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Motivation

Rigidly-rotating thermal states represent toy-models for more complex
space-times where thermal equilibrium implies a rigid rotation (as is the
case inside the ergosphere of a Kerr black hole).

Rigidly-rotating states can studied analytically and important conclusions
can be drawn which carry through to more complex scenarios.

The analysis of such states performed using kinetic theory can serve as a
good starting point for quantum field theory computations.
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Relativistic Boltzmann equation

The Boltzmann equation in conservative form can be written as:1

1√
−g

∂µ
(√
−gpα̂eµα̂f

)
− Γîα̂β̂p

α̂pβ̂
∂f

∂pî
= J [f ],

where {eα̂} is an orthonormal tetrad and pα̂ ≡ ωα̂µpµ (ωα̂µe
µ

β̂
= δα̂β̂) is the

momentum of the microscopic constituents, obeying the mass-shell
condition:

gµνp
µpν = −m2.

For non-degenerate fluids, J [f ] drives the relaxation of f towards the
Maxwell-Jüttner equilibrium distribution function:

f
(eq)
M−J = Z exp(βµE + βpλuλ),

where Z is the number of degrees of freedom, β is the local temperature,
µE is the chemical potential and uλ is the fluid four-velocity.

The fluid is in global thermodynamic equilibrium if:

∇λβµE = 0, (βuλ);ν + (βuν);λ = 0.

1C. Y. Cardall, E. Endeve, A. Mezzacappa, Phys. Rev. D 88 (2013) 023011.
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Spherically-symmetric space-times

The line element for a spherically-symmetric ST can be written as 2:

ds2 = w2

[
−dt2 +

dr2

u2
+
r2

v2
(dθ2 + sin2 θdϕ2)

]
,

where w, u and v only depend on r.
A possible choice for the tetrad is given below:

e0̃ =
1

w
∂t, er̃ =

u

w
∂r, eθ̃ =

v

rw
∂θ, eϕ̃ =

v

ρw
∂ϕ,

ω0̃ =wdt, ωr̃ =
w

u
dr, ωθ̃ =

rw

v
dθ, ωϕ̃ =

ρw

v
dϕ.

The Killing vector representing rotations with respect to the z axis is:

kα̃ = βuα̃ = β0(1, 0, 0,Ω)T .

β and uα̃ can be found as the norm of, and unit vector along kα̃:

β = wγ−1β0, uα̃ = w−1γ

(
1, 0, 0,

ρΩ

v

)T
, γ =

1√
1−

(
ρΩ
v

)2
.

2I. I. Cotaescu, J. Phys. A 33, 9177 (2000).
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Co-moving frame for rigidly-rotating flows

The co-moving tetrad {eα̂} can be obtained from {eα̃} by applying the
following Lorentz boost:

Lãα̂ =

u0̃ u̃

uı̃ δı̃ ̃ +
uı̃u̃

u0̃ + 1

 .

giving rise to:

et̂ =
γ

w
(∂t + Ω∂ϕ), ωt̂ =γw

(
dt− ρ2Ω

v2
dϕ

)
,

er̂ =
u

w
∂r, ωr̂ =

w

u
dr,

eθ̂ =
v

rw
∂θ, ωθ̂ =

rw

v
dθ,

eϕ̂ =
γ

w

(
ρΩ

v
∂t +

v

ρ
∂ϕ

)
, ωϕ̂ =

ργw

v
(−Ωdt+ dϕ).

With respect to this tetrad, the fluid velocity is:

uα̂ = (1, 0, 0, 0)T .
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Equilibrium states in the co-moving frame

When the co-moving tetrad is employed, the Maxwell-Jüttner distribution
function has the form (µE = 0):

f (eq) = Ze−p
t̂

.

The resulting particle flux N α̂ and stress-energy tensor T α̂β̂ are:

N α̂ =

∫
d3p

pt̂
f (eq) pα̂ = (n, 0, 0, 0)T ,

T α̂β̂ =

∫
d3p

pt̂
f (eq) pα̂pβ̂ = diag(E,P, P, P ).

The hydrostatic pressure P and energy density E are given by (Z = 1):3

P =
m2

2π2β3
K2(mβ), E =

3m2

2π2β2

[
K2(mβ) +

mβ

3
K1(mβ)

]
,

while n = βP .
3V. E. Ambrus,, R. Blaga, Annals of West University of Timisoara - Physics 58 (2015) 89.
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Maxwell-Jüttner equilibrium states
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In the massless case, n, P and E reduce to (Z = 1):

n =
1

π2β3
, P =

1

π2β4
, E =

31

π2β4
.

n, P and E are monotonic functions with respect to β.
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Transport coefficients

Marle model: J [f ] = −mτ (f − f (eq)), τ = 1
nπa2V
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The transport coefficients have the same expression on curved spaces as
on Minkowski space.4

They characterise the flows in the hydrodynamic regime close to the
equilibrium state.

