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Lecture contents

Chapter 1. Discrete symmetry groups

▶ I.1. Basic notions of abstract group theory

▶ I.2. Group representations

▶ I.3. Representations of the symmetric group; Young diagrams



I.1.1. Introduction
From mathematics to physics

▶ Group theory provides the natural mathematical language for
describing symmetries of the physical world.

▶ The connection between the mathematical theory and its physical
consequences was clearly formulated by Wigner and Weyl (and
others), before 1930.

▶ The connection is of paramount importance in quantum mechanics,
but it is very useful also in classical physics.

▶ Since the 1950’s, group theory has become increasingly important.
Nowadays, it permeates every branch of physics or of physical and
life sciences.

▶ Examples: Internal symmetries in particle physics (isospin, colour);
External symmetries (translations, rotations, Lorentz boosts).



Examples of continuous symmetries

▶ Spatial translations, x → x+ a with constant a:
▶ Based on the assumption of homogeneity of space;
▶ Applicable to isolated systems;
▶ Leads to conservation of linear momentum p.

▶ Time translations, t → t + a0 with constant a0:
▶ Based on the assumption of homogeneity of time;
▶ Applicable to isolated systems;
▶ Leads to conservation of energy E .

▶ Rotations in 3D space: x i → x i
′
= R i ′

jx
j

▶ Based on the assumption of isotropy of space;
▶ Applicable to central potentials;
▶ Leads to conservation of angular momentum L.

▶ Lorentz transformations: xµ → xµ
′
= Λµ′

νx
ν :

▶ Comprise rotations and boosts;
▶ Boosts generalize Galilei transformations to special relativity;
▶ Severely constrain the equations of relativistic quantum mechanics.



Examples of discrete symmetries
▶ Space inversion (parity transformation): x → −x:

▶ Equivalent to reflection in a plane + rotation through angle π;
▶ Obeyed by most interactions, except the weak interaction.

▶ Time reversal, t → −t:
▶ A system with T symmetry would evolve backwards in time if all

velocities simultaneously flip sign;
▶ Obeyed by most interactions, except isolated instances (e.g., neutral

K meson decay);
▶ Not an exact symmetry in real systems, due to second law of

thermodynamics.

▶ Discrete translations on a lattice: x → x+ na:
▶ Appears in systems with periodic potentials (e.g., crystals);
▶ Leads to quantization of momentum and infrared cutoff;
▶ Leads to Bloch theorem.

▶ Discrete rotational symmetry of a lattice (point groups):
▶ Subsets of the 3D rotation group and parity that leave a given lattice

structure invariant;
▶ There are 32 crystallographic point groups;
▶ Together with discrete translations ⇒ space groups of solid state

physics.



Other important symmetries
▶ Permutation symmetry:

▶ Permutations form the symmetry group;
▶ Systems with identical particles are invariant under the interchange

of these particles;
▶ When the particles have several degrees of freedom, group theory is

essential to extract symmetry properties of permissible physical
states.

▶ Gauge invariance and charge conservation:
▶ Both classical and quantum electrodynamics are invariant under

gauge transformations;
▶ Gauge symmetry is intimately related to charge conservation.

▶ Internal symmetries (nuclear and elementary particle physics):
▶ These are symmetries of the internal degrees of freedom (spin,

flavour, colour, etc);
▶ Usually they are the unitary U(N) or special unitary SU(N) groups.
▶ Isospin is the SU(2) symmetry of invariance under u ↔ d

interchange of nuclear interaction;
▶ SU(3)c represents the colour symmetry of QCD;
▶ Gauging an internal symmetry leads to the introduction bosonic

fields mediating the corresponding interaction.



I.1.2. What is a group?

Def: A set {G : a, b, c , . . . } is said to form a group if there is a binary
operation · : G 2 → G , called group multiplication, which associates
a, b → a · b ∈ G , such that:

▶ · is associative: a · (b · c) = (a · b) · c , ∀a, b, c ∈ G ;

▶ ∃e ∈ G called identity, such that a · e = a, ∀a ∈ G ;

▶ ∀a ∈ G , ∃a−1 ∈ G called the inverse of a, such that a · a−1 = e.

