
Lattice Boltzmann models for
relativistic shocks
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Of fluids and gases

Fluid: physical system with large number of (interacting) constituents

Levels of description:

1 macroscopic:
hydrodynamics/Navier-Stokes eqs.

2 mesoscopic:
kinetic theory/Boltzmann eq.

3 microscopic:
molecular dynamics/Newton’s eqs.

λ

L

Kn = λ/L.

Kn
10−4 10−3 10−2 10−1 100 101 102 103 104

hydrodynamic
slip ballistic

transition
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The equation

Relativistic Boltzmann equation:(
pµ̂∂µ̂ − Γî

µ̂ν̂pµ̂pν̂∂
p î

)
f (t, ~x , ~p) = C [f ] (1)

Anderson-Witting collision operator:

C [f ] =
uα̂pα̂

τ

(
f − f (eq)

)
(2)

Maxwell-Jüttner distribution:

f (eq) =
n

8πT 3
exp

(
uα̂pα̂

T

)
, (3)

with the mass-shell conditions: pµpµ = 0, for ultra-relativistic particles.
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Macroscopic profiles

Macroscopic fields are defined as moments of the distribution function.

Particle four-flow:

Nα̂ =

∫
d3p

pt̂
f pα̂ (4)

Energy-momentum tensor:

T α̂β̂ =

∫
d3p

pt̂
f pα̂pβ̂ (5)

Higher order moments:

T α̂...ω̂ =

∫
d3p

pt̂
f pα̂...pω̂ (6)
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Transport coefficients

The particle 4-flow and energy-momentum tensor of a fluid of ultra-relativisitic particles, in the
Landau frame:

Nµ = nuµ −
n

(E + P)
qµ, Tµν = (E + P)uµuν + Pηµν + Πµν , (7)

together with the ultra-relativistic equations of state: P = E/3 = nT .

For a system which is homogeneous along the x
and y axis, the heat-flux and shear-stress have
the form:

qµ = q(β, 0, 0, 1)

Πµν = Π


β2γ2 0 0 βγ2

0 − 1
2

0 0

0 0 − 1
2

0
βγ2 0 0 γ2



In five-field theory, the heat-flux and shear
pressure are related to the gradients of the
pressure, temperature, and velocity, as follows:

q =
λTγ2

4t
(1− βξ)∂ξ ln

(
P

T 4

)
(8)

Π = −
4η

3t
(1− βξ)∂ξ (γβ) , (9)

where ξ = x
t

the self-similarity variable.

Chapman-Enskog (CE) Grad’s method (G)
λ - heat conductivity 4/3 nτ 4/5 nτ
η - shear viscosity 4/5 Pτ 2/3 Pτ
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Lattice Boltzmann model

1 We project the equilibrium distribution function onto complete sets of orthogonal
polynomials, with respect each momentum-space coordinates1:

f (eq)(t, ~x , ~p) =
e−p/T0

T 3
0

NL∑
`=0

NΩ∑
s=0

a
(eq)
`,s (~x , t) Ps (ξ) L

(2)
` (p/T0) (10)

2 The second ingredient is the discretisation of the momentum space. For massless particles
we have pt̂ = |~p| ≡ p and v α̂ = pα̂/p. We convert the integrals in the particle four-flow
and energy momentum tensor into finite sums, as follows2,3

Nα̂ =

∞∫
0

dp p2

1∫
−1

dξ

2π∫
0

dϕ f v α̂ =

QL∑
a=1

Qξ∑
b=1

Qϕ∑
c=1

fabc v α̂bc , (11)

T α̂β̂ =

∞∫
0

dp p3

1∫
−1

dξ

2π∫
0

dϕ f v α̂v β̂ =

QL∑
a=1

Qξ∑
b=1

Qϕ∑
c=1

fabc pav α̂bc v β̂bc ,

fabc =
2πwL

a wξ
b

Qϕe−pa/T0/T 3
0

f (pa, ξb, ϕc ).

Numerical scheme: WENO 5 + TVD-RK3
1

We have introduced spherical coordinates in the momentum space: ~p = (p, θ, φ), with the notation ξ = cos θ.
2

V.E. Ambruş and V. Sofonea, Phys. Rev. E 86 (2012).
3

R. Blaga and V.E. Ambruş, preprint arXiv:1612.01287 (2016).
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Harmonic perturbation
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Figure 1: Evolution of harmonic velocity and density/pressure perturbation.

