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Setup: one-dimensional flow in the gravitational
field
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Boltzmann equation

The aim is to solve

∂tf +
p
m
∂xf −mg∂pf = −

1
τ

[f − f (eq)], τ =
Kn
n
. (1)

subject to diffuse reflection boundary conditions:

f (p > 0, x = −L/2) = f (eq)
+ , f (p < 0, x = L/2) = f (eq)

−
,

f (eq)
±

=
n±

√
2πmT±

e−p2/2mT± (2)

n± are fixed by imposing a vanishing mass flux at the wall:

n+ = −

∫ 0

−∞
dp f p∫

∞

0 dp p [f (eq)
+ /n+]

, n− = −

∫
∞

0 dp f p∫ 0

−∞
dp p [f (eq)

−
/n−]

. (3)

The recovery of the above half-range integrals requires half-range
quadratures!
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Numerical scheme
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Let us write the Boltzmann equation
in the following form:

∂f
∂t

+
p
m
∂f
∂z

= −
1
τ

[f − f (eq)] + mg∂pf .

The time-stepping is implemented using
the TVD RK-3 scheme.1

We employ the following coordinate stretching:2

x(η) =
L

2A
tanh η. (4)

Writing the advection term as:

p
m
∂xf =

Fs+1/2 − Fs−1/2

x(ηs+1/2) − x(ηs−1/2)
, (5)

the fluxes Fs±1/2 are implemented using WENO-5.3
1C.-W. Shu, S. Osher, J. Comput. Phys. 77 (1988) 439.
2R. Mei and W. Shyy, JCP 143 (1998) 426; Z. Guo and T. S. Zhao, PRE 67 (2003) 066709.
3L. Rezzolla, O. Zanotti, Relativistic hydrodynamics (Oxford University Press, Oxford, UK, 2013).

5 / 21



Force in full-range models
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Expansion with respect to full-range polynomials

f can be expanded as:

f =
e−p2/2

√
2π

∞∑
`=0

1
`!
F`H`(p), F` =

∫
∞

−∞

dp f H`(p). (6)

∂pf can be obtained using ∂p[H`(p)e−p2/2] = −e−p2/2H`+1(p):4

∂pf = −
e−p2/2

√
2π

∞∑
`=0

1
`!
F`H`+1(p). (7)

Eq. (6) can be used to eliminate F`:

∂pf =

∫
∞

−∞

dp′K (p, p′)f (p′), K (p, p′) = −
e−p2/2

√
2π

∞∑
`=0

H`+1(p)H`(p′). (8)

4V. E. Ambrus, , V. Sofonea, J. Comput. Sci. 17 (2016) 403.
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Discretisation of momentum space5

The full range moments of f can be recovered using the full-range
Gauss-Hermite quadrature:∫

∞

−∞

dp f ps
'

Q∑
k=1

fkps
k, (9)

where the equality is exact if Q > s and the series expansion of f is
truncated at ` = Q − 1.
The discrete populations fk are:

fk =
wk

e−p2/2/
√

2π
f (pk), wk =

Q!
[HQ+1(pk)]2 , (10)

while {pk, k = 1, 2, . . . } is the set of roots of HQ(p).
The kernelK (p, p′)→ Kk,k′ :

Kk,k′ = −wk

Q−1∑
`=0

H`+1(pk)H`(pk′ ). (11)

5V. E. Ambrus, , V. Sofonea, J. Comput. Phys. 316 (2016) 1.
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The good: equilibrium flow
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The particular case T+ = T− = Tw admits
an isothermal equilibrium solution:

f =
n(x)
√

2πmTw
e−p2/2mTw , ,

where n(x) is the barometric profile:

n(x) =
mgN

2Tw sinh(mgL/2Tw)
exp

(
−

mgx
Tw

)
.

The above solution is valid for all values of τ.
The results were obtained with HLB(5) at Kn = 0.5 (Nx = 20 nodes).
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The good: Navier-Stokes
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g = 0.1 g = 1.0 Independent of g

The NS solution is:

n(x) =
mgN

2T(x) sinh mgL
T++T−

exp
[
−

mgL
T2
−
− T2

+

[2T(x) − T− − T+]
]
,

T(x) =
√

Ax + B, A =
T2
−
− T2

+

L
, B =

T2
−

+ T2
+

2
.

Excellent agreement using HLB(5) at Kn = 0.001 using Nx = 100 nodes.
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The bad: free molecular flow
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Ballistic regime analytic solution:

n(x) =mgN

1
√

T+
e

mg(L−2x)
2T+ erfc

(
−

√
mg(L−2x)

2T+

)
+ 1
√

T−
e

mg(L−2x)
2T− erfc

(√
mg(L−2x)

2T−

)
√

T+

[
emgL/T+ erfc

(
−

√
mgL
T+

)
− 1

]
+
√

T−
[
emgL/T−erfc

(√
mgL
T−

)
− 1

] ,

T(x) =

√
T+e

mg(L−2x)
2T+ erfc

(
−

√
mg(L−2x)

2T+

)
+
√

T−e
mg(L−2x)

2T− erfc
√

mg(L−2x)
2T−

1
√

T+
e

mg(L−2x)
2T+ erfc

(
−

√
mg(L−2x)

2T+

)
+ 1
√

T−
e

mg(L−2x)
2T− erfc

√
mg(L−2x)

2T−

.
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Force in half-range models
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Expansion with respect to half-range polynomials
(naı̈ve)

