Symmetries in Physics Lecture 1

Victor E. Ambruș

Universitatea de Vest din Timișoara

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Chapter 1. Discrete symmetry groups

- ▶ 1.1. Basic notions of abstract group theory
- ► I.2. Group representations
- ▶ I.3. Representations of the symmetric group; Young diagrams

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

I.1.1. Introduction From mathematics to physics

- Group theory provides the natural mathematical language for describing symmetries of the physical world.
- The connection between the mathematical theory and its physical consequences was clearly formulated by Wigner and Weyl (and others), before 1930.
- The connection is of paramount importance in quantum mechanics, but it is very useful also in classical physics.
- Since the 1950's, group theory has become increasingly important. Nowadays, it permeates every branch of physics or of physical and life sciences.
- Examples: Internal symmetries in particle physics (isospin, colour); External symmetries (translations, rotations, Lorentz boosts).

Examples of continuous symmetries

- Spatial translations, $\mathbf{x} \rightarrow \mathbf{x} + \mathbf{a}$ with constant \mathbf{a} :
 - Based on the assumption of homogeneity of space;
 - Applicable to isolated systems;
 - Leads to conservation of linear momentum p.
- Time translations, $t \rightarrow t + a_0$ with constant a_0 :
 - Based on the assumption of homogeneity of time;
 - Applicable to isolated systems;
 - Leads to conservation of energy E.
- ▶ Rotations in 3D space: $x^i \rightarrow x^{i'} = R^{i'}{}_j x^j$
 - Based on the assumption of isotropy of space;
 - Applicable to central potentials;
 - Leads to conservation of angular momentum L.
- Lorentz transformations: $x^{\mu} \rightarrow x^{\mu'} = \Lambda^{\mu'}{}_{\nu}x^{\nu}$:
 - Comprise rotations and boosts;
 - Boosts generalize Galilei transformations to special relativity;
 - Severely constrain the equations of relativistic quantum mechanics.

Examples of discrete symmetries

- Space inversion (parity transformation): $\mathbf{x} \rightarrow -\mathbf{x}$:
 - Equivalent to reflection in a plane + rotation through angle π ;
 - Obeyed by most interactions, except the weak interaction.
- ▶ Time reversal, $t \rightarrow -t$:
 - A system with T symmetry would evolve backwards in time if all velocities simultaneously flip sign;
 - Obeyed by most interactions, except isolated instances (e.g., neutral K meson decay);
 - Not an exact symmetry in real systems, due to second law of thermodynamics.
- **b** Discrete translations on a lattice: $\mathbf{x} \rightarrow \mathbf{x} + n\mathbf{a}$:
 - Appears in systems with periodic potentials (e.g., crystals);
 - Leads to quantization of momentum and infrared cutoff;
 - Leads to Bloch theorem.
- Discrete rotational symmetry of a lattice (point groups):
 - Subsets of the 3D rotation group and parity that leave a given lattice structure invariant;
 - There are 32 crystallographic point groups;
 - ► Together with discrete translations ⇒ space groups of solid state physics.

Other important symmetries

- Permutation symmetry:
 - Permutations form the symmetry group;
 - Systems with identical particles are invariant under the interchange of these particles;
 - When the particles have several degrees of freedom, group theory is essential to extract symmetry properties of permissible physical states.
- Gauge invariance and charge conservation:
 - Both classical and quantum electrodynamics are invariant under gauge transformations;
 - Gauge symmetry is intimately related to charge conservation.
- Internal symmetries (nuclear and elementary particle physics):
 - These are symmetries of the internal degrees of freedom (spin, flavour, colour, etc);
 - Usually they are the unitary U(N) or special unitary SU(N) groups.
 - ► Isospin is the SU(2) symmetry of invariance under u ↔ d interchange of nuclear interaction;
 - ► SU(3)_c represents the colour symmetry of QCD;
 - Gauging an internal symmetry leads to the introduction bosonic fields mediating the corresponding interaction.

I.1.2. What is a group?