The above imply e−1 = e; a−1 · a = e; and e · a = a, ∀a ∈ G .
Def: An abelian group G is one for which ab = ba, ∀a, b ∈ G .
Def: The order of a group is the number of elements of the group (if it is
finite).



I.1.3. The cyclic groups Cn: multiplication tables

Group multiplication tables
e a

e e a
a a e

e a b
a b e
b e a

C2 C3

▶ The cyclic group Cn contains the n ∈ N∗ elements given as
{e, a, a2, . . . an−1}, with an = e or an−1 = a−1.

▶ Ex: C1 is the group that consists of a single element, e. Ex: {1}
and usual multiplication.

▶ Ex: C2 consists of {e, a}, with a · a = e. Ex: {1,−1} and usual
multiplication; parity inversion.

▶ Ex: C3, with {e, a, a−1}. Ex: {1, e2iπ/3, e4iπ/3} under
multiplication; symmetry operations of the equilateral triangle
(rotations by 2π/3 and 4π/3).



I.1.4. Noncyclic groups: dihedral group

Group multiplication table of D2 Configuration with D2 symmetry

e a b c
a e c b
b c e a
c b a e

1

2

3

4

▶ C1, C2 and C3 are necessarily cyclic.

▶ The simplest non-cyclic group has order R and is called the dihedral
group, {D2 : e, a, b, c}.

▶ Since the multiplication table is symmetric, D2 is abelian.
▶ One example of D2 is the symmetry operations on the rectangle

above:
▶ e =figure stays the same;
▶ a = reflection about (1, 3);
▶ b = reflection about (2, 4);
▶ c = rotation around the center by π.

▶ Dn represents the symmetry group of rotations of a regular polygon
with n undirected sides.



I.1.5. Nonabelian groups: D3

Group multiplication table of D3 Config. w. D3 symmetry

e (12) (23) (13) (123) (132)
(12) e (123) (132) (23) (13)
(23) (132) e (123) (13) (12)
(13) (123) (132) e (12) (23)
(123) (13) (12) (23) (132) e
(132) (23) (13) (12) e (123)

1

2 31′

2′3′

▶ The smallest non-abelian group is the dihedral group D3, consisting
of 6 elements:
▶ identity transformation e;
▶ reflection about the (3, 3′) axis, flipping 1 and 2: (12);
▶ reflection about the (1, 1′) axis, flipping 2 and 3: (23);
▶ reflection about the (2, 2′) axis, flipping 3 and 1: (31);
▶ rotation by 2π/3, permutting [1, 2, 3] → [3, 1, 2], denoted (123);
▶ rotation by 4π/3, permutting [1, 2, 3] → [2, 3, 1], denoted (132).

▶ The parentheses notation denotes permutations applied on (123):

(123) : 1 → 2&2 → 3&3 → 1 ⇒ (123) → (231).

▶ (123) · (12) = (13) ̸= (12) · (123) = (23) ⇒ nonabelian group.



I.1.6. Subgroups

Def: A subset H ∈ G which forms a group under the same multiplication
law as G is said to form a subgroup of G .

▶ D2 has 3 subgroups identical to C2, consisting of {e, a}; {e, b}; and
{e, c}, since a2 = b2 = c2 = e.

▶ D3 has 4 subgroups: {e, (12)}; {e, (23)}; {e, (31)}; and
{e, (123), (321)}. The first 3 are identical to C2 and the fourth has
the structure of C3.



Matrix groups

▶ An important class of groups are those involving n× n matrices with
standard matrix multiplications. Examples include:

▶ The general linear group GL(n) consists of all invertible matrices;

▶ The unitary group U(n) consists of all unitary matrices, satisfying
UU† = 1;

▶ The special unitary group SU(n) consists of unitary matrices with
unit determinant;

▶ The orthogonal group O(n) consists of real orthogonal matrices
satisfying OOT = 1.



Rearrangement lemma and Symmetric (permutation) group
Rearrangement Lema: If p, b, c ∈ G and pb = pc then b = c .

▶ Consider {G : g1, g2, . . . gn}. Multiplication to the left by h gives

{hg1, hg2, . . . hgn} = {gh1 , gh2 , . . . ghn}, (1)

where (h1, h2, . . . hn) is the permutation of (1, 2, . . . n) determined
by h.

