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Boltzmann equation

Evolution equation of the one-particle distribution function f with respect to
the Cartesian coordinates:

∂f

∂t
+

pi

m

∂f

∂x i
+ F i ∂f

∂pi
= J[f ]. (1)

Hydrodynamic moments of order N give macroscopic quantities:

N =0 : number density: n =

∫
d3p f ,

N =1 : velocity: u =
1

nm

∫
d3p f p,

N =2 : temperature: T =
2

3n

∫
d3p f

ξ2

2m
, (ξ = p−mu),

N =3 : heat flux: q =
1

2m2

∫
d3p f ξ2 ξ.
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Cartesian grid and momentum space decomposition along
the Cartesian axes.
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Boltzmann equation - arbitrary coordinates

Consider a coordinate transformation x i → x ĩ , which induces a metric gı̃̃, as
follows:

ds2 = δijdx
idx j = gı̃̃dx

ı̃dx ̃,

gı̃̃ = δij
∂x i

∂x ı̃
∂x j

∂x ̃
.

The Boltzmann equation with respect to the new spatial coordinates reads:

∂f

∂t
+

pi

m

∂x ı̃

∂x i
∂f

∂x ı̃
+ F i ∂f

∂pi
= J[f ]. (2)
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Cylindrical grid and momentum space decomposition along
the Cartesian axes

py
px

py
px

S. Busuioc and V. E. Ambrus, LB circular Couette DSFD 2017, 13/07/2017 6 / 25



Boltzmann equation - orthonormal vielbein fields

Furthermore, we note that:

pı̃ = pi
∂x ı̃

∂x i
, F ı̃ = F i ∂x

ı̃

∂x i
, p2 ≡ gı̃̃p

ı̃p̃

By introducing the triad vector frame and the associated one-form co-frame:

eâ = e ı̃â∂ı̃, ωâ = ωâ
ı̃ dx

ı̃, gı̃̃dx
ı̃dx ̃ = δâb̂ω

âωb̂

the inner product p2 ≡ δâb̂pâpb̂ is decoupled from the metric.

The Boltzmann equation reads:

∂f

∂t
+

pâ

m
e ı̃â
∂f

∂x ı̃
+

(
F â − 1

m
Γâ

b̂ĉp
b̂pĉ
)
∂f

∂pâ
= J[f ], (3)
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Cylindrical grid and momentum space decomposition
adapted to the curvilinear coordinates.

pϕ
pR

pϕ
pR
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Cylindrical coordinates

The line element in cylindrical coordinates and the associated triad are:

ds2 = dR2 + R2dϕ2 + dz2, eR̂ = ∂R , eϕ̂ = R−1∂ϕ, eẑ = ∂z .

The Boltzmann equation when the flow is homogeneous w.r.t. ϕ and z reads:

∂f

∂t
+

2pR̂

m

∂(fR)

∂R2
+

1

mR

[
(pϕ̂)2 ∂f

∂pR̂
− pR̂

∂(fpϕ̂)

∂pϕ̂

]
= −1

τ
(f − f (eq)). (4)

The advection term is implemented following Falle et al.1

1S. A. E. G. Falle and S. S. Komissarov, Mon. Not. R. Astron. Soc. 278, 586-602 (1996).
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Coordinates streching

Let R(η) = Rin + (Rout − Rin)

(
δ +

A0

A
tanh η

)
, A0 = max(δ, 1− δ). (5)
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Figure: Effect of grid stretching on 16 points between Rin = 1 and Rout = 2.
(a) The parameter δ ∈ (0, 1) controls the positioning of the stretching centre.
(b) The parameter A ∈ (0, 1) contains the amplitude of the stretching.
The points are equidistant in η.

S. Busuioc and V. E. Ambrus, LB circular Couette DSFD 2017, 13/07/2017 10 / 25



Lattice Boltzmann - Gauss-Hermite quadratures

The numerical models employed are mixed quadrature lattice Boltzmann2.
f and f (eq) are expanded with respect to Hermite(HLB) and Half-Range
Hermite(HHLB) polynomials, e. g.(1D case):

f eqi (x, t) = wi

N∑
`=0

1

`!
aeq(`)(x, t)H(`)(pi )

3D model = 1D× 1D× 1D.

We will denote such models by: HHLB(QR)×HLB(Qϕ)×HLB(Qz).

The moments of the distribution function are evaluated as:∫
d3p̂ f pâ1 · · · pâs =

QR∑
i=1

Qϕ∑
j=1

Qz∑
k=1

fijk

s∏
`=1

pâ`ijk . (6)

Here Qα, α ∈ {R, ϕ, z} represents the quadrature order.

2V.E. Ambrus, and V. Sofonea, J. Comput. Phys. 316, 760-788 (2016)
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Force term

Boltzmann equation written for the discrete distributions fijk :

∂fijk
∂t

+
2pR̂i
m

∂(fijkR)

∂R2
+

1

mR

{
(pϕ̂j )2

(
∂f

∂pR̂

)
ijk

−pR̂i
[
∂(fpϕ̂)

∂pϕ̂

]
ijk

}
= −1

τ
(fijk−f (eq)

ijk )

We write the terms involving the derivative of f as follows3 :(
∂f

∂pR̂

)
ijk

=

QR∑
i ′=1

FR
i,i ′ fi ′jk ,

The matrix FR
k,j has the following form:

FR
k,j = −wH

k

Q−1∑
`=0

1

`!
H`+1(pk)H`(pj)

3V. E. Ambrus, , V. Sofonea, R. Fournier, and S. Blanco, Implementation of the force term in
half-range lattice Boltzmann models, in preparation.
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Lattice Boltzmann - Numerical scheme

Velocity vectors are given by the roots of the Hermite/Half-Range Hermite
polynomials.

