Force-driven rarefied flows between diffuse-reflecting boundaries
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Setup: one-dimensional flow in the gravitational

field
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Boltzmann equation

@ The aim is to solve

oif + %axf — mgd,f = —%[f —fled] = —. (1)

subject to diffuse reflection boundary conditions:

fp>0,x==L/2)=fY  flp<0,x=LJ2)=f?
(q) _ _ Ms  —p?/2mT. 2)

* 2T,

@ n. are fixed by imposing a vanishing mass flux at the wall:

Lodrfp bty
fooo dpp [F9 /n,] f_ooo dpp [F°V /n_]

@ The recovery of the above half-range integrals requires half-range
quadratures!

(3)

714_ - -
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Numerical scheme

6=0.5

@ Let us write the Boltzmann equation
in the following form

— 1 -
T P 5
the TVD RK-3 scheme! 2o d s’

CANNTI A (eq)
ot T moz I =f 1+ mgo,f
@ The time-stepping is 1mplemented using

@ We employ the following coordinate stretchmg oo "
L
4
x(n) = A — tanh 7. (4)
@ Writing the advection term as:
Ferrsz — Fo-
Eaxf _ +1/2 1/2 ’ (5)
m X(1s+1/2) = X(7s-1/2)

the fluxes F:.1,» are implemented using WENO-5.°

1C.-W. Shu, S. Osher, J. Comput. Phys. 77 (1988) 439.
R. Mei and W. Shyy, JCP 143 (1998) 426; Z. Guo and T. S. Zhao, PRE 67 (2003) 066709.
31.. Rezzolla, O. Zanotti, Relativistic hydrodynamics (Oxford University Press, Oxford, UK, 2013).
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Force in full-range models
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Expansion with respect to full-range polynomials

@ f can be expanded as:

f= ;/; L ;ﬂHf(P) Fe = I : dp f He(p)- (6)
® d,f can be obtained using d,[H(p)e ™ 2] = —e 7> Hy11(p):*
12 &
Opf = Y L7 —FeHe1(p). (7)
@ Eq. (6) can be used to eliminate ¥:
o P2 &
0 = | W Kep e, K=" Y HaHG). ©

4V. E. Ambrus, V. Sofonea, J. Comput. Sci. 17 (2016) 403.
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5

Discretisation of momentum space

@ The full range moments of f can be recovered using the full-range
Gauss-Hermite quadrature:

00 Q
I dpfp = ) fidh ©)

where the equality is exact if Q > s and the series expansion of f is
truncated at £ = Q — 1.

@ The discrete populations f; are:

Wy Q!
Ji = may Vz_nf(pk)' T Hom ol 10
while {py,k =1,2,...} is the set of roots of Hp(p).
@ The kernel K(p,p') — Kir:
0-1
Ky = —wy Z He(p)He(pr). (11)
=0

°V. E. Ambrus, V. Sofonea, J. Comput. Phys. 316 (2016) 1.
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The good: equilibrium flow

o The particular case T, = T_ = T, admits ">

an isothermal equilibrium solution:

f — n(X) e_Pz/ZmTw, 1.25 Poog

V2rtmTy, <

where 1(x) is the barometric profile:

0.75

mgN

mgx

n(x) =

@ The above solution is valid for all values of ~.

1.5 [,

2T, sinh(mgL/2Ty) ¥ (_T_w) >

=0.0 o
g=025 =
=0.5 o
g=0.75 e
g=1.0 s
Analytic ,
[HH

0.5 -0.25 0 025 0.5
X

@ The results were obtained with HLB(5) at Kn = 0.5 (N, = 20 nodes).
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The good: Navier-Stokes

AT=0.8 & AT=0.8 &
AT=0.4 = AT=0.4 -
5 AT=0.0 o AT=0.0 o
AT=-0.4 e AT=-0.4 e
4 AT=-0.8 - AT=-0.8 -
Analytic Analytic

. Analyt'ilc

-0.5 -0.25 0 0.25 0.5
X

@ The NS solution is:

mgN mgL
n(x) = .g el &P —%[ZT(JC) -T_-T,]],
2T (x) sinh 7+ I=-T%
T2 -T2 T2 + T?
T(x) = VAx + B, A:T, B:T'

@ Excellent agreement using HLB(5) at Kn = 0.001 using N, = 100 nodes.
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The bad: free molecular flow

1_06 T T T T T 1_1 T T T T T
HLB(20) = HLB(20) =
Ny HLB(50) e HLB(50) e
L HLB(100) - HLB(100) s
1.03 | e HLB(200) — v /| 1.05 ’,.X\"‘“vn._ HLB(200) v
- Analytic T Analytic
~.‘.; TA
c 1 . [ 1 *
" - "‘.n.‘ R
0.97 | . 0.95 |
oy
.|
0.94 : : ‘ ‘ ‘ 0.9 : : ‘ : :
-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

g=01,T, =14,T_ =06

@ Ballistic regime analytic solution:

mg(L—2x)

_1 , 2Ty mg(L—2x)
v ¢ erfc ( Ty

)
\/T_[emgL/T+erfc( \/7) 1] + \/_[emgL/T—erfc( ";%L) - 1]’
T_e

mg(L—2x) 2—2%)

