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The problem:

• Dirac particle which bounces off from a perfectly reflecting plane

• Determine the rotation of the spin

• Repeat the problem for a classical particle

• Compare the quantum and the classical rotation angles



Background facts:

• Long studied problem in GR: the dynamics of a spinning body

• The basic result: Mathisson–Papapetrou–Dixon equations

• Supplementary conditions:



Resource literature:

• Proceedings of the 2013 Bad Honnef• Proceedings of the 2013 Bad Honnef
Conference

• Wiki page



• The Dirac particle  =  a quantum spinning particle

• The MPD equations can be indeed recovered from the Dirac
ti i th l i l li itequation in the classical limit

• Numerous calculations (various definitions of the spin    ( p
operator / procedures to extract the classical limit)

R R di ``Th Di ti d i i ti l i l l ti it ’’ J P R

J. Audretsch, ``Trajectories and spin motion of massive spin ½  particles in gravitational 

R. Rudiger,  ``The Dirac equation and spinninng particles in general relativity,’’ J. Proc. R. 
Soc. Lond. A 377, 417 (1981) 

fields,’’ J. Phys. A: Math. Gen. 14, 411 (1981) 

F. Cianfrani and G. Montani, ``Dirac equation in curved space-time vs. Papapetrou spinning 
particles’’, EPL 84, 30008 (2008)

Y. Obukhov,  A. Silenko and O. Teryaev, ``Spin in an arbitrary gravitational field’’, Phys. Rev. D 
88, 084014 (2013)





The quantum solution:

• Boundary condition on the plane – MIT with chiral angle

Chodos, Jaffe, Johnson and Thorn, ``Baryon Structure in the Bag Theory,''
Phys. Rev. D 1974. 

- the chiral angleg
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ensures that the Dirac current through the plane 

is zero
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• MIT in the Dirac representation:p



• Plane wave solutions of the Dirac equation:

(1)

(2)

- defines the spin in the proper frame of the particle

pure boost





• The total wave function:

(1)

(2)

(3)

- defines the final (reflected) spin

- defines the initial (incident) spin

defines the final (reflected) spin



• MIT selects the following solution:

(1) introduce:

(1)(1)

(2) construct the operator:

(2)

(3) the initial and final two-spinors are related by:

(3)

unitary matrix by definition (2)



• Extract the physical content from:

irrelevant phase factor
SU(2) matrix  =  rotation matrix in the spin space

- Rotation axis:

Rotation angle:- Rotation angle:





Th 0• The case h = 0: 

(1)

• Nonrelativistic limit: 

(2)



ultrarelativistic limit 
[radians] 

The rotation angle Dj as a function of the velocity parameter a for different incident angles q 



• Ultrarelativistic limit:Ultrarelativistic limit: 

(1)

(2)

(3)



• The geometrical picture in the UR limit: 

rotation angle of the 3-momentum around axis 2

The rotation angle of the spin relative to the 3-momentum:

the helicity is reversed after reflectionthe helicity is reversed after reflection





Puzzle:

- UR particles tend to behave like massless particles

f l hi l f i th h li it i fi d- for massless chiral fermions the helicity is fixed

Answer: 
MIT cannot be applied to chiral particles

For chiral particles:

Incompatibility with MIT:

(1)

(2)Incompatibility with MIT: ( )



The classical solution:

First step - smooth the trajectory at the impact:

3 3

z

1

th t th t j t i t i drepulsive scalar potential V(z) assures that the trajectory is contained 
in the plane 13



• The evolution of the spin defined the Thomas precession:• The evolution of the spin defined  the Thomas precession:

(1)

• The trajectory of the particle defined by:

(2)(2)



• The calculation:

Trick: consider  the velocity of the particle as a function of  y
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The Thomas precession vector:p

the same rotation axis as in the quantum problem with  y = 0 



The  angular velocity:

(1) (2)

conservation of the horizontal component of the 
momentummomentum 

allows  to find the total rotation angle by integrating w.r.t. y   



Th l l i l i l• The total classical rotation angle:

independent of the form of the surface potential V(z) 



(1)(1)

• Nonrelativistic limit: 

(2)(2)

the same as in the quantum problem

• Ultrarelativistic limit:

the rotation angle divergesthe rotation angle diverges 



thi k li l i l lthick line = classical angle

thin line = quantum angle

[degrees] 
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The quantum and the classical rotation angles as functions of the angle q for different velocities.  



classical

quantum

The quantum and the classical rotation angles as functions of the angle q for different velocities.  



classical

quantum

The quantum and the classical rotation angles as functions of the velocity v for a fixed q.The quantum and the classical rotation angles as functions of the velocity v for a fixed q.



Discrepancy in the UR limitDiscrepancy in the UR limit

The quantum result  - stays finite

Th l i l l diThe classical result  - diverges



• Two options regarding the picture in the UR limit:

(I)  A classical spinning body is not a quantum particle with spin

no problem 

(II)  The divergent classical rotation angle is unphysical

something goes wrong with the Thomas precession formulasomething goes wrong with the Thomas precession formula

theoretical models often fail due to unrealistic idealizations



• Idealizations in the Thomas precession formula:

- A well-defined precession vector  = infinitely rigid body

- The spinning body  =  point-like particle

no such bodies exist in special relativity

• Solution: consider a  finite-size elastic body

Conjecture: Df  will stay finite in the UR limit for elastic bodies 

Analogy: the dynamics of point-like / extended charges in classical ED



A high velocity impact should look like this:A  high velocity impact should look like this: 

Thomas precession formula here clearly inapplicable



Practical implications:

Mathisson–Papapetrou–Dixon equations   +  supp. condition   

the spin evolves  according to the Thomas precession formula

problems with the MPD equations in the UR limit ?
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