

Rigidly-rotating Maxwell-Jüttner states

Victor E. Ambruș and Ion I. Cotăescu Physics Department, West University of Timișoara, Romania

Abstract

We consider rigidly-rotating Maxwell-Jüttner thermal states on space-times with central symmetry. We discuss the topology of the Killing horizons associated with rigidly-rotating observers for the maximally-symmetric spaces (Minkowski, de Sitter and anti-de Sitter), as well as for the static black hole space-times (Schwarzschild and Reissner-Nordström black holes).

Global thermodynamic equilibrium in GR

• The Boltzmann equation in general relativity reads:

$$p^{\mu}\partial_{\mu}f-\Gamma^{i}{}_{\mu
u}p^{\mu}p^{
u}\partial_{p^{i}}f=J[f].$$

ullet The collision term J[f] drives f towards the Maxwell-Jüttner equilibrium distribution:

$$f_{ ext{M-J}}^{ ext{(eq)}} = Z \exp(eta \mu_E + eta p^\lambda u_\lambda),$$

where

- ullet Z is the number of degrees of freedom;
- ullet μ_E is the chemical potential (set to 0 hereafter);
- ullet is the inverse temperature;
- $ullet u = u^\mu \partial_\mu$ is the four-velocity of the flow;
- $ullet p = p^\mu \partial_\mu$ is the four-momentum of the particle.

ullet Since $J[f_{
m M-J}^{
m (eq)}]=0$, $f_{
m M-J}^{
m (eq)}$ satisfies (1) if:

$$abla_{\lambda}eta\mu_{E}=0, \qquad \underbrace{(eta u_{\lambda})_{;
u}+(eta u_{
u})_{;\lambda}=0}_{ ext{Killing equation}}.$$

Rotating flows on central charts

• The metric for a space-time with spherical symmetry can be written as:

$$ds^2 = w^2 \left(-dt^2 + rac{dr^2}{u^2} + rac{r^2}{v^2} d\Omega^2
ight),$$

where w, v and u depend only on r.

 The Killing vector field corresponding to a rigidly-rotating flow is:

$$eta u = eta_0 (\partial_t + \Omega \partial_{arphi}),$$

ullet where the inverse temperature eta is $(u^2=-1)$:

$$eta=w\gamma^{-1}eta_0, \qquad \gamma^{-1}=\sqrt{1-\left(rac{
ho\Omega}{v}
ight)^2}.$$

Killing horizons

• In co-rotating coordinates, the line element becomes:

$$ds^2=w^2\left[-rac{dt^2}{\gamma^2}+rac{2
ho^2\Omega}{v^2}dtdarphi+rac{dr^2}{u^2}+rac{r^2}{v^2}d\Omega^2
ight].$$

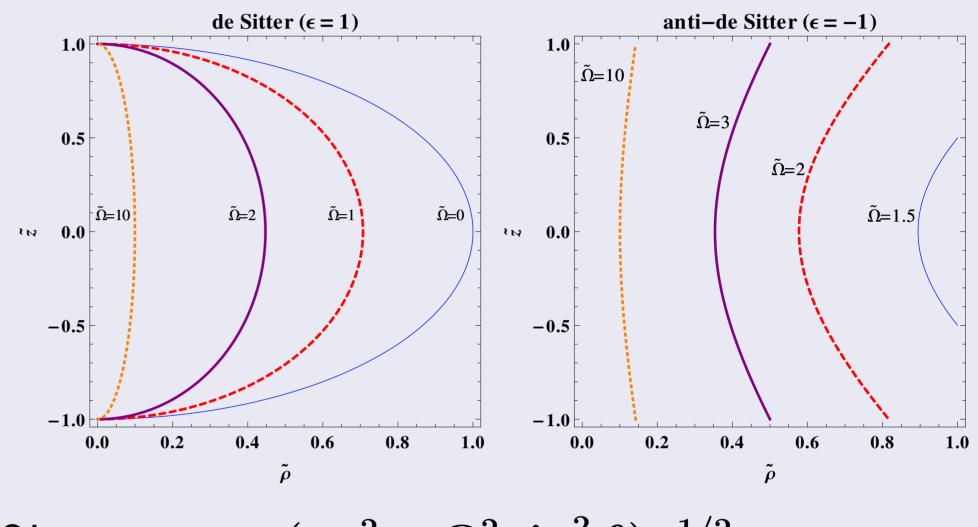
ullet The surfaces where $g_{00}=0$ represent Killing horizons:

