Bouncing Dirac particles: compatibility between MIT boundary conditions and Thomas precession

Nistor Nicolaevici

West University of Timisoara, Romania

The problem:

• Dirac particle which bounces off from a perfectly reflecting plane

• Determine the **rotation of the spin**

• Repeat the problem for a **classical particle**

• Compare the quantum and the classical rotation angles

Background facts:

- Long studied problem in GR: the dynamics of a spinning body
- The basic result: Mathisson-Papapetrou-Dixon equations

$$\begin{cases} \frac{D}{Ds}P^{\mu} = \frac{1}{2}R_{\rho\sigma\nu}^{\ \mu}S^{\rho\sigma}U^{\nu}, \\ \frac{D}{Ds}S^{\mu\nu} = P^{\mu}U^{\nu} - P^{\nu}U^{\mu}, \\ P^{\mu} = mU^{\mu} - \frac{DS^{\mu\nu}}{Ds}U_{\nu}, \end{cases}$$

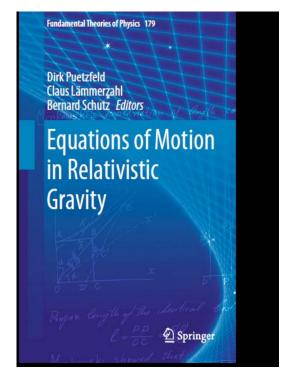
• Supplementary conditions:

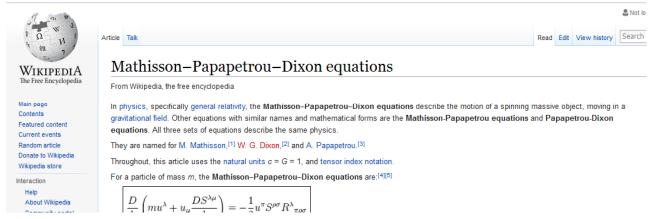
$$S^{\mu 0} = 0, \qquad S^{\mu \nu} U_{\nu} = 0, \qquad S^{\mu \nu} P_{\nu} = 0$$

Resource literature:

• Proceedings of the 2013 Bad Honnef Conference

• Wiki page

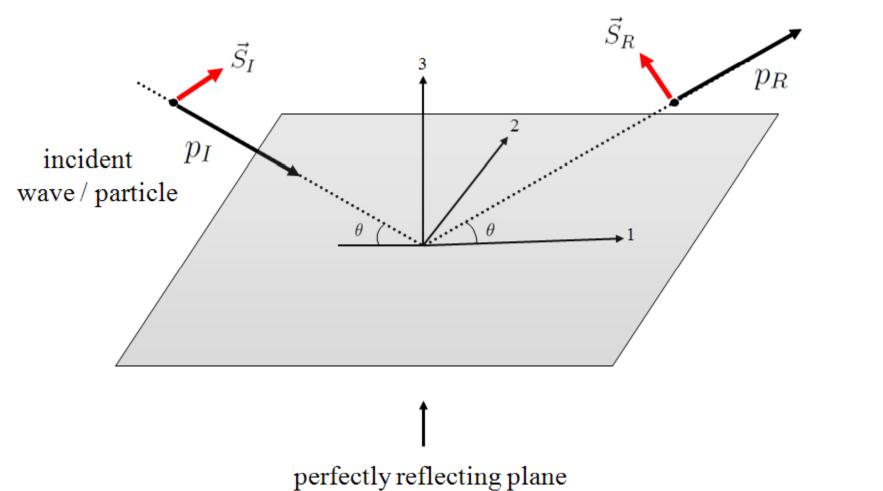




- The **Dirac** particle = a **quantum** spinning particle
- The **MPD equations** can be indeed recovered from the **Dirac** equation in the classical limit
- Numerous calculations (various definitions of the spin operator / procedures to extract the classical limit)
- R. Rudiger, *``The Dirac equation and spinning particles in general relativity,''* J. Proc. R. Soc. Lond. A **377**, 417 (1981)
- J. Audretsch, ``Trajectories and spin motion of massive spin ½ particles in gravitational fields," J. Phys. A: Math. Gen. **14**, 411 (1981)
- F. Cianfrani and G. Montani, "Dirac equation in curved space-time vs. Papapetrou spinning particles", EPL **84**, 30008 (2008)
- Y. Obukhov, A. Silenko and O. Teryaev, "Spin in an arbitrary gravitational field", Phys. Rev. D 88, 084014 (2013)

