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The problem:

 Dirac particle which bounces off from a perfectly reflecting plane

e Determine the rotation of the spin

» Repeat the problem for a classical particle

« Compare the quantum and the classical rotation angles



Background facts:

 Long studied problem in GR: the dynamics of a spinning body

 The basic result: Mathisson—Papapetrou—-Dixon equations
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» Supplementary conditions:
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e The Dirac particle = a quantum spinning particle

* The MPD equations can be indeed recovered from the Dirac
equation in the classical limit

e Numerous calculations (various definitions of the spin
operator / procedures to extract the classical limit)
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The geometry of the problem:

reflected
wave / particle

incident
wave / particle

I

perfectly reflecting plane



The quantum solution:

e Boundary condition on the plane — MIT with chiral angle

Chodos, Jaffe, Johnson and Thorn, "Baryon Structure in the Bag Theory,"
Phys. Rev. D 1974.
N¥~ ) = i€ 1) - the chiral angle

| N = (0, &)

ensures that the Dirac current through the plane
IS Zero




e MIT in the Dirac representation:
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(o3 +sinn)d —icosnyxy =0
(o3 —sinn) xy +icosnd =10




* Plane wave solutions of the Dirac equation:

Uy (1) = u(p,&) e (1)

C
u(p, &) =11, =1 (2)

¢ - defines the spin in the proper frame of the particle
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u(p, ) = S(Ay) u(p, &) «—— pure boost

S (I\p) — e R o = arctanh— i

(m? + p2)l/2



 General form of the Dirac spiors:
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* The incident and reflected momenta:
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* The total wave function:
O(x) = u(pr, &) e P17 +u(pp. Ep) e PR (1)

' cosh 5 &; ‘

ulpr, &) =1 . op =1 a (2)
lI sinh § o7 &; ]|
cosh & &g L
wlpr, Er) =1| 2 Op =1NR-0 (3)
sinh § or &R

&1 - defines the initial (incident) spin

{p - defines the final (reflected) spin



e MIT selects the following solution:

(1) introduce:
| . e
A=1+icosysinftanh 5’ (1)
. | el S
B = cosncosftanh 5 €9 + sl 7 €3.

(2) construct the operator:

Q=AI+B.7 (2)

(3) the initial and final two-spinors are related by:

r=US U=(QY)'Q (3)

I

unitary matrix by definition (2)



o Extract the physical content from:
U = X (ms /_\;” I —isin %\)OA? 5’)

|

irrelevant phase factor ‘
SU(2) matrix = rotation matrix in the spin space

e e

- Rotation axis: N — ﬁ
B
- Rotation angle:
Ap AP — B* Ao 2ImA|B)
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* Axis of rotation:

Z,
I
Ei‘ ol

= o .
B = cosncosf tanh 5 €2+ sinnés

31 component absent for n=0 or x

|

the same as in the classical problem (!)




e The case n =0:
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Ao sin 20 tanh?(o/2
tan — = - — (9/ ) _ (1)
2 1 — cos 26 tanh™(a/2)
e Nonrelativistic limit:
) A INR _I. 2 -« an (2)
o << 1. v~ U, Ao™ ! ~ — 7 sin 20.



ultrarelativistic limit
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The rotation angle Ay as a function of the velocity parameter « for different incident angles 6



e Ultrarelativistic limit:

A sin 26 tanh?(«/2
tan — = i ((; /2) . (1)
2 1 — cos 26 tanh”™(«v/2)

Y — X
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» The geometrical picture in the UR limit:

AoVH ~ 7+ (—26)

rotation angle of the 3-momentum around axis 2

The rotation angle of the spin relative to the 3-momentum:

Ao r;tg ~ T

N

the helicity is reversed after reflection



* MIT + zero chiral angle = helicity flip in the UR Lt

h = +1

Pi

0 S




Puzzle:
- UR particles tend to behave like massless particles 9

- for massless chiral fermions the helicity is fixed

Answer:

MIT cannot be applied to chiral particles

For chiral particles: 75¢ = £ (1)

