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e Rigidly-rotating thermal states represent toy-models for more complex
space-times where thermal equilibrium implies a rigid rotation (as is the
case inside the ergosphere of a Kerr black hole).

e Rigidly-rotating states can studied analytically and important conclusions
can be drawn which carry through to more complex scenarios.

@ The analysis of such states performed using kinetic theory can serve as a
good starting point for quantum field theory computations.
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Relativistic Boltzmann equation

e The Boltzmann equation in conservative form can be written as:!

S0, (VL) ~ T S = 1),

where {e4} is an orthonormal tetrad and p® = wg‘p“ (wé‘eg = 5@ 5) 1s the

"
momentum of the microscopic constituents, obeying the mass-shell

condition:
2

Gup"'p” = —m”.
e For non-degenerate fluids, J[f| drives the relaxation of f towards the
Maxwell-Juttner equilibrium distribution function:

154(1)‘] = Zexp(Bug + Bpuy),

where Z is the number of degrees of freedom, (5 is the local temperature,
L is the chemical potential and u* is the fluid four-velocity.

@ The fluid is in global thermodynamic equilibrium if:

VaBue =0, (5UA);V + (5%);/\ =

1C. Y. Cardall, E. Endeve, A. Mezzacappa, Phys. Rev. D 88 (2013) 023011.
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Spherically-symmetric space-times

o The line element for a spherically-symmetric ST can be written as 2:

ds® = w? ﬁ2-@3+ﬁw¥+'2&1%
ST =w" |— + 2 2 Sin % :
where w, v and v only depend on r.
@ A possible choice for the tetrad is given below:

1 U

v v
€0 :_8t7 €r :_8?“7 €o :—897 €5 :—8@7

w W oW

5 =W 5 TWw = pw
w? =wdt, w" =—dr, w? =—dé, w¥ =—dp.

u v v

e The Killing vector representing rotations with respect to the z axis is:
kY = Bu® = By(1,0,0,Q)7.

o 3 and u® can be found as the norm of, and unit vector along k°:

—1 & —1 P g 1
BZW’Y 507 u =w 1707077 ) Y =

21. 1. Cotaescu, J. Phys. A 33, 9177 (2000).
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Co-moving frame for rigidly-rotating flows

@ The co-moving tetrad {es} can be obtained from {es} by applying the
following Lorentz boost:

. u() uj
L% = i s u'u;
u 7 —
uf + 1
giving rise to:
2
y ; P
e; :E(at + Q0,,), W' =~yw (dt -~ U—ngp> :
Er :E&n, w" :Edr,
w u
es 2189, w? :@de,
rw v
Q .
es =7 ('0—5’75 98¢> : w? :'OL(—th + dyp)
w \ v 0 v

e With respect to this tetrad, the fluid velocity is:
u® = (1,0,0,0)%.
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Equilibrium states in the co-moving frame

@ When the co-moving tetrad is employed, the Maxwell-Juttner distribution
function has the form (ugp = 0):

flea) — 7o~

o The resulting particle flux N and stress-energy tensor T are:

. d3
N© _/ = (n,0,0,0)"
pt
[
768 — | TP plea) yanB — diag(E, P, P, P).
pt

e The hydrostatic pressure P and energy density E are given by (Z = 1):3

2 2
P = 277;" la(mp),  F= 2:7))2/32 Kao(mpB) + %ﬂKl (mB)
while n = GP.

3V. E. Ambrus, R. Blaga, Annals of West University of Timisoara - Physics 58 (2015) 89.
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Maxwell-Juttner equilibrium states
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@ In the massless case, n, P and E reduce to (Z = 1):

1 1 31
233’ P:W254’ E:W254‘

n =

@ n, P and E are monotonic functions with respect to (3.
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Transport coeflicients

Marle model: J[f] = —2(f — f(eD), r=_1_
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@ The transport coeflicients have the same expression on curved spaces as
on Minkowski space.*

@ They characterise the flows in the hydrodynamic regime close to the
equilibrium state.

e While A and p are monotonic in ( = m/f3, the bulk viscosity n attains a
maximum value at (pnax >~ 1.535.