— 2Ty /

T,e + erfc( Ty )+
Leng(in erfc ,/ $(L—2)
T+ 2T,

n(x) =mgN

T(x) =
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Force in half-range models
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Expansion with respect to half-range polynomials

(naive)

@ In order to allow f(p) to become discontinuous at p = 0, the following
split is assumed:

+ —p?/2 2
f(P) — {f (P)r p>0’ fi — e P

f~(p), p<O,

00 0
Fo = f dpf(p)be(p),  F, = I ) dpf(p) he(—p). (12)

0
@ The derivatives of f* can be computed analytically:

o o ;
f =5 Z?—‘*l b bea([p)) + Z I)Obs(l I)] (13)

De+1 041 —

@ The first order moment of d,f evaluates to:

” = Do _ _

dpd,f = — —(F,"—F,) =-=[f"(0) - f(0)]. (14)
[ . p opf ;5 Vo £ £ I/ f

@ When a discontinuity is present at p = 0, f*(0) # f~(0).
@ The LHS of Eq. (14) always evaluates to 0!
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Expansion with respect to half-range polynomials:

distributions

@ The error is due to a missing term when taking the derivative of f.

@ This term is due to the implicit split at p = 0:

f(p) = 6(p)f*(p) + O(=p)f~(p). (15)
@ The derivative also acts on O(+p):
Opf = O(p)Fpf ™ + 6(=p)dpf ~(p) + 6(P)[f 7 (0) =/~ (O)]. (16)

@ The 6 term is sufficient to ensure f dp d,f = 0.
@ The projection of 6(p)[f "(p) —f~(p)] = 6(p)[f T (0) — f~(0)] is:

—p2/2
< [sto@f* T)][szobfdpb] (17)

OMIFIf (p) = (p)] =
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Discretisation of the momentum space

@ The half range moments of f can be recovered using the half-range
Gauss-Hermite quadrature:

00 Q 0 Q
f dnfp* =) firi, f dpfp* = ) foul-poy°, (18)
0 k=1 - k=1

where the equality is exact if Q > s and the series expansion of f* is
truncated at £ = Q — 1.

@ The discrete populations {f1, f2,...f2o} are (1 < k < Q):

i ): w f(m)) _ Pag "
o)~ errN2R o) T T o [per v/ vor| ()

while {pr, k =1,2,...Q} is the set of roots of ho(p) and pox = —p«.

V. E. Ambrus, V. Sofonea, ]. Comput. Phys. 316 (2016) 1.
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The ugly: kernel for force term

@ We are now looking for a recipe to calculate the momentum space
derivative of f:

2Q
(Dpf )i = Z Kk fr - (20)
=1

@ The 2Q X 2Q matrix K has the following elements:

S, b +
ng/ _ WkOk {1 + 0Oy bed D |)[Z be,ob Of)s(| k|) A 1(ka|)]
s=0+1

1 Ot
R — s,0Ys / . 21
» \/—n[;b,ob (kal>]>< ;abf,obf(h?k |>}} (21)
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Ballistic regime: density profile

3 , | |
AT=0.6 &
Z&1:=()J3 ----- "-----
AT=0.0 o
ZST::'()J4 ------ o
2 I Analytic

. E 1 |
AT=0.3 =
085  AT=0.0 o
08} AT=0.4 - .
Analytic
0.75 : :
05 -025 0 025 05 0
y 05 -0.25 0 025 05
X
¢g=01 g=10
| ms-29 ( [mgL—2v)\ 1 ms@-29 ( \/W )
e v erfc|—+/—— |+ —=e 2T- erfc| «/ =—
— moN VT 2T ) NT- 21-
n(x) = mg - - - :
m m
VT, [emgL/T+erfc (— Tg+ ) — 11+ VT- [emgL/T-erfc ( 1/T—g_) — 1]

Excellent agreement using HHLB(200), N, = 20 nodes and A = 0.99.
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Ballistic regime: temperature

1.2 . . . 1.4

0.6

0.4 ' ' ' . ' ' '
05 -025 0 025 05 05 -025 0 025

g — 01 g = 10
mg(L—2x) _ mg(L—2x) _
VT.e o= erfe (— gL 2x)) + T e = erfc mg;LT_Zx)

I ~ mg(L—2x) o
P [ mg(L—2x) P mg(L—2x)
\/ﬁe n erfc( T + —\/T__e erfc ST

Excellent agreement using HHLB(200), N, = 20 nodes and A = 0.99.

T(x) =
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Conclusion
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Conclusion

@ The simulation of bounded flows in the rarefied regime requires the use
of half-range quadratures.

e Implementing d,f using half-range quadratures requires the theory of
distributions.

@ Applications include:

o Heat transfer between coaxial cylinders and concentric spheres;’
e Circular Couette flow; circular lid-driven cavity;8
o Other force-driven flows or flows in curved geometries in the rarefied
regime.
@ This work is supported by the grants from the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI having project
numbers PN-II-RU-TE-2014-4-2910 and PN-II-ID-JRP-2011-2-0060.

’Presentation by Sergiu Busuioc on Tuesday.

$Presentation by Victor Sofonea on Wednesday.
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