Incompatibility with MIT: ~ N*~,10 = e (2)

anticommutes with 5 l

commutes with s



The classical solution:

First step - smooth the trajectory at the impact:
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assures that the trajectory is contained

repulsive scalar potential V(z) in the plane 13
In the plane



 The evolution of the spin defined the Thomas precession:

W = ~ + 1 = 1, (1)

 The trajectory of the particle defined by:

dp .
N v ¥ 2
=V (2)



» The calculation:

Trick: consider the velocity of the particle as a function of

o(¢) = v(¢) A(v)

n(v) = (cost, 0, sine), o € [0, 6]

The Thomas precession vector: Wr =—— €
il
] A

the same rotation axis as in the quantum problem with =0




The angular velocity:

doe — y*0? di)

d f- Py —l_ l {ht (1) -":r-'-'t; COS 1 l_:':,’ — *"} T () I COS -irl;.-"; I (2)
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conservation of the horizontal component of the
momentum

\ 4

allows to find the total rotation angle by integrating w.r.t.> € [—6, 6]



 The total classical rotation angle:
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Independent of the form of the surface potential V(z)
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* Nonrelativistic limit: v <1, ~yx~1
\ /NR 2 o dy 2
Ad,," =~ (vcost) ></ ———— = v sinfcosf
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(1)

(2)

the same as in the quantum problem

e Ultrarelativistic limit: v — 1, ~+ — o

Aol ~ v — oo <«—— | therotation angle diverges




thick line = classical angle
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The quantum and the classical rotation angles as functions of the angle 6 for different velocities.
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Discrepancy in the UR limit 7 — o

¢ The quantum result - stays finite
AoV ~ 7 — 20

¢ The classical result - diverges

e
AC)CE —~ f =



 Two options regarding the picture in the UR limit:

() Aclassical spinning body is not a quantum particle with spin

l

no problem

(I1) The divergent classical rotation angle is unphysical

1

something goes wrong with the Thomas precession formula

|

theoretical models often fail due to unrealistic idealizations



- Idealizations in the Thomas precession formula:

- A well-defined precession vector = infinitely rigid body
t A

- The spinning body = point-like particle

no such bodies exist in special relativity

e Solution: consider a finite-size elastic body

Conjecture: A¢ will stay finite in the UR limit for elastic bodies
t

!

Analogy: the dynamics of point-like / extended charges in classical ED



A high velocity impact should look like this:

(a)r = =105ms (b) ¢t = -9.0ms

(e)t=-35ms (f)t =-1.5ms (g)t =0ms

T

Thomas precession formula here clearly inapplicable




Practical implications:

Mathisson—Papapetrou—-Dixon equations + supp. condition S#*UJ, =0

the spin evolves according to the Thomas precession formula

problems with the MPD equations in the UR limit ?



Increased interest in MPD eqgs. in the UR limit in recent years:

R. M. Plyatsko and M. T. Fenyk,
“"Highly relativistic spinning particle in the Schwarzschild field: Circular and other orbits,” Phys. Rev. D 85 (2012)

R. Plyatsko and M. Fenyk,
“"Highly relativistic circular orbits of spinning particle in the Kerr field,” Phys. Rev. D 87 (2013)

R. Plyatsko, M. Fenyk and O. Stefanyshyn,
“Solutions of Mathisson Equations for Highly Relativistic Spinning Particles,” Fund. Theor. Phys. 179 (2015)

R. Plyatsko and M. Fenyk,
" Highly relativistic spin-gravity coupling for fermions,” Phys. Rev. D 91 (2015)

S. A. Hojman and F. A. Asenjo, -
"Comment on ““Highly relativistic spin-gravity coupling for fermions,” Phys. Rev. D 93 (2016)

R. Plyatsko and M. Fenyk,
“Reply to “Comment on “Highly relativistic spin-gravity coupling for fermions,” Phys. Rev. D 93 (2016)

Acknowledgments: This work was partially supported by a grant of Romanian Authority for Scientific
Research and Innovation, CNCS-UEFISCDI, project number PN-11-RU-TE-2014-4-2910.