▶ A permutation p can be represented as

p =

(
1 2 3 · · · n
p1 p2 p3 · · · pn

)
, p−1 =

(
p1 p2 p3 · · · pn
1 2 3 · · · n

)
.

(2)

▶ A more convenient representation is based on the cyclical structure:

p =

(
1 2 3 4 5 6
3 5 4 1 2 6

)
= (143)(25)(6) ≡ (143)(25). (3)

▶ The inverse permutation can be obtained by listing each sequence in
inverse order, p−1 = (431)(52)(6) ≡ (143)(25).

▶ The set of n! permutations of n objects forms the permutation
(symmetric) group Sn.



Composition of cycles
▶ Let us consider the composition of two cycles: (123)(12).
▶ With the explicit representation of the permutations, we have

(132)(12) =

(
1 2 3
2 3 1

)(
1 2 3
2 1 3

)
=

(
1 2 3
1 3 2

)
= (23), (4)

where the rules in the second permutation (12) are applied on the
bottom row of the first permutation.

▶ By successive application on a set of objects (abc), we get

(132)(12)[abc] = (132)[bac] = [acb] = (23)[abc], (5)

where after the first equal sign: position 1 is moved to pos. 2 and
vice-versa; after the second equal sign, pos. 1 is moved to pos. 3
(b); pos. 3 moves to pos. 2 (c); pos. 2 moves to pos. 1 (a).

▶ Using cycle multiplication gives:

(132)(12) = (23). (6)

The permutations are applied right-to-left. Within a permutation,
the rules are read left-to-right: Pos. 1 goes to pos. 2 by (12); and
pos. 2 goes to pos. 1 by (132) ⇒ (1); pos. 2 goes to pos. 1 by
(12); and pos. 1 goes to pos. 3 by (132) ⇒ (23).



Isomorphism and Cayley’s theorem
Def: Two groups G and G ′ are said to be isomorphic (G ∼ G ′) if there
exists a one-to-one correspondence between their elements which
preserves the law of group multiplication, e.g. if gi ∈ G ↔ g ′

i ∈ G ′ and
g1g2 = g3 in G , then g ′

1g
′
2 = g ′

3 in G ′ and vice-versa.

▶ The groups {e, a} are isomorphic to C2;

▶ The group {±1,±i} with usual multiplication is isomorphic to C4.

▶ D3 is isomorphic to S3.

Cayley’s theorem: Every group G of order n is isomorphic to a
subgroup of Sn.
Proof: The rearrangement lema guarantees that agi = gai for a, gi ∈ G ,
defining the permutation

a ∈ G → pa =

(
1 2 · · · n
a1 a2 · · · an

)
∈ Sn. (7)

Consider now ab = c . Then, abgi = agbi = gabi , while cgi = gci . Then,
pc = papb and group multiplication is preserved. Thus, the group formed
by the permutations pa corresponding to a ∈ G is a subgroup of Sn which
is isomorphic to G .



▶ Obs: The subgroup of Sn isomorphic to the group G cannot contain
elements with one-cycles (except e).
Proof: A one-cycle corresponds to an element which is unchanged:
agi = gi , which can hold true only when a = e.

▶ Obs: The cycles which occur in any permutation associated with a
given group element must all be of the same length.
Proof: If pa has multiple cycles and l is the length of the shortest
cycle, then pal = pla will contain l 1-cycles, which is forbidden unless
all cycles in pa are of the same length l and pla = e.

▶ Theorem: If the order n of a group G is a prime number, it must be
isomorphic to the cyclic group Cn.



Examples

C3 vs. S3:

▶ Consider {C3 : e, a, b = a2 = a−1} and let (g1, g2, g3) = (e, a, b).

▶ Since egi = gi , we have e ∈ C3 → e = (1)(2)(3) = () ∈ S3.

▶ Applying g2 = a gives (a, b, e) = (g2, g3, g1), hence pa = (132).

▶ Applying g3 = b = a2 gives (b, e, a) = (g3, g1, g2), hence pb = (123).

D2 vs. S4:

▶ a(e, a, b, c) = (a, e, c , b) ⇒ pa = (12)(34);

▶ b(e, a, b, c) = (b, c , e, a) ⇒ pb = (13)(24);

▶ c(e, a, b, c) = (c , b, a, e) ⇒ pc = (14)(23);

▶ D2 is isomorphic to {e, (12)(34), (13)(24), (14)(23)} ∈ S4.