The geometry of the problem:

reflected wave / particle



The quantum solution:

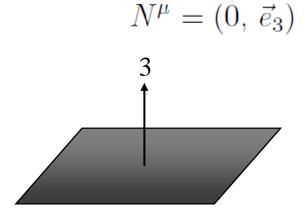
• Boundary condition on the plane – MIT with chiral angle

Chodos, Jaffe, Johnson and Thorn, ``Baryon Structure in the Bag Theory," Phys. Rev. D 1974.

$$N^{\mu}\gamma_{\mu}\psi=ie^{i\eta\gamma_{5}}\psi$$
 η - the chiral angle

1

ensures that the Dirac current through the plane is zero



• MIT in the Dirac representation:

$$\gamma^{0} = \begin{vmatrix} I & 0 \\ 0 & -I \end{vmatrix} \qquad \gamma^{i} = \begin{vmatrix} o & \sigma_{i} \\ -\sigma_{i} & 0 \end{vmatrix} \qquad \gamma^{5} = \begin{vmatrix} 0 & I \\ I & 0 \end{vmatrix}$$

$$N^{\mu} = (0, \vec{e}_3) \qquad N^{\mu} \gamma_{\mu} \psi = i e^{i \eta \gamma_5} \psi \qquad \psi = \begin{vmatrix} \Phi \\ \chi \end{vmatrix}$$

$$(\sigma_3 + \sin \eta) \Phi - i \cos \eta \chi = 0$$
$$(\sigma_3 - \sin \eta) \chi + i \cos \eta \Phi = 0$$

• Plane wave solutions of the Dirac equation:

$$u_{p,\xi}(x) = u(p,\xi) e^{-ip \cdot x} \tag{1}$$

$$u(\hat{p},\,\xi) = \begin{vmatrix} \xi \\ 0 \end{vmatrix}, \quad \xi^{+}\xi = 1 \tag{2}$$

 ξ - defines the **spin** in the **proper frame** of the particle

$$u(p,\,\xi) = S(\Lambda_p)\,u(\hat p,\,\xi) \qquad \qquad \text{pure boost}$$

$$S(\Lambda_p) = e^{-i\alpha \vec{n} \cdot \vec{K}}$$
, $\alpha = \operatorname{arctanh} \frac{|\vec{p}|}{(m^2 + \vec{p}^2)^{1/2}}$, $\vec{n} = \frac{\vec{p}}{|\vec{p}|}$

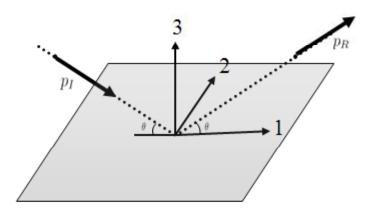
• General form of the Dirac spinors:

$$u(p,\,\xi) = \begin{vmatrix} \cosh\frac{\alpha}{2}\,\xi\\ \sinh\frac{\alpha}{2}\,\sigma_{\vec{n}}\,\xi \end{vmatrix}, \quad \sigma_{\vec{n}} = \vec{n}\cdot\vec{\sigma}.$$

• The incident and reflected momenta:

$$p_{I/R}^{\mu} = m \left(\cosh \alpha, \sinh \alpha \, \vec{n}_{I/R} \right)$$

$$\vec{n}_I = (\cos \theta, 0, -\sin \theta), \quad \vec{n}_R = (\cos \theta, 0, \sin \theta).$$