$$-g_{00}=w^2\left(1-rac{
ho^2\Omega^2}{v^2}
ight)=rac{eta^2}{eta_0^2}=0.$$

- The horizons are:
 - ullet Rotation horizons (SOLs): $1ho^2\Omega^2/v^2 o 0$;
 - ullet Cosmological (event) horizons (EHs): due to $oldsymbol{w}$ and $oldsymbol{v}$.
- The horizon structure is non-trivial, revealing an interplay between the properties of the space-time and the rigid rotation.

Maximally-symmetric (M-S) space-times

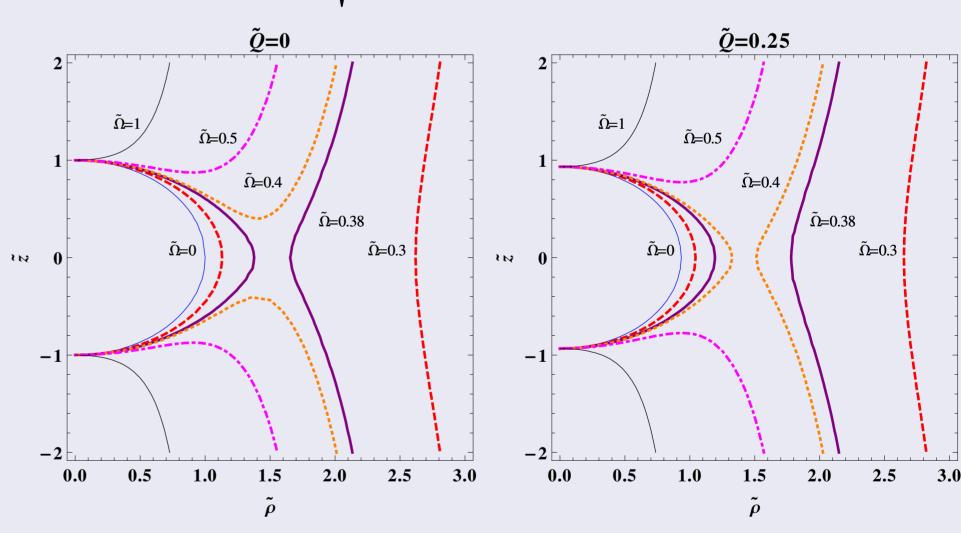
$$ds^2 = -(1 - \epsilon \omega^2 r^2) dt^2 + rac{dr^2}{1 - \epsilon \omega^2 r^2} + r^2 d\Omega^2, \ \epsilon = 0 ext{ (Minkowski)}, \quad \epsilon = 1 ext{ (dS)}, \quad \epsilon = -1 ext{ (adS)}. \ eta = eta_0 \sqrt{1 - (\epsilon \omega^2 + \Omega^2 \sin^2 heta) r^2},$$



SOL at
$$r_{
m SOL} = (\epsilon \omega^2 + \Omega^2 \sin^2 heta)^{-1/2}$$
 .

Spherically-symmetric black holes

$$w^2 = u = v = 1 - rac{2M}{r} + rac{Q^2}{r^2}, \ eta = eta_0 \sqrt{1 - rac{2M}{r} + rac{Q^2}{r^2} -
ho^2 \Omega^2}.$$



- Increasing $\widetilde{\Omega}=2M\Omega$ brings the SOL closer to, and pushes the event horizon away from, the rotation axis.
- ullet Increasing $\widetilde{Q}=Q/2M$ has an inverse effect.

Conclusion

- On M-S spaces, the SOL forms closer (farther) to the rotation axis on dS (adS) compared to Minkowski.
- ullet No SOL forms on adS if $\Omega < \omega$.
- ullet On Reissner-Nordström, the rotation enhances the EH, which joins the SOL at large Ω .
- This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-2910.