{C4 : e, a, b, c} = {C4 : e, a, a
2, a3} vs. S4:

▶ a(e, a, a2, a3) = (a, a2, a3, e) ⇒ pa = (1432);

▶ a2(e, a, a2, a3) = (a2, a3, e, a) ⇒ pb = (13)(24);

▶ a3(e, a, a2, a3) = (a3, e, a, a2) ⇒ pc = (1234);

▶ C4 is isomorphic to {e, (1234), (13)(24), (1432)} ∈ S4.



I.1.7. Conjugate elements and classes

▶ Def: An element b ∈ G is said to be conjugate to a ∈ G if ∃p ∈ G
s.t. b = pap−1. Then, b ∼ a or b is conjugate to a.
Ex: In S3, (12) ∼ (13) because (23)(12)(23)−1 = (13); also
(123) ∼ (321) since (12)(123)(12)−1 = (132).

▶ Obs: Conjugation is an equivalence relation, since it is:
▶ reflexive: a ∼ a;
▶ symmetric: a ∼ b ⇔ b ∼ a;
▶ transitive: a ∼ b and b ∼ c ⇒ a ∼ c.

▶ Def: Elements of a group which are conjugate to each other are said
to form a (conjugate) class.

▶ Obs: Each element of a group belongs to one and only one class
and e forms a class by itself.

▶ Ex: S3 contains 3 classes: ζ1 = {e}; ζ2 = {(12), (23), (31)}; and
ζ3 = {(123), (321)}. Generally, permutations with the same cycle
structure belong to the same class.

▶ Ex: For 3D rotations, let Rn(ψ) denote the rotation of angle ψ
about n. Then {Rn(ψ); all n} belong to the same class.



Conjugate and invariant subgroups

▶ Def: If H is a subgroup of G and a ∈ G , then H ′ = {aha−1; h ∈ H}
also forms a subgroup of G and H ′ is said to be a conjugate
subgroup to H.

▶ Obs: It can be shown that either H and H ′ are isomorphic, or they
have only e in common.

▶ Def: An invariant subgroup H of G is one which is identical to all
its conjugate subgroups.

▶ Obs: H is invariant ⇔ it contains elements of G in complete
subclasses.

▶ Obs: All subgroups of an abelian group are invariant subgroups.

▶ Ex: H = {e, a2} is an invariant subgroup of C4 = {e = a4, a, a2, a3}.
▶ Ex: {e, (123), (132)} forms an invariant subgroup of S3; but

{e, (12)} does not.

▶ Def: A group is simple if it does not contain any non-trivial
invariant subgroup. A group is semi-simple if it does not contain any
abelian invariant subgroup.



Exercises

WKT2.2 Show that there is only one group of order three, by explicitly
constructing the multiplication table.

HFJ1.2 Write the following permutations in cyclic notation:(
1 2 3 4 5 6 7 8
6 1 4 8 5 7 2 3

)
,

(
1 2 3 4 5 6 7 8 9
3 5 4 1 8 9 6 7 2

)
WKT2.3 Construct the multiplication table of the permutation group S3 using

the cycle structure notation.

WKT2.5 Consider the permutation group S4.

a Enumerate the subgroups and classes of the group S4.
b Which of the subgroups are invariant ones?
c Find the factor groups of the invariant subgroups.



Probleme

WKT2.8 Consider the dihedral group D4, representing the symmetry group of
the square, consisting of rotations around the center and reflections
about the vertical, horizontal and diagonal axes.

a Enumerate the group elements.
b Enumerate the classes.
c Enumerate the subgroups.
d Identify the invariant subgroups.
e Identify the factor groups.
f Is D4 the direct product of some of its subgroups?

HFJ1.6 The centre Z of a group G is defined as the set of elements z which
commute with all elements of the group, i.e.
Z = {z ∈ G |zg = gz ,∀g ∈ G}. Show that Z is an Abelian subgroup
of G .

HFJ1.7 Using the multiplication table for D3, write down the isomorphism of
Cayley’s theorem between D3 and the relevant subgroup of S6.


