
Shock propagation in Galilean and special relativity

Robert BLAGA, Victor E. AMBRUŞ
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Abstract
We employ quadrature-based lattice Boltzmann models for the study of

the propagation of fluids in setups containing shocks. We show that our mod-
els can accurately capture the features of the flow for all degrees of rarefaction,
from the hydrodynamic regime to the free-streaming regime. The decrease of
the adiabatic index from 5/3 to 4/3, as we pass from the non-relativistic to the
ultrarelativistic limit, induces qualitative changes in the hydrodynamic fields.
We highlight key similarities and differences between these regimes.

Introduction
The relativisitc Boltzmann equation, with the Anderson-Witting colli-
sion term:

pµ
∂f

∂xµ
=
pµuµ
τ

(f − f (eq)), (1)

where pµ is the particle 4-momentum, obeying the mass-shell condi-
tion p2 = ηµνp

µpν = 0. The Maxwell-Jüttner equlibrium distribution
functions:

f (eq) =
n

8πT 3
exp

(
pµuµ
T

)
(2)

The macroscopic fields are obtained as moments of the distribution
function:
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where ξ = cos θ. The energy-momentum tensor of an ultra-relativistic
fluid is given by:

Tµν = (E + P )uµuν + Pηµν + qµuν + qνuµ + Πµν, (4)

where E and P represents the energy and pressure, qµ the heat-flux,
while Πµν is the shear-stress tensor.

Relativistic Lattice Boltzmann model
The road to building our lattice Boltzmann models [2] has two steps:
• projecting f (eq) onto an orthogonal set of polynomials

f (eq)(t, ~x, ~p) =
e−p/T0

T 3
0

NL∑
`=0

NΩ∑
s=0

a(eq)

`,s(~x, t)Ps(cos γu)L
(2)
` (p/T0) (5)

The series is truncated at the finite values NL, NΩ

• introducing the Gauss quadrature relations (vα = pα/p):
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This gives us a prescription for choosing the discrete set of mo-
menta. If the value of QL, Qξ, Qφ is taken large enough, depending
on the order of the integrated polynomial, the above sums are exact.

Numerical results

Setup:Riemann problem
We initialize the system with the state [6]:

(P, n, β) =

{
(PL = 1, nL = 0.1, βL = 0), if z < 0,

(PR = 0.1, nR = 0.125, βR = 0), if z > 0.
(7)

Inviscid regime (τ → 0)
The flow develops a rarefaction wave moving into the denser region
(left), and a shock-wave and contact discontinuity moving towards
the more tenuous region (right). As we decrease the relaxation time,
the simulated profiles converge towards the analytic solution obtained
from ideal hydrodynamics (τ → 0).
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Figure 1: Density profile of the fluid at time t = 0.4, at various relaxation times.
The quadratures orders are set to QL = 2, Qφ = 1, Qξ = 4. The spatial lattice has
Lz = 10000 nodes, while the time step is taken to be δt = 5× 10−6.

In five-field theory, the non-equilibrium quantities (dynamic pres-
sure, heat-flux and shear-stress) are proportional to the gradients of
the macroscopic fields. If the flow contains shocks, the heat flux, for
example, is related to the gradients of the pressure and temperature as
follows:

qµ =
λT

4
∆µν∂ν ln

(
P

T 4

)
, ∆µν = ηµν + uµuν (8)

In our case, as the system is homogeneous along the x and y axis, the
heat-flux has only one degree of freedom: qµ = q(β, 0, 0, 1).
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Figure 2: Magnitude of the heat-flux. As the relaxation time is decreased the non-
equilibrium quantities are reduced to narrow spikes around the shock front and con-
tact discontinuity.

The parameter λ is the heat conductivity, and in the ultrarelativis-
tic limit can be seen to take the following form: λ = 4

3
Pτ
T , when ob-

tained through the Chapman-Enskog method. If instead one would use
Grad’s method, the result would be λ = 4

5
Pτ
T . It is still an open ques-

tion which of the above is the correct form, however there have been
a number of recent results which suggest that the Chapman-Enskog
method gives the correct results [1, 4, 5]. This can be seen also here,
if we integrate the heat-flux over a small area around the contact dis-
continuity: ∫ zC+δz

zC−δz
q dz =

1

8
(λITI + λIITII) ln

(
PII

T 4
II

T 4
I

PI

)
. (9)

One can do similarly for the heat-flux and the shear pressure around
the shock front. The results are shown in Fig.3.
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Figure 3: The absolute values of the heat-flux and shear pressure, integrated over
a small area around the contact discontinuity and shock front. The shear pressure
around the contact discontinuity vanishes, since it is proportional to the velocity
gradient, which in turn vanishes because the velocity is constant there.

Ballistic regime (τ →∞)
In this regime the fluid constituents are streamed freely and the flow
does not develop any distinguishable features. The staircase-like pro-
file is due to the fact that the populations corresponding to each
quadrature value are evolved independently. A large number of ve-
locities is thus required in order to obtain a smooth profile.
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Figure 4: Density profile of the fluid in the ballistic regime, for increasing values of
the polar quadrature. The spatial lattice is taken to be δz = 10−4, while the time step
is δt = 5× 10−4.

Viscous regime
At intermediate relaxation times dissipative effects become relevant.
The relaxation time is directly proportional to the transport coeffi-
cients and with the shear viscosity (η) in particular:

τ =
η

s

5

T

(
1− lnλ

4

)
, (10)

where s the entropy density and λ = n/T 3 the fugacity. We compare
our results with those reported in Ref.[3], which where obtained using
a microscopic transport model (BAMPS).
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Figure 5: Density profile of the fluid in the intermediate regime. The simulations
are performed by keeping η/s constant.

Newtonian vs. ultra-relativistic fluid
There is a qualitative change as we pass from the non-relatvistic
regime, with adiabatic index γ = 5/3, to the ultrarelativistic regime,
where the fluid has γ = 4/3. As a consequence, we can see a signifi-
cant difference between the macroscopic profiles of the fluid, when
comparing the simulation results in the two cases, given the same
initial conditions, as can be seen from Fig.6. In particular, note the
different values of the plateaus, even though the peak velocity in the
relativistic flow is β ' 0.46.
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Figure 6: Density and temperature profiles for a non-relativistic and an ultra-
relativistic fluid. Both simulations are initialized with the state (7).

Conclusions
The lattice Boltzmann models developed here can be used as a reliable
tool for simulating relativistic flows containing shocks. Possible areas
for future applications include the physics of quark-gluon plasma and
the astrophysical arena.
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