Lattice Boltzmann models for the simulation of rarefied flows in general relativity using tetrad fields

Victor E. Ambruș

Departement of Physics, West University of Timișoara Bd. Vasile Pârvan 4, R – 300223 Timișoara, Romania

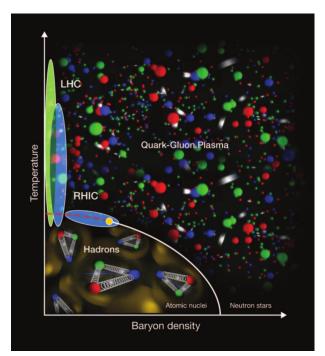
DSFD 2017, 13/07/2017

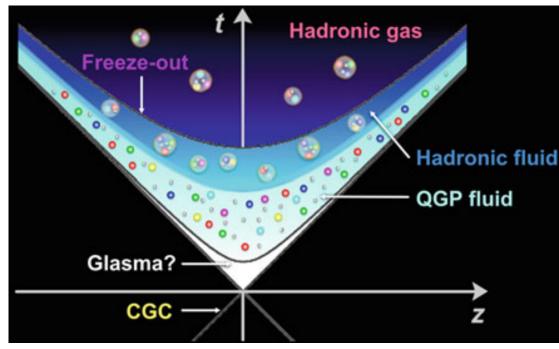
Outline

- Relativistic heavy ion collisions
- 2 LB models for flat space (Cartesian coordinates)
- Arbitrary coordinates and General relativity
- Conformal transformations
- Conclusion

Relativistic heavy ion collisions

Quark-gluon plasma: hydrodynamic phase



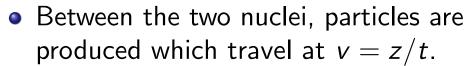


B. V. Jacak, B. Muller, Science A. Monnai, PhD Thesis (Tokyo, 2014).337 (2012) 310.

- \bullet Until $\sim 10\,\mu s$ after the Big-Bang, the quarks and gluons where deconfined into the QGP.
- At RHIC and LHC, this phase of matter was achieved.
- The strong coupling of the quarks and gluons in the QGP allows such systems to be described using an effective theory: relativistic fluid dynamics.

Central plateau: Bjorken flow

 Bjorken¹ argued that the constituents of colliding nuclei travel longitudinally at the speed of light from the point of collision.



• The "boost invariance" of this system is ensured by imposing $E \simeq 1 - -10 {\rm GeV/fm}^3$ at $\tau = \sqrt{t^2 - z^2} \simeq 1 \, {\rm fm/c}$

• In the transverse direction, a shock wave propagates outwards, while a rarefaction wave propagates inwards at $c_s \simeq 1/\sqrt{3}$.

 The fluid unaffected by the rarefaction is homogeneous in the transverse directions.

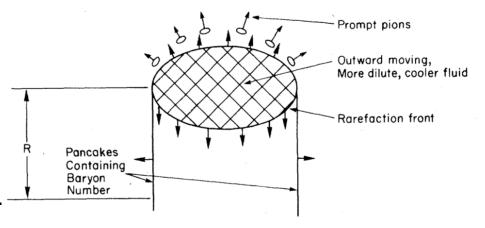
Region of nonvanishing baryon number

Trestof?

Region of non vanishing baryon number

To alf

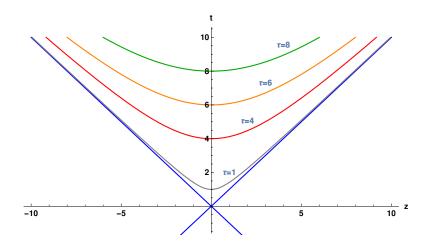
"Central plateau"



Pictures taken from Bjorken (1983).

¹J. D. Bjorken, Phys. Rev. D **27** (1983) 140.

Bjorken flow: Milne coordinates



• Boost invariance of the QGP along z prompts the use of τ and w (Milne coordinates):

$$au = \sqrt{t^2 - z^2}, \qquad w = \frac{1}{2} \ln \frac{t+z}{t-z} = \operatorname{arctanh} \frac{z}{t}.$$
 (1)

• The Minkowski line element becomes:

$$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + dz^{2} = -d\tau^{2} + dx^{2} + dy^{2} + \tau^{2}dw^{2}.$$
 (2)

• With respect to Milne coordinates, $u_{\text{Milne}}^{\mu} = (1,0,0,0)$. In Minkowski:

$$u_{\mathrm{Mink}}^{\mu} = \left(\frac{t}{\tau}, 0, 0, \frac{z}{\tau}\right)^{T} \Rightarrow v_{z} = \frac{z}{t}.$$
 (3)