Def: A set $\{G : a, b, c, ...\}$ is said to form a *group* if there is a binary operation $\cdot : G^2 \to G$, called *group multiplication*, which associates $a, b \to a \cdot b \in G$, such that:

- is associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c, \forall a, b, c \in G;$
- ▶ $\exists e \in G$ called identity, such that $a \cdot e = a$, $\forall a \in G$;

▶ $\forall a \in G, \exists a^{-1} \in G$ called the *inverse* of *a*, such that $a \cdot a^{-1} = e$. The above imply $e^{-1} = e$; $a^{-1} \cdot a = e$; and $e \cdot a = a$, $\forall a \in G$. **Def:** An *abelian group G* is one for which ab = ba, $\forall a, b \in G$. **Def:** The *order* of a group is the number of elements of the group (if it is finite).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I.1.3. The cyclic groups C_n : multiplication tables

Group multiplication tables						
	е	а		е	а	b
е	е	а	-	а	Ь	е
а	а	е		b	е	а
<i>C</i> ₂			<i>C</i> ₃			

- ▶ The cyclic group C_n contains the $n \in \mathbb{N}^*$ elements given as $\{e, a, a^2, \dots a^{n-1}\}$, with $a^n = e$ or $a^{n-1} = a^{-1}$.
- Ex: C₁ is the group that consists of a single element, e. Ex: {1} and usual multiplication.
- ► Ex: C₂ consists of {e, a}, with a · a = e. Ex: {1, -1} and usual multiplication; parity inversion.
- Ex: C₃, with {e, a, a⁻¹}. Ex: {1, e^{2iπ/3}, e^{4iπ/3}} under multiplication; symmetry operations of the equilateral triangle (rotations by 2π/3 and 4π/3).

I.1.4. Noncyclic groups: dihedral group

Group multiplication table of D_2 Configuration with D_2 symmetry

- C_1 , C_2 and C_3 are necessarily cyclic.
- The simplest non-cyclic group has order R and is called the *dihedral* group, {D₂ : e, a, b, c}.
- Since the multiplication table is symmetric, D_2 is abelian.
- One example of D₂ is the symmetry operations on the rectangle above:
 - e =figure stays the same;
 - a = reflection about (1,3);
 - b = reflection about (2, 4);
 - c = rotation around the center by π .
- D_n represents the symmetry group of rotations of a regular polygon with n undirected sides.

I.1.5. Nonabelian groups: D_3

The smallest non-abelian group is the dihedral group D₃, consisting of 6 elements:

- identity transformation e;
- reflection about the (3,3') axis, flipping 1 and 2: (12);
- reflection about the (1,1') axis, flipping 2 and 3: (23);
- reflection about the (2,2') axis, flipping 3 and 1: (31);
- ▶ rotation by $2\pi/3$, permutting $[1,2,3] \rightarrow [3,1,2]$, denoted (123);
- ▶ rotation by $4\pi/3$, permutting $[1,2,3] \rightarrow [2,3,1]$, denoted (132).

The parentheses notation denotes permutations applied on (123):

 $(123): 1 \rightarrow 2\&2 \rightarrow 3\&3 \rightarrow 1 \Rightarrow (123) \rightarrow (231).$

▶ $(123) \cdot (12) = (13) \neq (12) \cdot (123) = (23) \Rightarrow$ nonabelian group.

I.1.6. Subgroups

Def: A subset $H \in G$ which forms a group under the same multiplication law as G is said to form a *subgroup* of G.

- ▶ D_2 has 3 subgroups identical to C_2 , consisting of $\{e, a\}$; $\{e, b\}$; and $\{e, c\}$, since $a^2 = b^2 = c^2 = e$.
- ▶ D_3 has 4 subgroups: $\{e, (12)\}$; $\{e, (23)\}$; $\{e, (31)\}$; and $\{e, (123), (321)\}$. The first 3 are identical to C_2 and the fourth has the structure of C_3 .

Matrix groups

- An important class of groups are those involving n × n matrices with standard matrix multiplications. Examples include:
- ▶ The general linear group GL(n) consists of all invertible matrices;
- The unitary group U(n) consists of all unitary matrices, satisfying UU[†] = 1;
- The special unitary group SU(n) consists of unitary matrices with unit determinant;
- The orthogonal group O(n) consists of real orthogonal matrices satisfying OO^T = 1.

Rearrangement lemma and Symmetric (permutation) group

Rearrangement Lema: If $p, b, c \in G$ and pb = pc then b = c.

▶ Consider $\{G : g_1, g_2, \dots, g_n\}$. Multiplication to the left by *h* gives

$$\{hg_1, hg_2, \dots hg_n\} = \{g_{h_1}, g_{h_2}, \dots g_{h_n}\},$$
(1)

where (h_1, h_2, \ldots, h_n) is the permutation of $(1, 2, \ldots, n)$ determined by h.