In order to allow f (p) to become discontinuous at p = 0, the following
split is assumed:

f (p) =

f +(p), p > 0,
f−(p), p < 0,

f± =
e−p2/2

√
2π

∞∑
`=0

F
±

` h`(
∣∣∣p∣∣∣),

F
+
` =

∫
∞

0
dp f (p) h`(p), F

−

` =

∫ 0

−∞

dp f (p) h`(−p). (12)

The derivatives of f± can be computed analytically:

∂f±

∂p
= ∓

e−p2/2

√
2π

∞∑
`=0

F
±

`

 h`,`h`+1,`+1
h`+1(

∣∣∣p∣∣∣) +
∑̀
s=0

h`,0hs,0
√

2π
hs(

∣∣∣p∣∣∣) . (13)

The first order moment of ∂pf evaluates to:∫
∞

−∞

dp ∂pf = −

∞∑
`=0

h`,0
√

2π
(F +

` − F
−

` ) = −[f +(0) − f−(0)]. (14)

When a discontinuity is present at p = 0, f +(0) , f−(0).
The LHS of Eq. (14) always evaluates to 0! 13 / 21



Expansion with respect to half-range polynomials:
distributions

The error is due to a missing term when taking the derivative of f .
This term is due to the implicit split at p = 0:

f (p) = θ(p)f +(p) + θ(−p)f−(p). (15)

The derivative also acts on θ(±p):

∂pf = θ(p)∂pf + + θ(−p)∂pf−(p) + δ(p)[f +(0) − f−(0)]. (16)

The δ term is sufficient to ensure
∫

dp ∂pf = 0.
The projection of δ(p)[f +(p) − f−(p)] = δ(p)[f +(0) − f−(0)] is:

[δ(p)]±[f +(p) − f−(p)] =
e−p2/2

4π

 ∞∑
s=0

hs,0(F +
s − F

−

s )


 ∞∑
`=0

h`,0h`(
∣∣∣p∣∣∣) . (17)
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Discretisation of the momentum space6

The half range moments of f can be recovered using the half-range
Gauss-Hermite quadrature:∫

∞

0
dp f ps

'

Q∑
k=1

fkps
k,

∫ 0

−∞

dp f ps
'

Q∑
k=1

fQ+k(−pk)s, (18)

where the equality is exact if Q > s and the series expansion of f± is
truncated at ` = Q − 1.
The discrete populations {f1, f2, . . . f2Q} are (1 ≤ k ≤ Q):(

fk
fQ+k

)
=

wk

e−p2/2/
√

2π

(
f (pk)

f (−pk)

)
, wk =

pka2
Q

h2
Q+1(pk)

[
pk + h2

Q,0/
√

2π
] , (19)

while {pk, k = 1, 2, . . .Q} is the set of roots of hQ(p) and pQ+k = −pk.

6V. E. Ambrus, , V. Sofonea, J. Comput. Phys. 316 (2016) 1.
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The ugly: kernel for force term

We are now looking for a recipe to calculate the momentum space
derivative of f :

(∂pf )k =

2Q∑
k′=1

Kk,k′ fk′ . (20)

The 2Q × 2Q matrixKk,k′ has the following elements:

K
h

k,k′ =
wkσk

p0

1 + σkσk′

2

Q−2∑
`=0

h`(
∣∣∣pk′

∣∣∣)  Q−1∑
s=`+1

h`,0hs,0
√

2π
hs(

∣∣∣pk

∣∣∣) − h`+1(
∣∣∣pk

∣∣∣)
a`


−

1

2
√

2π

Q−1∑
s=0

hs,0hs(
∣∣∣pk

∣∣∣) ×
Q−1∑
`=0

h`,0h`(
∣∣∣pk′

∣∣∣)
 . (21)
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Validation
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Ballistic regime: density profile
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n(x) = mgN

1
√

T+
e

mg(L−2x)
2T+ erfc

(
−

√
mg(L−2x)

2T+

)
+ 1
√

T−
e

mg(L−2x)
2T− erfc

(√
mg(L−2x)

2T−

)
√

T+

[
emgL/T+ erfc

(
−

√
mgL
T+

)
− 1

]
+
√

T−
[
emgL/T−erfc

(√
mgL
T−

)
− 1

] .
Excellent agreement using HHLB(200), Nx = 20 nodes and A = 0.99. 18 / 21



Ballistic regime: temperature
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√
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√
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2T− erfc
√

mg(L−2x)
2T−

1
√

T+
e

mg(L−2x)
2T+ erfc

(
−

√
mg(L−2x)

2T+

)
+ 1
√

T−
e

mg(L−2x)
2T− erfc

√
mg(L−2x)

2T−

.

Excellent agreement using HHLB(200), Nx = 20 nodes and A = 0.99. 19 / 21
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Conclusion

The simulation of bounded flows in the rarefied regime requires the use
of half-range quadratures.
Implementing ∂pf using half-range quadratures requires the theory of
distributions.
Applications include:

Heat transfer between coaxial cylinders and concentric spheres;7

Circular Couette flow; circular lid-driven cavity;8

Other force-driven flows or flows in curved geometries in the rarefied
regime.

This work is supported by the grants from the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI having project
numbers PN-II-RU-TE-2014-4-2910 and PN-II-ID-JRP-2011-2-0060.

7Presentation by Sergiu Busuioc on Tuesday.
8Presentation by Victor Sofonea on Wednesday.
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