Gubser flow: transverse propagation

- ullet Bjorken's assumption that transverse dynamics are negligible is not realistic, since the diameter of a nucleus $\sim 10\,\mathrm{fm}$.
- Gubser flow undergoes simultaneously boost-invariant longitudinal and azimuthally symmetric ("radial") transverse expansion.
- Gubser flow is symmetric under the Gubser group $SO(3)_q \otimes SO(1,1) \otimes Z_2$:

$$\xi_{1} = \partial_{x} + q^{2} \left[2x(x^{\nu}\partial_{\nu}) - (x^{\mu}x_{\mu})\partial_{x} \right],$$

$$\xi_{2} = \partial_{y} + q^{2} \left[2y(x^{\nu}\partial_{\nu}) - (x^{\nu}x_{\nu})\partial_{y} \right],$$

$$\xi_{3} = \partial_{\varphi},$$
(4)

where q is an inverse length scale.

• The resulting velocity has components:

$$u = \cosh \kappa \partial_{\tau} + \sinh \kappa \partial_{R}, \qquad \kappa = \operatorname{arctanh} \frac{2q^{2}\tau R}{1 + q^{2}\tau^{2} + q^{2}R^{2}}.$$
 (5)

In Minkowski coordinates:

$$u^t = \frac{t}{\sqrt{t^2 - z^2}} \cosh \kappa, \qquad u^R = \sinh \kappa, \qquad u^z = \frac{z}{\sqrt{t^2 - z^2}} \cosh \kappa.$$
 (6)

²S. S. Gubser, Phys. Rev. D **82** (2010) 085027.

Gubser flow: $dS_3 \otimes \mathbb{R}^3$

- Invariance under the Gubser group is hard to implement in Minkowski space.
- A conformal transformation from Minkowski to $dS(3) \otimes \mathbb{R}$ makes these symmetries manifest.
- First, a conformal transformation is performed on the Minkowksi metric:

$$d\bar{s}^{2} = \frac{ds^{2}}{\tau^{2}} = \frac{-d\tau^{2} + dR^{2} + R^{2}d\varphi^{2}}{\tau^{2}} + dw^{2}.$$
 (7)

• The new coordinates ρ and θ are introduced through:

$$\sinh \rho = -\frac{1 - q^2(\tau^2 - R^2)}{2q\tau}, \qquad \tan \theta = \frac{2qR}{1 + q^2(\tau^2 - R^2)}. \tag{8}$$

• The resulting metric describes the $dS_3 \otimes \mathbb{R}$:

$$d\hat{s}^2 = -d\rho^2 + \cosh^2\rho(d\theta^2 + \sin^2\theta d\varphi^2) + dw^2. \tag{9}$$

• Now the four-velocity of Gubser flow is simply $\overline{u}^{\rho}=1$.

³S. S. Gubser, A. Yarom, Nucl. Phys. B **846** (2011) 469.

LB models for flat space (Cartesian coordinates)

Relativistic Boltzmann equation

• The Boltzmann equation on Minkowski space reads:

$$\rho^t \partial_t f + \mathbf{p} \cdot \nabla f \equiv \rho^\mu \partial_\mu f = J[f], \tag{10}$$

where $p^2 = -(p^t)^2 + \mathbf{p}^2 = 0$ for massless (ultrarelativistic) particles.

• The macroscopic quantities N^{μ} and $T^{\mu\nu}$ are obtained using:

$$N^{\mu} = \int \frac{d^3p}{p^t} f p^{\mu}, \qquad T^{\mu\nu} = \int \frac{d^3p}{p^t} f p^{\mu} p^{\nu}.$$
 (11)

• Multiplying Eq. (10) by the collision invariants $\psi \in \{1, p^{\mu}\}$ and integrating w.r.t. d^3p/p^t yields the conservation equation:

$$\partial_{\mu} N^{\mu} = 0, \qquad \partial_{\nu} T^{\mu\nu} = 0. \tag{12}$$

Landau frame

• In the Landau (energy) frame, E and u^{μ} are obtained from:

$$T^{\mu}_{\ \nu}u^{\nu} = -E u^{\mu}, \qquad u^2 = -1.$$
 (13)

• In general, N^{μ} and $T^{\mu\nu}$ can be decomposed into equilibrium and non-equilibrium terms:

$$N^{\mu} = n u^{\mu} - \frac{n}{F + P} q^{\mu}, \qquad T^{\mu \nu} = E u^{\mu} u^{\nu} + (P + \overline{\omega}) \Delta^{\mu \nu} + \pi^{\mu \nu}, \qquad (14)$$

where $\Delta^{\mu\nu}=u^{\mu}u^{\nu}+\eta^{\mu\nu}$ and $\overline{\omega}=0$ for massless particles