4C. Cercignani, G. M. Kremer, The relativistic Boltzmann equation: theory and

applications, Birkhduser Verlag, Basel, Switzerland (2002).
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Speed of light surtface and horizon structure

@ In co-rotating coordinates t = tgtatic and © = QOgtatic — 2static, the line
element becomes:

@ The surfaces where ggp = 0 represent Killing horizons (Su* becomes null)
and the temperature =1 diverges:®

202 2
p=§2 5
—900:w2 (1— U2 ):—63 — ().

@ The horizons are:
o Rotation horizons (speed of light surfaces): where 1 — p*Q? /v* — 0;
e Cosmological or event horizons: due to the properties of w and v.

@ The horizon structure is complicated, revealing an interplay between the
properties of the space-time and the rigid rotation.

5R. C. Tolman, Phys. Rev. 35 (1930) 904;
R. C. Tolman, P. Ehrenfest, Phys. Rev. 36 (1930) 1791.

V.E.Ambrug, I.I.Cotaescu (WUT) Rigidly rotating thermal states TIM 15-16, 28/05/2016 10 / 17



Maximally-symmetric space-times

@ The line element on maximally-symmetric space-times is:

2

ds® = —(1 — ew?r?)dt* + + r2dQ?,

1 — ew?r?

where € = 0 (Minkowski), 1 (dS) and —1 (adS).

@ The inverse temperature takes the form:

B = ﬁo\/l — (ew? 4 Q2 sin® 0)r2,

where 5y = 8(r = 0).
o At 2 =0:
o 87" remains constant (Minkowski);

o B! decreases to 0 as » — oo (adS);
o 57! increases to 0o as the cosmological horizon r = w™

(dS).

! is approached
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Killing horizons of rigidly-rotating observers

de Sitter (e=1)
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@ The rotation induces an SOL where 5 = 0, i.e.:
o p=0"" (Minkowski)
@ WIsol, = (1 + 02 sin? 9/w2)_1/2 (dS)
o wrsor = (—1 4 Q%sin?6/w?)~/? (adS)

@ Decreasing () decreases the distance to the SOL.
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Bulk viscosity in rigidly-rotating thermal states
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@ No SOL forms on adS for {2 < w, while for {2 = w, 8 is constant in the
equatorial plane.

@ As ( decreases from (o = 4 at the origin to 0 on the SOL, n attains a
maximum when ¢ = (nax =~ 1.535.

V.E.Ambrug, I.I.Cotaescu (WUT) Rigidly rotating thermal states TIM 15-16, 28/05/2016 13 / 17



Reissner-Nordstrom black-holes

@ The line element of the Reissner-Nordstrom metric is given by:

IM 2 dr?
d32:—(1— +Q )dt2+1 2]\; +r2d92
+

@ The inverse temperature 3 seen by rigidly-rotating observers is:

2
5250\/1—2i\4+Q — p2Q)2, (1)

r2

where By = 8(p =0,z — +00).

e Killing horizons at:

2 ~
1—;+Q—— p* Q% =0, (2)

Wherer——M, S andQ—QMQ

o At Q2 =0,7 decreases from Bo at oo to 0 on the the black hole outer
horizon at r — M + /M2 — Q2.
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Killing horizons of rigidly-rotating observers

@ Increasing Q= 2MQ brings the SOL closer to, and pushes the event
horizon away form, the rotation axis.

e Increasing () = @Q/2M has an inverse effect.

e At large enough Q, the SOL and event horizon join, such that 8 becomes
imaginary throughout the equatorial plane.
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Bulk viscosity in rigidly-rotating thermal states
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o At Q # 0, ( = mp increases from 0 on the event horizon to (js, from
where it decreases to 0 on the SOL;

@ If (ar > Cmax =~ 1.535, 1 peaks twice between the two horizons, presenting
a minimum between the two peaks.
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Conclusion

On maximally-symmetric spaces, the SOL forms closer (farther) to the
rotation axis on dS (adS) compared to Minkowski.

No SOL forms on adS if 2 < w. At Q > w, 8 (and n, 7, ...) are constant
on cones defined by 2sinf = w.

On Reissner-Nordstrom, the rotation enhances the EH, which joins the
SOL at large ().

At large enough (g, n can exhibit two points of maxima between the EH
and the SOL.

The analysis serves as a good starting point for the interpretation of
rigidly-rotating quantum thermal states.
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