AU(g) = U(g)A,Vg € G, then I € Cs.t. A= )\E.

Proof: (i) Without loss of generality, we take U(G) unitary and A
hermitian.

(i) We take a basis {{i,,;} of V consisting of the eigenvectors of A:
Alug.i) = |Ua,i) Ai, with X; being the distinct eigenvalues of A and «
labels different vectors with the same \;.

(iii) Consider V; = span(iiy,i,a@ =1,2,...). Then AU(g) |ua,i)

= U(g) |ua,i) Ai € Vi, s.t. Vi is an invariant subspace of V.

(iv) Since U(G) is irreducible on V/, V has no non-trivial invariant
subspaces = V; = V and A = AE has a single eigenvalue .



» Schur’s lemma 2: Let U(G) and U’(G) be two irreps of G on V
and V’, resp, and let A: V/ — V be a linear transf. satisfying
AU'(g) = U(g)A,Vg € G. It follows that either (i) A =0, or (ii)

V ~ V' and U(G) is equivalent to U’'(G).

Proof: (i) Consider the range

R=AV' = {x € V;x = Ax for some x' € V'}. Then,

Ulg) [x) = U(g)AIX) = AU'(g) [X') = A|U/(g)x) € R, Vg € G,
hence R is an invariant subspace of V. Since U(G) is irreducible,

R =0 (hence A=0) or R=V.

(i) Let N' = {x" € V' s.t. AxX' =0} be the null space of A. Then
AU'(g) [x') = U(g)A|x') = U(g) |0) = 0, s.t.

Ul(g)|x")y € N',Vg € G, implying N’ is an invariant subspace of V’.
Since U'(G) is irreducible = N’ = V’ (hence A=10) or N/ = 0.
(i) if R=V and N =0, then A|x") = Aly’) implies |x") = |y/)
and A is an isomorphism, while U(G) = AU’(G)A~! is equivalent to
U'(G).



1.2.6. Orthonormality of irrep matrices

» Theorem: Let p label inequivalent, irreducible representations
D, (g) of G. The following orthonormality condition holds:

e Z Y1 = 6,000, (3)

where n, = dimen5|on of the u-representation and ng = order of G.
Proof: (i) Without loss of generality, we consider

Df(g) = D, *(g),Ve € G. In order to apply Schur's 2" lemma, we
construct M, = 3", Dj(g)XD"(g), with X some n,, x n, matrix.
Since D, *(p)M,D"(p) = My,Vp € G, Schur's second lemma
implies either  # v and M, =0, or p = v and M, = ¢E.

(ii) We take X — (X,k)’- = 6K6]. Then:

n—‘stDT g)Jn—‘S;wZDT /Du(g)kn

By (i), M = cf'E and ¢/ can be found by tracing both sides:
nucf = Z[Du(g)DZ(g)]k/ = ngdf,
g

by which cf = (ng/n,)df



Examples of irreps

» For abelian groups, where all irreps are 1D, the orthonormality of
irreducible representation matrices theorem implies

ngt Y di(g)d(g) = 0.

» For {G, : e, a}, we have the identity representation (e, a) &, (1,1).
A second inequivalent representation d> must be orthogonal to di:
(e, a) &, (1,—1). There is no other irreducible representation of C,.

» For {D,: e, a,b,c}, with a> = b?> = ¢> = e and ab = ¢, we have:

di: The identity representation: p\g | e a b c
(e.2,b,c) 5 (1,1,1,1); 111 1 1 1
d»: The invariant subgroup {e, a} induces 2 11 -1 -1
the factor group {(e, a), (b,c)} ~ G. 3 1 -1 1 -1
G, has 2 inequivalent irreps: identity 4 1 -1 -1 1

(equivalent to di) and (1, —1), such that
(e,a,b,c) &5 (1,1, -1, -1).
d3: Same for {e, b}: (e, a, b, c) LN (1,-1,1,-1).
ds: Same for {e, c}: (e, a, b, c) LN (1,-1,-1,1).



Exercises

WKT2.7
WKT3.1

WKT3.2

WKT3.4

Prove that G = H; ® H, implies G/H; ~ H, and G/H, ~ H;.
Consider the six transformations associated with the dihedral group
Ds. Let V = span{é,,&,} be the 2D Euclidean space. Write down
the matrix rep. D(g) on V for all g € Ds.

Let Ry = {R(¢),0 < ¢ < 27} be the group of continuous rotations
in a plane around the origin and V = E; the 2D Euclidean plane.
a) Write down the 2D representation of these rotations with respect
to the basis {&,,&,}.

b) Show that the representation at a) can be decomposed into two
1D representations.

Prove that if D(G) is any representation of a finite group G on an
inner product space V, and x,y € V, then

(x,¥) = > zcc (D(g)x|D(g)y) defines a new scalar product on V.



Appendix 1: Linear vector spaces

» Def: A linear vector space V is a set {|x),|y),...} on which two
operations, + (addition) and - (multiplication by a number) are
defined, s.t. the following basic axioms hold:

(i) If [x) € V and |y) € V, then |x) +|y) = |z) € V;
(ii) If [x) € V and « is a (real or complex) number, then
lax) = |x)a € V;
(iii) There exists a null vector |0) s.t. |x) +]0) = |x),V|x) € V.
(iv) V|x) € V, 3|—x) € V s.t. |x) +|—x) =|0).
(v) The operation + is commutative and associative:

X+l =+, () +I)+1z) = [x) + (1) +12)-

(Vi) 1-|x) = [x);
(vii) Multiplication by a number is associative:
a-|Bx) = (af) - |x) = |x) (af).