• The Landau frame is used for the Anderson-Witting approximation of J[f]:

$$J_{\text{A-W}}[f] = \frac{p \cdot u}{\tau} [f - f^{\text{(eq)}}]. \tag{15}$$

• For non-degenerate gases, $f^{(eq)}$ is the Maxwell-Jüttner distribution:

$$f^{\text{(eq)}} = \frac{n}{8\pi T^3} \exp\left(\frac{p \cdot u}{T}\right). \tag{16}$$

Lattice Boltzmann modelling

• The momentum space is replaced by p_k (k = 1, 2, ..., Q):

$$\partial_t f_k + \mathbf{v}_k \cdot \nabla f_k = \frac{\mathbf{v}_k \cdot \mathbf{u}}{\tau} [f_k - f_k^{\text{(eq)}}], \tag{17}$$

wher $v_k^\mu = p_k^\mu/p_k^t$ and $p_k^t = \sqrt{{f p}^2}$ for massless particles.

The macroscopic quantities are obtained using quadrature sums:

$$N^{\mu} = \sum_{k=1}^{Q} \frac{p_{k}^{\mu}}{p_{k}} f_{k}, \qquad T^{\mu\nu} = \sum_{k=1}^{Q} \frac{p_{k}^{\mu} p_{k}^{\nu}}{p_{k}} f_{k}. \tag{18}$$

- The construction of an LB model typically requires 3 steps:
- Choice of p_k (quadrature);
- 2 Polynomial truncation of $f_k^{\text{(eq)}}$;
- Implementation of time evolution and advection.

Quadrature

A moment of order n is computed as:

$$M_n^{\mu_1 \dots \mu_n} = \int \frac{d^3 p}{p^t} f p^{\mu_1} \dots p^{\mu_n} = \sum_{k=1}^{Q_L} \sum_{i=1}^{Q_{\xi}} \sum_{j=1}^{Q_{\varphi}} \frac{p_{ijk}^{\mu_1} \dots p_{ijk}^{\mu_n}}{p_k} f_{ijk}, \qquad (19)$$

where p_{ijk} are determined by p_k , ξ_i and φ_i :

$$L_{Q_L}^{(2)}(p_k/T_0) = 0, \qquad P_{Q_{\xi}}(\xi_j) = 0, \qquad \varphi_i = \frac{2\pi}{Q_{\varphi}}(i-1/2).$$
 (20)

• f_{ijk} is related to f through:

$$f_{ijk} = \frac{2\pi w_j^{\xi} w_k^L T_0^3}{Q_{\varphi} e^{-p_k/T_0}} f(p_k, \xi_j, \varphi_i), \tag{21}$$

where w_j^{ξ} and w_k^L are the Gauss-Legendre and Gauss-Laguerre quadrature weights:

$$w_j^{\xi} = \frac{2(1-\xi_j^2)}{[(Q_{\xi}+1)P_{Q_{\xi}+1}(\xi_j)]^2}, \qquad w_k^L = \frac{(Q_L+1)(Q_L+2)p_k/T_0}{[(Q_L+1)L_{Q_L+1}^{(2)}(p_k/T_0)]^2}.$$
(22)

Truncation of $f^{\text{(eq)}}$

• The moments of $f^{(eq)}$ are also recovered using quadrature sums:

$$M_{n,(\text{eq})}^{\mu_{1}\dots\mu_{n}} = \sum_{k=1}^{Q_{L}} \sum_{j=1}^{Q_{\xi}} \sum_{i=1}^{Q_{\varphi}} f_{ijk}^{(\text{eq})} \frac{p_{ijk}^{\mu_{1}} \cdots p_{ijk}^{\mu_{n}}}{p_{k}}, \qquad f_{ijk}^{(\text{eq})} = \frac{2\pi w_{j}^{\xi} w_{k}^{L} T_{0}^{3}}{Q_{\varphi} e^{-p_{k}/T_{0}}} f^{(\text{eq})}(p_{k}, \xi_{j}, \varphi_{i}),$$
(23)

• The quadrature rule can be applied only if $f_{ijk}^{(eq)}$ is a polynomial in p_k , ξ_j and $(\cos \varphi_i, \sin \varphi_i)$:

$$f_{ijk}^{\text{(eq)}} = \frac{n \, u^0 \, w_j^{\xi} \, w_k^L}{2 Q_{\varphi}} \sum_{\ell=0}^{N_L} L_{\ell}^{(2)}(p_k/T_0) \sum_{s=0}^{N_{\Omega}} \widetilde{a}_{\ell,s}^{\text{(eq)}} P_s(\cos \gamma_{u;ij}), \tag{24}$$

where $\mathbf{u} \cdot \mathbf{p}_{ijk} = up_k \cos \gamma_{u;ij}$.