• The total wave function:

$$\psi(x) = u(p_I, \, \xi_I) \, e^{-ip_I \cdot x} + u(p_R, \, \xi_R) \, e^{-ip_R \cdot x} \tag{1}$$

$$u(p_I, \, \xi_I) = \begin{vmatrix} \cosh \frac{\alpha}{2} \, \xi_I \\ \sinh \frac{\alpha}{2} \, \sigma_I \, \xi_I \end{vmatrix}, \quad \sigma_I = \vec{n}_I \cdot \vec{\sigma}$$
 (2)

$$u(p_R, \, \xi_R) = \begin{vmatrix} \cosh \frac{\alpha}{2} \, \xi_R \\ \sinh \frac{\alpha}{2} \, \sigma_R \, \xi_R \end{vmatrix}, \quad \sigma_R = \vec{n}_R \cdot \vec{\sigma}$$
 (3)

 ξ_I - defines the **initial** (incident) spin

 ξ_R - defines the final (reflected) spin

- MIT selects the following solution:
 - (1) introduce:

$$A = 1 + i \cos \eta \sin \theta \tanh \frac{\alpha}{2},$$

$$\vec{B} = \cos \eta \cos \theta \tanh \frac{\alpha}{2} \vec{e}_2 + \sin \eta \vec{e}_3.$$
(1)

(2) construct the operator:

$$Q = AI + \vec{B} \cdot \vec{\sigma} \tag{2}$$

(3) the initial and final two-spinors are related by:

$$\xi_R = \mathcal{U} \, \xi_I$$
 $\mathcal{U} = (Q^+)^{-1} Q$ (3)

unitary matrix by definition (2)

• Extract the physical content from:

$$\mathcal{U} = e^{i\chi} \left(\cos\frac{\Delta\phi}{2}\,I - i\sin\frac{\Delta\phi}{2}\vec{\mathcal{N}}\cdot\vec{\sigma}\right)$$
 irrelevant phase factor

SU(2) matrix = **rotation matrix** in the spin space

- Rotation **axis**:
$$\vec{\mathcal{N}} = \frac{\vec{B}}{|\vec{B}|}$$

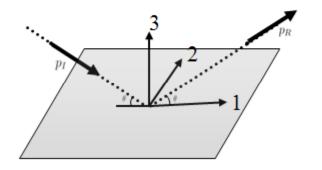
- Rotation **angle**:

$$\cos \frac{\Delta \phi}{2} = \frac{|A|^2 - \vec{B}^2}{|A^2 - \vec{B}^2|} \qquad \sin \frac{\Delta \phi}{2} = \frac{2 \operatorname{Im} A |\vec{B}|}{|A^2 - \vec{B}^2|}.$$

• Axis of rotation:

$$\vec{\mathcal{N}} = \frac{\vec{B}}{|\vec{B}|}$$

$$\vec{B} = \underline{\cos \eta} \cos \theta \tanh \frac{\alpha}{2} \vec{e}_2 + \underline{\sin \eta} \vec{e}_3$$



 $3^{\rm rd}$ component absent for $\eta = 0$ or π

the same as in the classical problem (!)

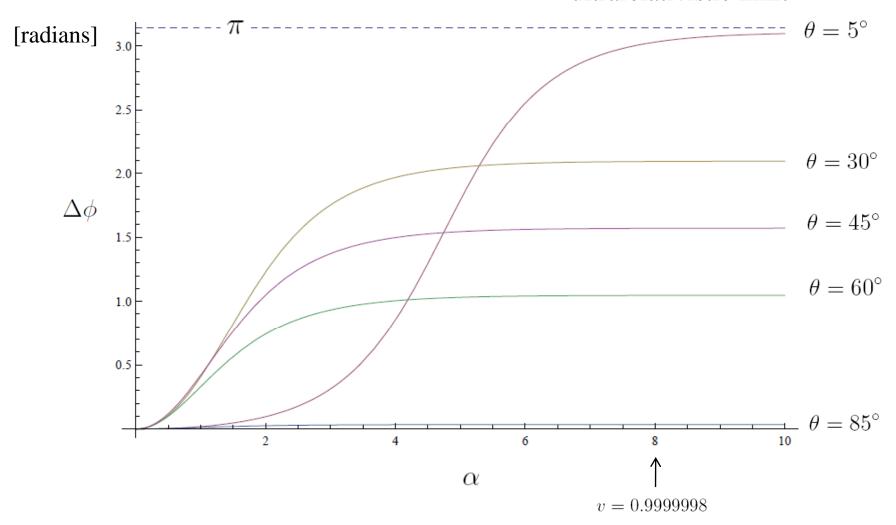
• The case $\eta = 0$:

$$\vec{\mathcal{N}} = \vec{e}_2$$

$$\tan \frac{\Delta \phi}{2} = \frac{\sin 2\theta \, \tanh^2(\alpha/2)}{1 - \cos 2\theta \, \tanh^2(\alpha/2)}.$$
 (1)

• Nonrelativistic limit:

$$\alpha \ll 1$$
, $\alpha \simeq v$, $\Delta \phi^{NR} \simeq \frac{1}{2} v^2 \sin 2\theta$. (2)



The rotation angle $\Delta \varphi$ as a function of the velocity parameter α for different incident angles θ

• Ultrarelativistic limit:

$$\tan \frac{\Delta \phi}{2} = \frac{\sin 2\theta \, \tanh^2(\alpha/2)}{1 - \cos 2\theta \, \tanh^2(\alpha/2)}.$$
 (1)

$$\alpha \to \infty$$

$$\tan \frac{\Delta \phi^{UR}}{2} \simeq \frac{\sin 2\theta}{1 - \cos 2\theta} = \tan \left(\frac{\pi}{2} - \theta\right) \tag{2}$$

$$\Delta \phi^{UR} \simeq \pi - 2\theta \tag{3}$$

• The geometrical picture in the UR limit:

$$\Delta \phi^{UR} \simeq \pi + (-2\theta)$$

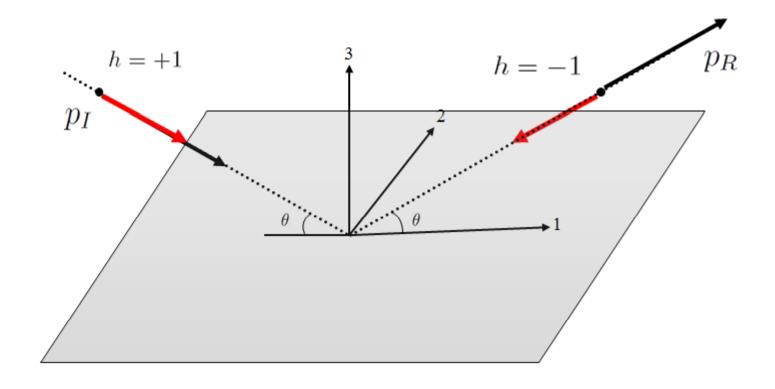
rotation angle of the 3-momentum around axis 2

The rotation angle of the spin **relative to the 3-momentum**:

$$\Delta \phi_{rel}^{UR} \simeq \pi$$

the helicity is **reversed** after reflection

• MIT + zero chiral angle = helicity flip in the UR limit



Puzzle:

- UR particles tend to behave like massless particles

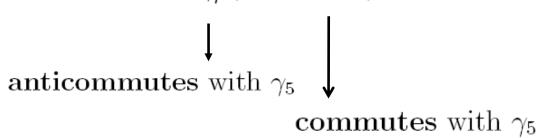
- for massless chiral fermions the helicity is **fixed**

Answer:

MIT cannot be applied to chiral particles

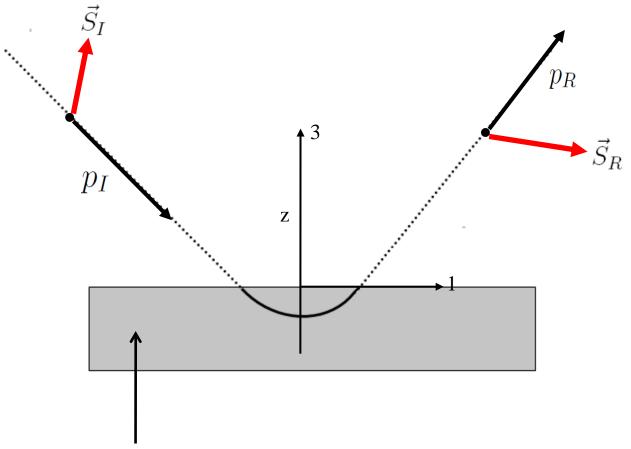
For chiral particles:
$$\gamma_5 \psi = \pm \psi$$
 (1)