(viii) The two operations are distributive:

(@+P)-)=atx)pB,  a-(x)+Iy)=Ix)a+ly)a



Def: A set of vectors {x; € Vi =1,...m} are linearly independent
if [x)a' =0 implies o' = 0Vi. Conversely, the vectors x; are linearly
dependent if 3{a'} not all zero, s.t. |x;) o' = 0.

Def: A set of vectors {&;,i =1,...n} forms a basis of V' if (i) they
are linearly independent; and (ii) Vx € V,3{x'} s.t. |x) = |&) x".
The numbers x' are the components of x w.r.t. the basis {&;}.

Vector spaces which have a basis with a finite number of elements
are finite dimensional.

Theorem: All bases of a finite dimensional vector space have the
same number of elements.

Def: The number of elements n in a basis of a finite dimensional
vector space V is called the dimension of V.

Def: Two vector spaces V and V’ are said to be isomorphic to each
other if there exists a 1 : 1 mappingx € V — x' € V' s.t.

(Ix) + |y) ) = XY+ |y') a, Vx,y and «.

Theorem: Every n-dimensional linear vector space V,, is isomorphic
to the space of n ordered complex numbers C"; hence all
n-dimensional linear vector spaces are isomorphic to each other.



Def: A subset V, of V forming a linear vector space w.r.t. the same
+ and - as in V is called a subspace of V.

Theorem: Given V,, and a subspace V,,, (m < n), one can always
choose a basis {&;,i = 1,...n} for V, s.t. the first m basis vectors
lie in V.

Def: Let V4 and V5 be subspaces of V. We say V = Vi @& V; is the
direct sum of V4 and V4, provided (i) V4 N V2 =0; and (i) Yx € V,
Ix; € Vi and xp € Vs st |x) = |x1) + |x2).

If m; and m, are the dimensions of V4 and V5, then V has
dimension n = my + m».

Let V = V4 @ V,. The elements of V can be denoted (x1, x2),
where x; € V; and xy € V5. Then,

(X17X2) + (y17y2) = (Xl + Y1, X2 + y2), OL(Xl,Xz) = (OZX1,0éX2).



Linear functionals and dual space

2

>

Def: Linear functionals f : V — C satisfy

flax+ By) = af(x) + Bf(y).

The set of linear functionals f : V — C forms the vector space %
dual to V, such that f becomes (f| and f(x) = (f|x), satisfying

(Flax + By) = a{f)+B(fly),  (af +Pglx) = a* (fx)+5" (g]x) -

The dual basis & € V is defined by (&]e;) = &/;.

Theorem: (i) the linear functionals & are linearly independent and
(i) I st. £ — (f] = £ (&)

It follows that (i) V has dimension n and (ii) it is isomorphic to V.
Def: An inner (scalar) product on V, (]) : V x V — C satisfies: (i)
(xly) = (y[x)"; (i) {xloays + a2ya) = a1 (xly1) + o2 (xy2); (iii)
(x]x) > 0; and (iv) (x|x) =0« x=0.

Def: The length (norm) of a vector x € V is |x| = <x|x>1/2.
Def The angle 6 between two vectors x,y of a real vector space
satisfies cos @ = (x|y) /|x||y|-

V + (|) = inner product space.



Def: (x|y) =0 < x and y = 0 are orthogonal.

Theorem: Any set of n orhtonormal vectors {Gi;} in an
n-dimensional vector space V,, forms an orthonormal basis, s.t. (i)
) = Jup) x with x = (u']x); (i) (xly) = x|y" = (x|} (u/]y); (iii)
Ix|? = X,-TX", vx,y € V,.

Theorem: Let E; = |e;) (¢/| (no summation) be the mapping

|x) — E; |x) = |&;) x' (no summation). Then: (i) £ =1,2,...n are
linear operators on V; (ii) E; are projection operators (idempotents);
(ii) Y27, Ei = |ei) (¢'| = E is the identity operator (the
completeness relation).

Theorem: Let {&;} and {d;} be two orthonormal bases on V,,. If
|Uk> = |e,-> Sik, with (ST)kj = (Sjk)*, then: (I) (ST),,'Sik = (Slk; (II)
S'k(SHK; = 6';; and (iii) |e;) = |uk) (ST)X;. Hence, ST=S"1and S

is a unitary matrix.



Linear transformations (operators) on vector spaces

» Def: Linear functionals F : V — C satisfy
F(ax + By) = aF(x) + BF(y).

> Denoting f,.Jr = F(&;) the components of F w.r.t. the basis &;, we
have F(x) = f'x’ = (f|x), where (f| = £ (e|.

» Def: A linear transformation (operator) A: V — V/ satisfies: (i)
|x) - |Ax)y = Alx) € V/; and (i) if |y) = [x1) a1 + [x) ap € V
then |Ay) = |Ax1) a1 + |Ax) ap € V.