• The coefficients $\widetilde{a}_{\ell,s}^{(eq)}$ can be obtained analytically $(\theta = T/T_0)$:

$$\widetilde{a}_{0,0}^{(\text{eq})} = 1, \qquad \widetilde{a}_{0,1}^{(\text{eq})} = \frac{u}{u^0}, \qquad \widetilde{a}_{0,2}^{(\text{eq})} = \frac{3}{2u^3u^0} \operatorname{arcsinh} u + 1 - \frac{3}{2u^2},$$

$$\widetilde{a}_{1,0}^{(\text{eq})} = \widetilde{a}_{0,0}^{(\text{eq})} - \frac{\theta}{3u^0} (3 + 4u^2), \qquad \widetilde{a}_{1,1}^{(\text{eq})} = \widetilde{a}_{0,1}^{(\text{eq})} - \frac{4u\theta}{3}, \qquad \widetilde{a}_{1,2}^{(\text{eq})} = \widetilde{a}_{0,2}^{(\text{eq})} - \frac{4\theta u^2}{3u^0},$$

$$\text{etc.} ...$$

Numerical scheme

 In order to implement the advection, we write the Boltzmann equation in the following form:

$$\frac{\partial f}{\partial t} + \xi \frac{\partial f}{\partial z} = S, \tag{25}$$

where $\xi = p^z/p$ and the flow is assumed to be homogeneous along the x and y directions.

• Writing $\partial_t f = L[f]$, the TVD RK-3 scheme consists of the following steps:⁴

$$f^{(1)} = f(t) + \delta t L[f(t)],$$

$$f^{(2)} = \frac{3}{4} f(t) + \frac{1}{4} f^{(1)} + \frac{1}{4} \delta t L[f^{(1)}],$$

$$f(t + \delta t) = \frac{1}{3} f(t) + \frac{2}{3} f^{(2)} + \frac{2}{3} \delta t L[f^{(2)}].$$
(26)

• The advection is implemented using WENO-5:5

$$\frac{\partial(\xi f)}{\partial z} = \frac{\mathcal{F}_{s+1/2} - \mathcal{F}_{s-1/2}}{z_{s+1/2} - z_{z-1/2}}.$$
 (27)

⁴C.-W. Shu, S. Osher, J. Comput. Phys. **77** (1988) 439-471.

⁵L. Rezzolla, O. Zanotti, *Relativistic hydrodynamics* (Oxford University Press, Oxford, UK, 2013).

Arbitrary coordinates and General relativity

Arbitrary coordinates

- Let us employ arbitrary coordinates $\{x^{\widetilde{\mu}}\}$ with $p^{\widetilde{\mu}} = \frac{\partial x^{\widetilde{\mu}}}{\partial x^{\mu}} p^{\mu}$.
- Geodesic motion is ensured using the Christoffel symbols $(\tau^* = \tau/m)$:

$$\frac{dx^{\widetilde{\mu}}}{d\tau^*} = p^{\widetilde{\mu}}, \qquad \frac{dp^{\widetilde{\imath}}}{d\tau^*} = -\Gamma^{\widetilde{\imath}}_{\widetilde{\mu}\widetilde{\nu}}p^{\widetilde{\mu}}p^{\widetilde{\nu}}. \tag{28}$$

• The Boltzmann equation in covariant form reads:

$$\frac{df}{d\tau^*} = p^{\widetilde{\mu}} \frac{\partial f}{\partial x^{\widetilde{\mu}}} - \Gamma^{\widetilde{\imath}}_{\widetilde{\mu}\widetilde{\nu}} p^{\widetilde{\mu}} p^{\widetilde{\nu}} \frac{\partial f}{\partial p^{\widetilde{\imath}}} = J[f], \qquad p^{\widetilde{\mu}} = \frac{\partial x^{\widetilde{\mu}}}{\partial x^{\mu}} p^{\mu}. \tag{29}$$

⁶C. Cercignani, G. M. Kremer, *The Relativistic Boltzmann Equation - Theory and Applications* (Birkhäuser Basel, 2002).