Incompatibility with MIT:
$$N^{\mu}\gamma_{\mu}\psi = ie^{i\eta\gamma_5}\psi$$
 (2)



The classical solution:

First step - **smooth** the trajectory at the impact:



repulsive scalar potential V(z) \longrightarrow assures that the trajectory is contained in the plane 13

• The evolution of the spin defined the **Thomas precession**:

$$\vec{\omega}_T = \frac{\gamma^2}{\gamma + 1} \, \vec{a} \times \vec{v},\tag{1}$$

$$\vec{v} = \frac{d\vec{x}}{dt}, \quad \vec{a} = \frac{d\vec{v}}{dt},$$

• The trajectory of the particle defined by:

$$\frac{d\vec{p}}{dt} = -\nabla V \tag{2}$$

• The calculation:

Trick: consider the velocity of the particle as a function of ψ

$$\vec{v}(\psi) = v(\psi) \, \vec{n}(\psi)$$

$$\vec{n}(\psi) = (\cos \psi, \, 0, \, \sin \psi), \quad \psi \in [-\theta, \, \theta]$$

The Thomas precession vector:

$$\vec{\omega}_T = \frac{d\phi_{c\ell}}{dt} \, \vec{e}_2$$

the **same rotation axis** as in the quantum problem with $\psi = 0$

The angular velocity:

allows to find the **total rotation angle** by integrating w.r.t. $\psi \in [-\theta, \theta]$

• The total classical rotation angle:

$$\Delta \phi_{c\ell} = (\gamma v \cos \theta)^2 \times \int_{-\theta}^{\theta} \frac{d\psi}{\cos^2 \psi} \left(\sqrt{1 + \frac{(\gamma v \cos \theta)^2}{\cos^2 \psi}} + 1 \right)^{-1}$$

independent of the form of the surface potential V(z)

$$\Delta\phi_{c\ell} = (\gamma v \cos\theta)^2 \times \int_{-\theta}^{\theta} \frac{d\psi}{\cos^2\psi} \left(\sqrt{1 + \frac{(\gamma v \cos\theta)^2}{\cos^2\psi}} + 1 \right)^{-1}$$
 (1)

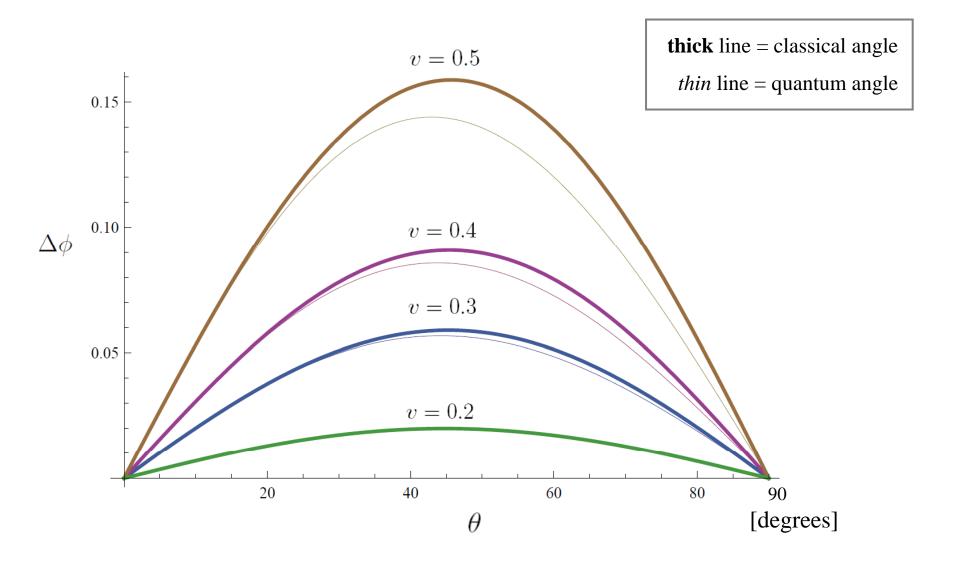
• Nonrelativistic limit: $v \ll 1$, $\gamma \simeq 1$