The roots are irrational numbers for a quadrature order Q > 2 which implies
a off-lattice velocity set.

Time-stepping: TVD RK34

Advection: The fifth order WENO-5 scheme5.

4C.-W. Shu and S. Osher, J. Comput. Phys. 77, 439–471 (1988).
5G. S. Jiang and C. W. Shu, J. Comput. Phys. 126, 202 (1996).
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Diffuse reflection boundary conditions

Reflected particles carry some information that belongs to the wall.

diffuse reflection

The density nw is fixed by imposing zero flux through the boundary:∫
p·χ>0

d3p f (p · χ) = −
∫
p·χ<0

d3p f (eq) (p · χ).
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Circular Couette flow

Rin

Rout

TwTw

Ωw

Knudsen number Kn = λ/L.
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Rigid rotation

Angular speed Ωin = Ωout = Ωw , Tin = Tout = Tw , the analytic solution of
the Boltzmann equation reads:

f (R) =
n(R)

(2πmTw )3/2
exp

[
−
p2
R̂

+ (pϕ̂ − ΩR)2 + p2
ẑ

2mTw

]
, (7)

where n(R) is given by 6:

n(R) =
N

H

mΩ2

4πTw

exp
[
mΩ2

4Tw
(2R2 − R2

1 − R2
2 )
]

sinh
[
mΩ2

4Tw
(R2

2 − R2
1 )
] . (8)

Eq. (7) satisfies the Boltzmann equation for all values of the relaxation time.

6L. M. G. Cumin, G. M. Kremer, and F. Sharipov, Math. Mod. Meth. App. S. 12, 445–459
(2002).
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Rigid rotation
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Figure: Comparison of simulation results with analytic solutions for results:
(a) Density profile ;
(b) Azimuthal velocity;
obtained using the HLB(4)×HLB(4)×HLB(2) models and NR = 32 nodes.
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Hydrodynamic flow regime - Kn→ 0

Number density is evaluated by numerically solving:

∂R lnP =
(uϕ̂)2

RT
. (9)

where n = P/T and by using the constraint 2π
∫ Rout

Rin
nRdR = Ntot.

Azimuthal velocity:

uϕ̂ = R−1 Ωin

R−2
in − R−2

out

− R
ΩinR

2
in

R2
out − R2

in

, (10)

Temperature:

T = Tw +
η

κ

Ω2
in

R−2
in − R−2

out

×
(
R−2
in − R−2

R−2
in − R−2

out

− ln(R/Rin)

ln(Rout/Rin)

)
(11)

Radial heat flux:

qR̂ = − η
R

Ω2
in

R−2
in − R−2

out

×
[

2R−2

R−2
in − R−2

out

− 1

ln(Rout/Rin)

]
. (12)
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Low Mach flows
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Figure: uϕ(R)/uw profile, where uϕ = ΩR, Ωin = 0.01, β = Rin/Rout. Numerical results
obtained using HLB(3)×HLB(3)×HLB(2) models and NR = 64 nodes.
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Non-negligible Mach flows
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Radial heat flux

-0.0004

-0.0002

 0

 0.0002

 0.0004
q

R

(R-R1)/(R2-R1)

Analytical
streched

equidistant

Figure: Comparison streched and equidistant spatial discretisation with the same number
of lattice nodes NR = 32.
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Transition flow regime
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Comparison between our simulation re-
sults and those reported by Aoki et al.5:
n(R); T (R); uϕ̂(R)/uϕ

w , Ωin = 0.5
√

2
and NR = 16 nodes.

6K. Aoki, H. Yoshida, T. Nakanishi, and A. L. Garcia, Phys. Rev. E 68, 016302 (2003).
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Free molecular flow regime - Kn→∞
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Figure: Comparison between our numerical results and the analytic predictions in the ballistic regime. (a) P = n · T ; (b) uϕ̂ ; (c) T ; (d) qϕ̂ . The

HHLB(200) × HHLB(10) × HLB(3) model and NR = 16 nodes. The analytic solution for uϕ̂ reported by Willis8is shown in (b) alongside our analytic
expressions.

8D. R. Willis, Phys. Fluids 8, 1908 (1965)
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Conclusion

We introduced the Boltzmann equation written with respect to orthogonal
vielbeins.

The vielbeins allow the decoupling between the momentum space and the
coordinate space, i.e. p2 is coordinate-independent.

The vielbein permits the momentum space degrees of freedom to be aligned
according to the symmetries of the flow.

We considered the shear flow between two coaxial cylinders(circular Couette
flow) which becomes one-dimensional in space since the vielbein allows the
symmetry of the geometry to be transferred to the momentum space.

Our models give accurate results throughout the whole range of Kn.
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