General relativity

- In GR, $\eta_{\mu\nu}({\sf flat\ space-time}) \to g_{\mu\nu}({\sf curved\ space-time})$.
- $g_{\mu\nu}$ satisfies the Einstein equations:

$$G_{\mu\nu} = 8\pi T_{\mu\nu}.\tag{30}$$

• The metric tensor is linked to the line element through:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}. \tag{31}$$

• The formalism presented previously (29) applies unchanged for GR flows:

$$p^{\mu} \frac{\partial f}{\partial x^{\mu}} - \Gamma^{i}{}_{\mu\nu} p^{\mu} p^{\nu} \frac{\partial f}{\partial p^{i}} = J[f], \tag{32}$$

where the Chirstoffel symbols must be computed from the metric:

$$\Gamma^{\lambda}{}_{\mu\nu} = g^{\lambda\sigma}\Gamma_{\sigma\mu\nu}, \qquad \Gamma_{\sigma\mu\nu} = \frac{1}{2}(g_{\sigma\mu,\nu} + g_{\sigma\nu,\mu} - g_{\mu\nu,\sigma}).$$
 (33)

Tetrad field

• The mass-shell condition $p^2 = g_{\mu\nu}p^{\mu}p^{\nu} = -m^2$ implies:

$$p^{t} = \frac{p_{t} - g_{ti}p^{i}}{g_{tt}}, \qquad p_{t} = -\sqrt{-m^{2}g_{tt} - (g_{tt}g_{ij} - g_{ti}g_{tj})p^{i}p^{j}}. \tag{34}$$

• We introduce the tetrad frame $e_{\hat{\alpha}}=e_{\hat{\alpha}}^{\mu}\partial_{\mu}$ and the one-form coframe $\omega^{\hat{\alpha}}=\omega_{\mu}^{\hat{\alpha}}dx^{\mu}$:

$$g_{\mu\nu}e^{\mu}_{\hat{\alpha}}e^{\nu}_{\hat{\beta}} = \eta_{\hat{\alpha}\hat{\beta}}, \qquad \langle \omega^{\hat{\alpha}}, \eta_{\hat{\beta}} \rangle = \omega^{\hat{\alpha}}_{\mu}e^{\mu}_{\hat{\beta}} = \delta^{\hat{\alpha}}_{\hat{\beta}}. \tag{35}$$

• Defining $p^{\hat{\alpha}} = \omega_{\mu}^{\hat{\alpha}} p^{\mu}$, the mass-shell condition becomes:

$$p^2 = -(p^{\hat{0}})^2 + \mathbf{p}^2 = -m^2 \Rightarrow p^{\hat{0}} = \sqrt{\mathbf{p}^2 + m^2}.$$
 (36)

Spherical coordinates in momentum space

• $p^{\hat{i}} \in \{p^{\hat{1}}, p^{\hat{2}}, p^{\hat{3}}\}$ can be expressed using $p^{\tilde{i}} \in \{p, \xi, \varphi\}$:

$$p^{\hat{1}} = p\sqrt{1 - \xi^2}\cos\varphi, \qquad p^{\hat{2}} = p\sqrt{1 - \xi^2}\sin\varphi, \qquad p^{\hat{3}} = p\xi, \tag{37}$$

where $\xi = \cos \theta$.

- The mass-shell condition implies $p^{\hat{0}} = \sqrt{m^2 + p^2}$.
- The parametrisation (37) introduces a metric λ_{ij} in the momentum space:

$$d\Phi^{2} = \lambda_{\widetilde{i}\widetilde{\jmath}}dp^{\widetilde{i}}dp^{\widetilde{j}}, \qquad \lambda_{\widetilde{i}\widetilde{\jmath}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & p^{2}/(1-\xi^{2}) & 0 \\ 0 & 0 & p^{2}(1-\xi^{2}) \end{pmatrix}. \tag{38}$$

Boltzmann equation using tetrads

• The Boltzmann equation (29) can be put in conservative form:⁷

$$\frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}e_{\hat{\alpha}}^{\mu}p^{\hat{\alpha}}f\right) - \frac{p^{\hat{0}}}{\sqrt{\lambda}}\frac{\partial}{\partial p^{\tilde{i}}}\left(P^{\tilde{i}}{}_{\hat{\alpha}\hat{\beta}}\frac{p^{\hat{\alpha}}p^{\hat{\beta}}}{p^{\hat{0}}}f\sqrt{\lambda}\right) = J[f]. \tag{39}$$

• $P_{\hat{i}}^{\widetilde{\jmath}} = \partial p^{\widetilde{\jmath}}/\partial p^{\hat{i}}$ has components:⁸

$$P^{\widetilde{\jmath}_{\widehat{\imath}}} = \begin{pmatrix} \sqrt{1 - \xi^2} \cos \varphi & \sqrt{1 - \xi^2} \sin \varphi & \xi \\ -\frac{\xi}{p} \sqrt{1 - \xi^2} \cos \varphi & -\frac{\xi}{p} \sqrt{1 - \xi^2} \sin \varphi & \frac{1}{p} (1 - \xi^2) \\ -\frac{\sin \varphi}{p \sqrt{1 - \xi^2}} & \frac{\cos \varphi}{p \sqrt{1 - \xi^2}} & 0 \end{pmatrix}. \tag{40}$$

⁷C. Y. Cardall, E. Endeve, A. Mezzacappa, Phys. Rev. D **88** (2013) 023011.