$$\Delta \phi_{c\ell}^{NR} \simeq (v \cos \theta)^2 \times \int_{-\theta}^{\theta} \frac{d\psi}{2 \cos^2 \psi} = v^2 \sin \theta \cos \theta \tag{2}$$

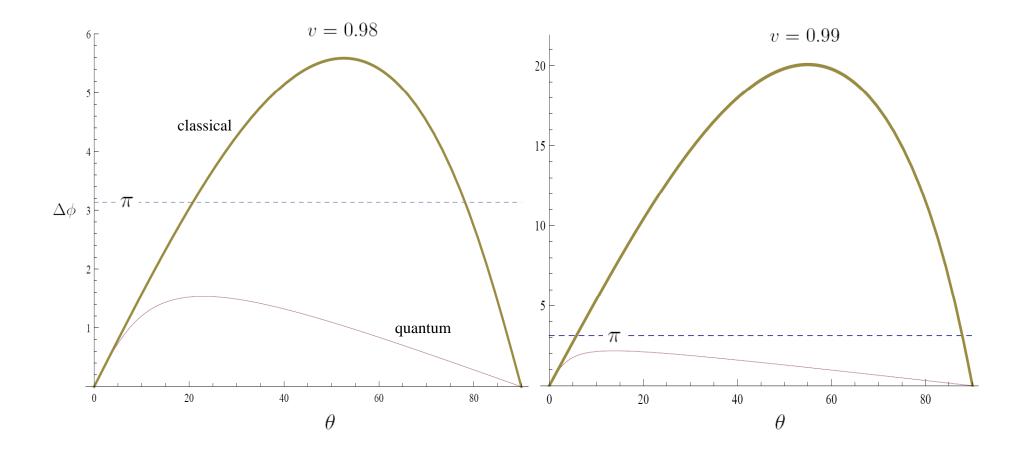
the **same** as in the quantum problem

• Ultrarelativistic limit: $v \to 1, \quad \gamma \to \infty$

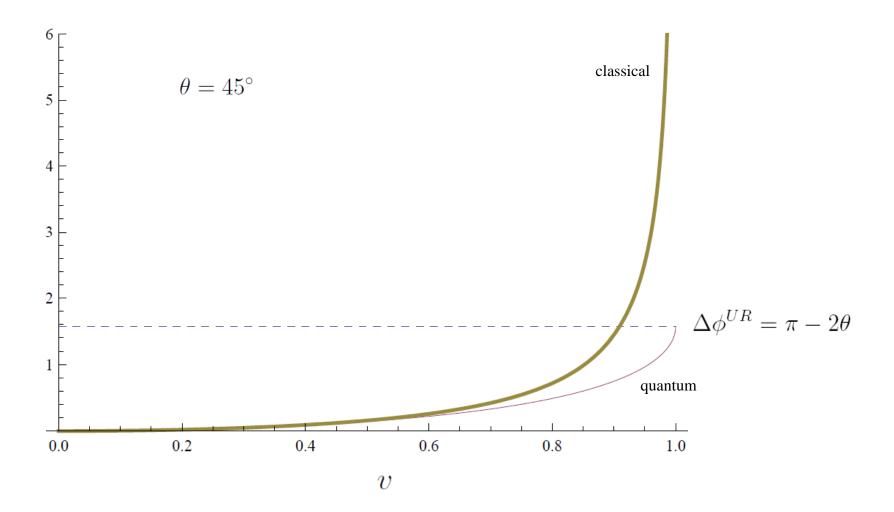
$$\Delta \phi_{c\ell}^{UR} \sim \gamma \to \infty$$
 the rotation angle **diverges**



The quantum and the classical rotation angles as functions of the angle θ for different velocities.