A permutation p can be represented as

$$p = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ p_1 & p_2 & p_3 & \cdots & p_n \end{pmatrix}, \qquad p^{-1} = \begin{pmatrix} p_1 & p_2 & p_3 & \cdots & p_n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}.$$
(2)

A more convenient representation is based on the cyclical structure:

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 2 & 6 \end{pmatrix} = (143)(25)(6) \equiv (143)(25).$$
(3)

- The inverse permutation can be obtained by listing each sequence in inverse order, p⁻¹ = (431)(52)(6) ≡ (143)(25).
- The set of n! permutations of n objects forms the permutation (symmetric) group S_n .

Composition of cycles

- ▶ Let us consider the composition of two cycles: (123)(12).
- With the explicit representation of the permutations, we have

$$(132)(12) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (23), \quad (4)$$

where the rules in the second permutation (12) are applied on the bottom row of the first permutation.

By successive application on a set of objects (abc), we get

$$(132)(12)[abc] = (132)[bac] = [acb] = (23)[abc],$$
 (5)

where after the first equal sign: position 1 is moved to pos. 2 and vice-versa; after the second equal sign, pos. 1 is moved to pos. 3 (b); pos. 3 moves to pos. 2 (c); pos. 2 moves to pos. 1 (a).
Using cycle multiplication gives:

$$(132)(12) = (23).$$
 (6)

The permutations are applied right-to-left. Within a permutation, the rules are read left-to-right: Pos. 1 goes to pos. 2 by (12); and pos. 2 goes to pos. 1 by (132) \Rightarrow (1); pos. 2 goes to pos. 1 by (12); and pos. 1 goes to pos. 3 by (132) \Rightarrow (23).

Isomorphism and Cayley's theorem

Def: Two groups G and G' are said to be *isomorphic* $(G \sim G')$ if there exists a one-to-one correspondence between their elements which preserves the law of group multiplication, e.g. if $g_i \in G \leftrightarrow g'_i \in G'$ and $g_1g_2 = g_3$ in G, then $g'_1g'_2 = g'_3$ in G' and vice-versa.

- The groups $\{e, a\}$ are isomorphic to C_2 ;
- The group $\{\pm 1, \pm i\}$ with usual multiplication is isomorphic to C_4 .
- \triangleright D_3 is isomorphic to S_3 .

Cayley's theorem: Every group G of order n is isomorphic to a subgroup of S_n .

Proof: The rearrangement lema guarantees that $ag_i = g_{a_i}$ for $a, g_i \in G$, defining the permutation

$$a \in G \rightarrow p_a = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \in S_n.$$
 (7)

Consider now ab = c. Then, $abg_i = ag_{b_i} = g_{a_{b_i}}$, while $cg_i = g_{c_i}$. Then, $p_c = p_a p_b$ and group multiplication is preserved. Thus, the group formed by the permutations p_a corresponding to $a \in G$ is a subgroup of S_n which is isomorphic to G. \Box

- Obs: The subgroup of S_n isomorphic to the group G cannot contain elements with one-cycles (except e).
 Proof: A one-cycle corresponds to an element which is unchanged: ag_i = g_i, which can hold true only when a = e.
- Obs: The cycles which occur in any permutation associated with a given group element must all be of the same length.
 Proof: If p_a has multiple cycles and *l* is the length of the shortest cycle, then p_{a'} = p^l_a will contain *l* 1-cycles, which is forbidden unless all cycles in p_a are of the same length *l* and p^l_a = e.
- **Theorem:** If the order n of a group G is a prime number, it must be isomorphic to the cyclic group C_n .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples

 C_3 vs. S_3 : • Consider $\{C_3 : e, a, b = a^2 = a^{-1}\}$ and let $(g_1, g_2, g_3) = (e, a, b)$. • Since $eg_i = g_i$, we have $e \in C_3 \to e = (1)(2)(3) = (1) \in S_3$. • Applying $g_2 = a$ gives $(a, b, e) = (g_2, g_3, g_1)$, hence $p_a = (132)$. • Applying $g_3 = b = a^2$ gives $(b, e, a) = (g_3, g_1, g_2)$, hence $p_b = (123)$. D_2 vs. S_4 : ▶ $a(e, a, b, c) = (a, e, c, b) \Rightarrow p_a = (12)(34);$ ▶ $b(e, a, b, c) = (b, c, e, a) \Rightarrow p_b = (13)(24);$ ▶ $c(e, a, b, c) = (c, b, a, e) \Rightarrow p_c = (14)(23);$ ▶ D_2 is isomorphic to $\{e, (12)(34), (13)(24), (14)(23)\} \in S_4$. $\{C_4 : e, a, b, c\} = \{C_4 : e, a, a^2, a^3\}$ vs. S_4 : ▶ $a(e, a, a^2, a^3) = (a, a^2, a^3, e) \Rightarrow p_a = (1432);$ ▶ $a^{2}(e, a, a^{2}, a^{3}) = (a^{2}, a^{3}, e, a) \Rightarrow p_{b} = (13)(24);$ ▶ $a^{3}(e, a, a^{2}, a^{3}) = (a^{3}, e, a, a^{2}) \Rightarrow p_{c} = (1234);$ • C_4 is isomorphic to $\{e, (1234), (13)(24), (1432)\} \in S_4$.