⁸V. E. Ambruș, R. Blaga, Annals of West University of Timisoara - Physics **58** (2015) 89–108.

Macroscopic moments

The macroscopic moments are obtained as on Minkowski space:

$$\begin{pmatrix} N^{\hat{\alpha}} \\ T^{\hat{\alpha}\hat{\beta}} \end{pmatrix} = \int \frac{d^{3}\hat{p}}{p^{\hat{0}}} f \begin{pmatrix} p^{\hat{\alpha}} \\ p^{\hat{\alpha}}p^{\hat{\beta}} \end{pmatrix}
= \int_{0}^{\infty} dp \begin{pmatrix} p^{2} \\ p^{3} \end{pmatrix} \int_{-1}^{1} d\xi \int_{0}^{2\pi} d\varphi f \begin{pmatrix} v^{\hat{\alpha}} \\ v^{\hat{\alpha}}v^{\hat{\beta}} \end{pmatrix}.$$
(41)

- The above integrals can be recovered as on Minkowski space, using the Gauss-Laguerre (p), Gauss-Legendre (ξ) and Mysovskikh (φ) quadratures.
- The conservation equations $\nabla_{\hat{\alpha}} N^{\hat{\alpha}} = 0$ and $\nabla_{\hat{\beta}} T^{\hat{\alpha}\hat{\beta}} = 0$ imply the following conserved quantities:

$$\mathcal{N} = \int d^3x \sqrt{-g} e_{\hat{\alpha}}^t N^{\hat{\alpha}}, \qquad \mathcal{T}_k = \int d^3x \sqrt{-g} e_{\hat{\alpha}}^t T^{\hat{\alpha}\hat{\beta}} k_{\hat{\beta}}, \tag{42}$$

where $k_{\hat{\beta};\hat{\gamma}} + k_{\hat{\gamma};\hat{\beta}} = 0$.

• Our numerical schemes are constructed such that \mathcal{N} and \mathcal{T}_k are exactly preserved.

Global thermodynamic equilibrium

• The Boltzmann equation on curved spaces reads:

$$p^{\hat{\alpha}}e^{\mu}_{\hat{\alpha}}\frac{\partial f}{\partial x^{\mu}}-\Gamma^{\hat{\imath}}{}_{\hat{\alpha}\hat{\beta}}p^{\hat{\alpha}}p^{\hat{\beta}}\frac{\partial f}{\partial p^{\hat{\imath}}}=J[f]. \tag{43}$$

• The collision term J[f] cancels when $f = f^{(eq)}$:

$$f^{\text{(eq)}} = \left[\exp\left(-\frac{\mu}{T} - \frac{p \cdot u}{T}\right) - \epsilon \right]^{-1}, \tag{44}$$

where $\epsilon = -1$, 1 and 0 for Fermi-Dirac, Bose-Einstein and Maxwell-Jüttner statistics.

• $f^{\text{(eq)}}$ satisfies Eq. (43) when:

$$abla_{\hat{\alpha}}\left(\frac{\mu}{T}\right) = 0, \qquad \nabla_{\hat{\alpha}}\left(\frac{u_{\hat{\beta}}}{T}\right) + \nabla_{\hat{\beta}}\left(\frac{u_{\hat{\alpha}}}{T}\right) = 0.$$
(45)

• The flow is in global thermal equilibrium if μ/T is constant and when $u^{\hat{\alpha}}/T$ is a Killing vector field.