While λ and µ are monotonic in ζ = mβ, the bulk viscosity η attains a
maximum value at ζmax ' 1.535.

4C. Cercignani, G. M. Kremer, The relativistic Boltzmann equation: theory and
applications, Birkhäuser Verlag, Basel, Switzerland (2002).
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Speed of light surface and horizon structure

In co-rotating coordinates t = tstatic and ϕ = ϕstatic − Ωtstatic, the line
element becomes:

ds2 = w2

[
−γ−2dt2 +

2ρ2Ω

v2
dtdϕ+

dr2

u2
+
r2

v2
dΩ2

]
.

The surfaces where g00 = 0 represent Killing horizons (βuµ becomes null)
and the temperature β−1 diverges:5

−g00 = w2

(
1− ρ2Ω2

v2

)
=
β2

β2
0

= 0.

The horizons are:

Rotation horizons (speed of light surfaces): where 1− ρ2Ω2/v2 → 0;
Cosmological or event horizons: due to the properties of w and v.

The horizon structure is complicated, revealing an interplay between the
properties of the space-time and the rigid rotation.

5R. C. Tolman, Phys. Rev. 35 (1930) 904;
R. C. Tolman, P. Ehrenfest, Phys. Rev. 36 (1930) 1791.
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Maximally-symmetric space-times

The line element on maximally-symmetric space-times is:

ds2 = −(1− εω2r2)dt2 +
dr2

1− εω2r2
+ r2dΩ2,

where ε = 0 (Minkowski), 1 (dS) and −1 (adS).

The inverse temperature takes the form:

β = β0

√
1− (εω2 + Ω2 sin2 θ)r2,

where β0 = β(r = 0).

At Ω = 0:

β−1 remains constant (Minkowski);
β−1 decreases to 0 as r →∞ (adS);
β−1 increases to ∞ as the cosmological horizon r = ω−1 is approached
(dS).
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Killing horizons of rigidly-rotating observers
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The rotation induces an SOL where β = 0, i.e.:
ρ = Ω−1 (Minkowski)
ωrSOL = (1 + Ω2 sin2 θ/ω2)−1/2 (dS)
ωrSOL = (−1 + Ω2 sin2 θ/ω2)−1/2 (adS)

Decreasing Ω decreases the distance to the SOL.
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Bulk viscosity in rigidly-rotating thermal states
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No SOL forms on adS for Ω < ω, while for Ω = ω, β is constant in the
equatorial plane.

As ζ decreases from ζ0 = 4 at the origin to 0 on the SOL, η attains a
maximum when ζ = ζmax ' 1.535.
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Reissner-Nordström black-holes

The line element of the Reissner-Nordström metric is given by:

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

dr2

1− 2M
r + Q2

r2

+ r2dΩ2,

The inverse temperature β seen by rigidly-rotating observers is:

β = β0

√
1− 2M

r
+
Q2

r2
− ρ2Ω2, (1)

where β0 = β(ρ = 0, z → ±∞).

Killing horizons at:

1− 1

r̃
+
Q̃2

r̃2
− ρ̃2Ω̃2 = 0, (2)

where r̃ = r
2M , Q̃ = Q

2M and Ω̃ = 2MΩ.

At Ω = 0, β decreases from β0 at ∞ to 0 on the the black hole outer
horizon at r →M +

√
M2 −Q2.
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Killing horizons of rigidly-rotating observers
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Increasing Ω̃ = 2MΩ brings the SOL closer to, and pushes the event
horizon away form, the rotation axis.

Increasing Q̃ = Q/2M has an inverse effect.

At large enough Ω̃, the SOL and event horizon join, such that β becomes
imaginary throughout the equatorial plane.
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Bulk viscosity in rigidly-rotating thermal states
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At Ω̃ 6= 0, ζ = mβ increases from 0 on the event horizon to ζM , from
where it decreases to 0 on the SOL;

If ζM > ζmax ' 1.535, η peaks twice between the two horizons, presenting
a minimum between the two peaks.
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Conclusion

On maximally-symmetric spaces, the SOL forms closer (farther) to the
rotation axis on dS (adS) compared to Minkowski.

No SOL forms on adS if Ω < ω. At Ω > ω, β (and n, η, . . . ) are constant
on cones defined by Ω sin θ = ω.

On Reissner-Nordström, the rotation enhances the EH, which joins the
SOL at large Ω.

At large enough β0, η can exhibit two points of maxima between the EH
and the SOL.

The analysis serves as a good starting point for the interpretation of
rigidly-rotating quantum thermal states.

This work was supported by a grant of the Romanian National Authority
for Scientific Research and Innovation, CNCS-UEFISCDI, project number
PN-II-RU-TE-2014-4-2910.
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