The quantum and the classical rotation angles as functions of the angle θ for different velocities.



The quantum and the classical rotation angles as functions of the velocity v for a fixed θ .

Discrepancy in the UR limit $\gamma \to \infty$

❖ The quantum result - stays **finite**

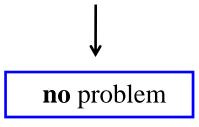
$$\Delta \phi^{UR} \simeq \pi - 2\theta$$

❖ The classical result - **diverges**

$$\Delta \phi_{c\ell}^{UR} \sim \gamma$$

• Two options regarding the picture in the UR limit:

(I) A classical spinning body is not a quantum particle with spin



(II) The divergent classical rotation angle is unphysical

something goes wrong with the Thomas precession formula

theoretical models often fail due to unrealistic idealizations

• **Idealizations** in the Thomas precession formula:

- A well-defined precession vector = **infinitely rigid** body

- The spinning body = **point-like** particle

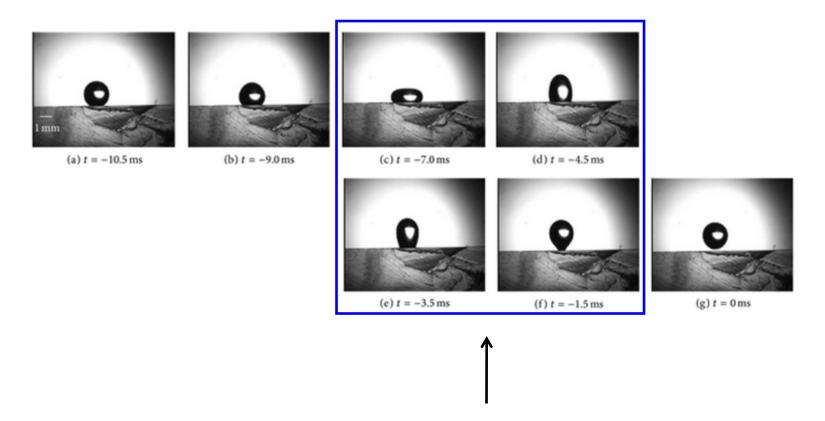
no such bodies exist in special relativity

• Solution: consider a finite-size elastic body

Conjecture: $\Delta \phi$ will stay **finite** in the UR limit for **elastic bodies**

Analogy: the dynamics of point-like / extended charges in classical ED

A **high velocity impact** should look like this:



Thomas precession formula here clearly inapplicable

Practical implications:

Mathisson-Papapetrou-Dixon equations + supp. condition $S^{\mu\nu}U_{\nu} = 0$

the spin evolves according to the Thomas precession formula

problems with the MPD equations in the UR limit?

Increased interest in MPD eqs. in the UR limit in recent years:

R. M. Plyatsko and M. T. Fenyk,

"Highly relativistic spinning particle in the Schwarzschild field: Circular and other orbits," Phys. Rev. **D** 85 (2012)

R. Plyatsko and M. Fenyk,

"Highly relativistic circular orbits of spinning particle in the Kerr field," Phys. Rev. D 87 (2013)

R. Plyatsko, M. Fenyk and O. Stefanyshyn, `

Solutions of Mathisson Equations for Highly Relativistic Spinning Particles, Fund. Theor. Phys. **179** (2015)

R. Plyatsko and M. Fenyk,

"Highly relativistic spin-gravity coupling for fermions," Phys. Rev. D 91 (2015)

S. A. Hojman and F. A. Asenjo, `

'Comment on "Highly relativistic spin-gravity coupling for fermions," Phys. Rev. D 93 (2016)

R. Plyatsko and M. Fenyk,

"Reply to "Comment on 'Highly relativistic spin-gravity coupling for fermions," Phys. Rev. D 93 (2016)

Acknowledgments: This work was partially supported by a grant of Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-2910.