Conformal transformations

Conformal transformations

- A conformal (Weyl) transformation is $\overline{g}_{\mu\nu} = \Omega^2(x)g_{\mu\nu}$.
- Under a Weyl transformation:

$$\overline{e}_{\hat{\alpha}}^{\mu} = \Omega^{-1} e_{\hat{\alpha}}^{\mu}, \quad \overline{p}^{\hat{\alpha}} = \Omega^{-1} p^{\hat{\alpha}}, \quad \overline{u}^{\hat{\alpha}} = u^{\hat{\alpha}}, \quad \overline{f} = f, \quad \overline{T} = \Omega^{-1} T,
\overline{\Gamma}^{\hat{\gamma}}{}_{\hat{\alpha}\hat{\beta}} \overline{p}^{\hat{\alpha}} \overline{p}^{\hat{\beta}} = \frac{1}{\Omega^{2}} \left[\Gamma^{\hat{\gamma}}{}_{\hat{\alpha}\hat{\beta}} p^{\hat{\alpha}} p^{\hat{\beta}} + (e_{\hat{\alpha}}^{\nu} p^{2} - p^{\hat{\beta}} e_{\hat{\beta}}^{\nu} p_{\hat{\alpha}}) \partial_{\nu} \Omega^{-1} \right],
(\partial_{\mu} \overline{f})_{\overline{p}\hat{i}} = (\partial_{\mu} f)_{p\hat{i}} - (\partial_{\mu} \Omega^{-1}) p^{\hat{i}} \partial_{p\hat{i}} f. \tag{46}$$

• The Boltzmann equation transforms as:

$$\overline{p}^{\hat{\alpha}} \overline{e}_{\hat{\alpha}}^{\mu} \partial_{\mu} \overline{f} - \overline{\Gamma}^{\hat{i}}_{\hat{\alpha}\hat{\beta}} \overline{p}^{\hat{\alpha}} \overline{p}^{\hat{\beta}} \frac{\partial \overline{f}}{\partial \overline{p}^{\hat{i}}} - \overline{J}[\overline{f}] =$$

$$\frac{1}{\Omega^{2}} \left\{ p^{\hat{\alpha}} e_{\hat{\alpha}}^{\mu} \partial_{\mu} f - \Gamma^{\hat{i}}_{\hat{\alpha}\hat{\beta}} p^{\hat{\alpha}} p^{\hat{\beta}} \frac{\partial f}{\partial p^{\hat{i}}} - \Omega^{2} \overline{J}[f] - p^{2} \eta^{\hat{i}\hat{\alpha}} e_{\hat{\alpha}}^{\nu} \partial_{p^{\hat{i}}} f \partial_{\nu} \Omega^{-1} \right\}, \quad (47)$$

• $\overline{J}[f] = \Omega^{-2}J[f]$ is ensured if $\tau \sim T^{-1}$, i.e.:

$$J[f] = \frac{p \cdot u}{\tau} [f - f^{\text{(eq)}}], \qquad \tau = \frac{c_{\tau}}{T}, \tag{48}$$

• The Boltzmann equation is conformally invariant if $p^2 = 0.9$ ⁹G. Denicol et al, Phys. Rev. D **90** (2014) 125026.

Conformal soliton flow. $AdS_2 \otimes S_2^{11}$

- First proposed as a spherically symmetric expanding wave.¹⁰
- To derive the flow velocity, a conformal transformation with $\Omega = r^{-1}$ is performed:

$$d\bar{s}^{2} = \frac{ds^{2}}{r^{2}} = -\cosh^{2}\rho \, dT^{2} + d\rho^{2} + d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}, \tag{49}$$

where T and ρ are:

$$\cosh \rho = \frac{1}{2Lr} \sqrt{[L^2 + (r+t)^2][L^2 + (r-t)^2]}, \qquad \tan T = \frac{L^2 + r^2 - t^2}{2Lt}.$$
(50)

• The flow is described by $\overline{u}^T = 1/\cosh \rho$ which in Minkowski corresponds to:

$$u^{t} = \frac{L^{2} + r^{2} + t^{2}}{\sqrt{[L^{2} + (r+t)^{2}][L^{2} + (r-t)^{2}]}},$$

$$u^{r} = \frac{2tr}{\sqrt{[L^{2} + (r+t)^{2}][L^{2} + (r-t)^{2}]}}.$$
(51)

¹⁰J. J. Friess, S. S. Gubser, G. Michalogiorgakis, S. S. Pufu, JHEP04(2007)080.

¹¹J. Noronha, G. S. Denicol, Phys. Rev. D **92** (2015) 114032.