I.1.7. Conjugate elements and classes

- Def: An element b∈ G is said to be conjugate to a∈ G if ∃p∈ G s.t. b = pap⁻¹. Then, b ~ a or b is conjugate to a.
 Ex: In S₃, (12) ~ (13) because (23)(12)(23)⁻¹ = (13); also (123) ~ (321) since (12)(123)(12)⁻¹ = (132).
- **Obs:** Conjugation is an *equivalence* relation, since it is:
 - ▶ reflexive: a ~ a;
 - symmetric: $a \sim b \Leftrightarrow b \sim a$;
 - *transitive:* $a \sim b$ and $b \sim c \Rightarrow a \sim c$.
- Def: Elements of a group which are conjugate to each other are said to form a (conjugate) *class*.
- Obs: Each element of a group belongs to one and only one class and *e* forms a class by itself.
- **Ex:** S_3 contains 3 classes: $\zeta_1 = \{e\}$; $\zeta_2 = \{(12), (23), (31)\}$; and $\zeta_3 = \{(123), (321)\}$. Generally, permutations with the same cycle structure belong to the same class.
- Ex: For 3D rotations, let R_n(ψ) denote the rotation of angle ψ about **n**. Then {R_n(ψ); all **n**} belong to the same class.

Conjugate and invariant subgroups

- ▶ Def: If H is a subgroup of G and a ∈ G, then H' = {aha⁻¹; h ∈ H} also forms a subgroup of G and H' is said to be a conjugate subgroup to H.
- ► Obs: It can be shown that either H and H' are isomorphic, or they have only e in common.
- Def: An *invariant subgroup* H of G is one which is identical to all its conjugate subgroups.
- ► Obs: *H* is invariant ⇔ it contains elements of *G* in complete subclasses.
- **• Obs:** All subgroups of an abelian group are invariant subgroups.
- **Ex:** $H = \{e, a^2\}$ is an invariant subgroup of $C_4 = \{e = a^4, a, a^2, a^3\}$.
- **Ex:** $\{e, (123), (132)\}$ forms an invariant subgroup of S_3 ; but $\{e, (12)\}$ does not.
- Def: A group is *simple* if it does not contain any non-trivial invariant subgroup. A group is *semi-simple* if it does not contain any abelian invariant subgroup.

Exercises

- WKT2.2 Show that there is only one group of order three, by explicitly constructing the multiplication table.
 - HFJ1.2 Write the following permutations in cyclic notation:

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 1 & 4 & 8 & 5 & 7 & 2 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 4 & 1 & 8 & 9 & 6 & 7 & 2 \end{pmatrix}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- WKT2.3 Construct the multiplication table of the permutation group S_3 using the cycle structure notation.
- WKT2.5 Consider the permutation group S_4 .
 - a Enumerate the subgroups and classes of the group S_4 .
 - b Which of the subgroups are invariant ones?
 - c Find the factor groups of the invariant subgroups.

Probleme

- WKT2.8 Consider the dihedral group D_4 , representing the symmetry group of the square, consisting of rotations around the center and reflections about the vertical, horizontal and diagonal axes.
 - a Enumerate the group elements.
 - b Enumerate the classes.
 - c Enumerate the subgroups.
 - d Identify the invariant subgroups.
 - e Identify the factor groups.
 - f Is D_4 the direct product of some of its subgroups?
 - HFJ1.6 The *centre* Z of a group G is defined as the set of elements z which commute with all elements of the group, i.e.

 $Z = \{z \in G | zg = gz, \forall g \in G\}$. Show that Z is an Abelian subgroup of G.

HFJ1.7 Using the multiplication table for D_3 , write down the isomorphism of Cayley's theorem between D_3 and the relevant subgroup of S_6 .