Note: The results match the analytic solution, with the transport coefficients obtained through
the Chapman-Enskog method.4,5,6

4
V. E. Ambrus. arXiv:1706.05310, (2017).

5
A. Gabbana, M. Mendoza, S. Succi, and R. Tripiccione. arXiv:1704.02523, (2017).

6
A. Jaiswal. Phys. Rev. C 87, (2013).
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Cartesian Sod problem - hydrodynamic regime
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Figure 2: (a) Density profile and (b) fugacity
(
λ̄ = n/T 3

)
of the fluid in the Cartesian

Sod-shock tube problem, at different relaxation times.7

Number of velocities: Nvel = QL × Qξ × Qφ = 2× 4× 1 = 8. (12)

7
L. Rezzolla and O. Zanotti. Relativistic hydrodynamics. Oxford University Press, (2013).
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Cartesian Sod problem - hydrodynamic regime
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Figure 3: a) Heat flux in the Cartesian Sod problem, at different relaxation times. b) Integrated
values of the heat-flux and shear-stress around the shock front and contact discontinuity.

Heat-flux at the contact:

∫ zC+δz

zC−δz
q dz =

1

8
(λITI + λIITII) ln

(
PII

T 4
II

T 4
I

PI

)
. (13)
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Cartesian Sod problem - viscous regime
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Figure 4: (a) Pressure and (b) velocity profile of the fluid at intermediate relaxation times, as
compared to the BAMPS results reported in Bouras, et.al. (2009).8

Relation to relaxation time: τ =
η

s

5

T

[
1−

1

4
ln
( n

T 3

)]
(14)

8
Bouras, E. Molnar, H. Niemi, Z. Xu, A. El, O. Fochler, C. Greiner, and D. Rischke. Phys. Rev. Lett. 103, (2009).
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Cartesian Sod problem - ballistic regime
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Figure 5: (a) Density profile and (b) heat-flux in the ballistic regime. A large velocity set is
needed to obtain good agreement with the analytical solution.

Number of velocities: Nvel = QL × Qξ × Qφ = 2× 200× 1 = 400. (15)
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Spherical Sod problem - hydrodynamic regime

Boltzmann eq. in spherical coordinates:

∂t f +
ξ

r2
∂r (r2f ) +

1

r

∂

∂ξ
[(1− ξ2)f ] = −

1

τ

(
ut̂ − ξuz

)
(f − f (eq)), ξ = cos θ (16)

The problems arising from the divergence at the
origin are resolved by employing the following
scheme10:

ξ

r2

∂(r2f )

∂r
=

ξ

r2

∂r3

∂r

∂(fr2)

∂r3

= 3
r2
s+1/2

Fs+1/2 − r2
s−1/2

Fs−1/2

r3
s−1/2

− r3
s−1/2

The fluxes Fs±1/2 are obtained with the WENO 5
procedure.
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Figure 6: Density profile of the fluid in
Sod problem setup for planar,
cylindrical and spherical geometry.9

9
Mart́ı, J.M., et al., Astrophys. J 479, (1997).

10
T.P. Downes, P. Duffy, and S.S. Komissarov., Mon. Not. R. Astron. Soc. 332 (2002).
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Spherical Sod problem - hydrodynamic regime
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Figure 7: Density profile of the spherical Sod problem at (a) small and (b) large times. After the
rarefaction wave reaches the origin the pressure drops several orders of magnitude. The negative
pressure gradient accelerates the fluid back towards the origin, producing a high velocity
secondary shock. As the second shock reaches the origin, a very high density spike forms, which
then propagates outwards.
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Spherical Sod problem - hydrodynamic regime
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Figure 8: (a) Heat-flux and (b) shear pressure of the fluid in spherical Sod problem, at various
instances of time.
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Spherical Sod problem - ballistic regime
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Figure 9: Density profile of the fluid in the cylindrical Sod problem, in the ballistic regime.
Panel (a) shows instances of time around the moment when the rarefaction wave arrives at the
origin, while panel (b) shows larger times, when a shell of high density fluid propagates outwards.
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Conclusion

We have developed lattice Boltzmann models, based on Gauss quadratures, adapted for
problems with planar, cylindrical and spherical geometries

The models have been tested on various problems with very good agreement compared to
the analytical solutions and other results reported in the literature, across the whole
spectrum of the relaxation time

Possible areas of future extension and application:

⇒ the physics of quark-gluon plasma
⇒ astrophysical flows
⇒ condensed matter (electrons in metals, graphene, and so on)
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