$AdS_2 \otimes S_2$: Boltzmann equation

• The following tetrad can be employed:

$$e_{\hat{T}} = \frac{\partial_T}{\cosh \rho}, \qquad e_{\hat{\rho}} = \partial_{\rho}, \qquad e_{\hat{\theta}} = \partial_{\theta}, \qquad e_{\hat{\phi}} = \frac{\partial_{\phi}}{\sin \theta}.$$
 (52)

 In the case when the flow is spherically-symmetric, the Boltzmann equation reads:

$$\partial_{\mathcal{T}} f + \xi \partial \rho (f \cosh \rho) - \sinh \rho \left\{ \frac{\xi}{p^{2}} \frac{\partial (fp^{3})}{\partial p} + \frac{\partial [(1 - \xi^{2})f]}{\partial \xi} \right\}$$

$$= -\frac{\cosh \rho}{\tau} (u^{\hat{\tau}} - \mathbf{v} \cdot \mathbf{u})[f - f^{(eq)}], \quad (53)$$

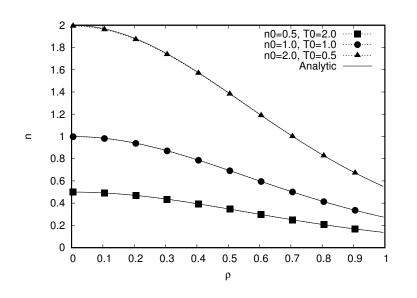
where $p^{\hat{
ho}}=p\xi$, $p^{\hat{ heta}}=p\sqrt{1-\xi^2}\cosarphi$ and $p^{\hat{arphi}}=p\sqrt{1-\xi^2}\sinarphi$.

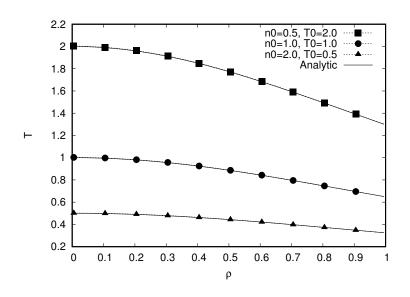
$AdS_2 \otimes S_2$: LB model

- The discretisation of the momentum space is performed using $Q = Q_L \times Q_{\xi} \times Q_{\varphi}$ quadrature points.
- Since the azimuthal degrees of freedom contribute trivially, we set $Q_{\varphi}=1$ and perform the φ integrations analytically in deriving macroscopic moments.
- The p degrees of freedom are also trivial when m=0, such that $Q_L=2$ is sufficient for the exact recovery of the evolution of $T^{\hat{\alpha}\hat{\beta}}$.
- The derivatives w.r.t. ξ and p are computed using:

$$\left[\frac{1}{p^{2}}\frac{\partial(fp^{3})}{\partial p}\right]_{ijk} = \sum_{k'=1}^{Q_{L}} \mathcal{K}_{k,k'}^{L} f_{ijk'}, \qquad \left[\frac{\partial[(1-\xi^{2})f]}{\partial \xi}\right]_{ijk} = \sum_{j'=1}^{Q_{\xi}} \mathcal{K}_{j,j'}^{P} f_{ij'k},
\mathcal{K}_{k,k'}^{L} = w_{k}^{L} \sum_{\ell=1}^{Q_{L}-1} \frac{1}{\ell+1} L_{\ell}^{(2)}(\overline{p}_{k}) \left[L_{\ell-1}^{(2)}(\overline{p}_{k'}) - \frac{\ell}{\ell+2} L_{\ell}^{(2)}(\overline{p}_{k'})\right],
\mathcal{K}_{j,j'}^{P} = w_{j}^{\xi} \sum_{\ell=1}^{Q_{\xi}-1} \frac{\ell(\ell+1)}{2} P_{\ell}(\xi_{j}) \left[P_{\ell+1}(\xi_{j'}) - P_{\ell-1}(\xi_{j'})\right]. \tag{54}$$

Global equilibrium





- The solution we are interested in is $u^{\hat{\alpha}} = (1, 0, 0, 0)^T$.
- This corresponds to

$$n = \frac{n_0}{\cosh^3 \rho}, \qquad T = \frac{T_0}{\cosh \rho}. \tag{55}$$

- The system is initialised with $n = n_0$ and $T = T_0$.
- On the right boundary $\rho = \rho_{\rm b}$, the condition $f = f^{\rm (eq)}(n_{\rm b}, T_{\rm b})$ is imposed, where $n_{\rm b}$ and $T_{\rm b}$ are given by (55) when $\rho = \rho_{\rm b}$

Conclusion

 V. E. Ambruş
 LB non-Cartesian flows
 DSFD 2017, 13/07/2017
 30 / 31

Conclusion

- Using a conformal transformation, a complicated flow on Minkowski can become simple on a curved space.
- LB modelling can be useful to investigate dissipative processes in curved spaces.
- Using the vielbein (tetrad) formalism, the LB algorithm is identical to that for Minkowski space (same quadrature).
- Quadrature methods coupled with finite difference are versatile tools for simulations in arbitrary coordinate systems.
- This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-2910.