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Relativistic heavy 1on collisions
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Quark-gluon plasma: hydrodynamic phase
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B. V. Jacak, B. Muller, Science A. Monnai, PhD Thesis (Tokyo, 2014).
337 (2012) 310.

@ Until ~ 10 us after the Big-Bang, the quarks and gluons where deconfined
into the QGP.

@ At RHIC and LHC, this phase of matter was achieved.

@ The strong coupling of the quarks and gluons in the QGP allows such
systems to be described using an effective theory: relativistic fluid dynamics.
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Central plateau: Bjorken flow

@ Bjorken! argued that the constituents
of colliding nuclei travel
longitudinally at the speed of light
from the point of collision.

Region of
nonvanishin

@ Between the two nuclei, particles are baryon num
produced which travel at v = z/t.
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@ The “boost invariance” of this
system is ensured by imposing

E~1——10GeV/fm’ at
T=vVt?—2z2~1fm/c

@ In the transverse direction, a
shock wave propagates outwards,
while a rarefaction wave

Pancaokes
Containing
Baryon
Number

—— 0

-~

propagates inwards at ¢, ~ 1//3.-
@ The fluid unaffected by the

rarefaction is homogeneous in the

transverse directions.
1J. D. Bjorken, Phys. Rev. D 27 (1983) 140.

z
\<"Central plateau”

Prompt pions

Outward moving,
More dilute, cooler fluid

| Rarefaction front

-

Pictures taken from Bjorken (1983).
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Bjorken flow: Milne coordinates

@ Boost invariance of the QGP along z prompts the use of 7 and w (Milne
coordinates):

1 t
= VE—2,  w=2Zn “:amtanhg (1)

2 t—z
@ The Minkowski line element becomes:
ds® = —dt® + dx® + dy? + dz° = —d7° + dx* + dy? + T2dw?.  (2)
o With respect to Milne coordinates, vy, . = (1,0,0,0). In Minkowski:

t T
B = (2:0.0.2) = v, = (3)
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Gubser flow: transverse propagation

@ Bjorken's assumption that transverse dynamics are negligible is not realistic,
since the diameter of a nucleus ~ 10 fm.

@ Gubser flow undergoes simultaneously boost-invariant longitudinal and
azimuthally symmetric ( “radial”) transverse expansion.

o Gubser flow is symmetric under the Gubser group SO(3), ® SO(1,1) ® Z»:?

§1 = Ox + q2 [2x(x"0,) — (XMXu)aX] )
& =08, + ¢ [2y(x"0,) — (x"x,)d,],
&3 = 0, (4)
where g is an inverse length scale.
@ The resulting velocity has components:
2q°7R
1+ q?72 + ¢*R?

(5)

u = cosh k0, + sinh KOR, x = arctanh

@ In Minkowski coordinates:

t _ V4
ut = cosh k, u® =sinhx, Ut = ~coshr.  (6)

t?2 — 72 t* —z

2S. S. Gubser, Phys. Rev. D 82 (2010) 085027.
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Gubser flow: dS; ® R3

@ Invariance under the Gubser group is hard to implement in Minkowski space.

@ A conformal transformation from Minkowski to dS(3) ® R makes these
symmetries manifest.

@ First, a conformal transformation is performed on the Minkowksi metric:
ds®*  —d7° + dR* 4+ R%dy?

-2 _ 2
ds —?— 7_2 +dW (7)

@ The new coordinates p and @ are introduced through:

1-q°(r* = R?)
29T

2gR

1+q*(m* - R?) ®)

: tanf =

sinhp = —

@ The resulting metric describes the d53 ® R:
ds? = —dp? + cosh® p(d6? + sin® 0dp?) + dw?. (9)

@ Now the four-velocity of Gubser flow is simply w° = 1.

3S. S. Gubser, A. Yarom, Nucl. Phys. B 846 (2011) 4609.
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LB models for flat space (Cartesian coordinates)
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Relativistic Boltzmann equation

@ The Boltzmann equation on Minkowski space reads:

plof +p-VF = pho,f = J[f], (10)

where p? = —(p?)? + p? = 0 for massless (ultrarelativistic) particles.
@ The macroscopic quantities N* and TH" are obtained using:

d3p d3p

NF = — fp'u, THY = —
p p

f ptp”. (11)

e Multiplying Eq. (10) by the collision invariants ¢ € {1, p*} and integrating
w.r.t. d3p/pt yields the conservation equation:

o,N* =0,  8,T" =0. (12)
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@ In the Landau (energy) frame, E and u* are obtained from:

TH, u” = —E u", u? = —1. (13)

@ In general, N* and TH*" can be decomposed into equilibrium and
non-equilibrium terms:

n

Erpds T EESTH(Pm)AY £, (14)

NY = nut —

where A" = u#u” + n*” and w = 0 for massless particles
@ The Landau frame is used for the Anderson-Witting approximation of J[f]:

Juwlf] = ZE1F — e, (15)
T
@ For non-degenerate gases, ¥ is the Maxwell-Jittner distribution:

() _ n (p-u) 1
f T3P (=) (16)
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Lattice Boltzmann modelling

@ The momentum space is replaced by px (k=1,2,...Q):

Defic +vic- Vi = “2[fi — £ (17)

wher v, = p;’/p; and p; = +/p? for massless particles.

@ The macroscopic quantities are obtained using quadrature sums:

,u

Q
NH = kz_: p—gfk, kz PP (18)

— Pk

@ The construction of an LB model typically requires 3 steps:

@ Choice of py (quadrature);
@ Polynomial truncation of £*7;

© Implementation of time evolution and advection.
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@ A moment of order n is computed as:

d p QL Qf QCP .. Mn
M,ul Mo / f pHt .. YYY ’Jk Pijk ﬁj/ﬁ (19)
k=1 =1 i=1

where pjj are determined by py, § and ©;:

27

L (pe/To) =0,  Pg.(&) =0, P =
)

(—1/2). (20)

@ fj is related to f through:

27TW§W/<‘ T3
fijk = Ooe piiT = (pr, &s 07), (21)
where Wf and w, are the Gauss-Legendre and Gauss-Laguerre quadrature
weights:
e 2(1-¢&7) L (Qu+ 1)(QL +2)pi/ To
wh = -, Wi = . (22)
[(Qe + 1)Pq+1(&))] [(Qu+ D)LY, 1 (p/ To)]?
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Truncation of f«

@ The moments of £ are also recovered using quadrature sums:

Q Qe Qo Kn 3
(eq) J ) (eq) __ (e)
M, ea)” ZZZ’Zk ) fie = 0 e_pk/ro (P, &js pi)s
k=1j=1i=1 1.
(23)
@ The quadrature rule can be applied only if ﬁ.J(.Zq) is a polynomial in py, & and
(cos @i, sin ;):
0,8 L
) nu- w;w 5
fy('kq) — 2Q ZL( )(pk/T)Za( Ol)P (cosYu:ij); (24)
¥ 4=0
where u - py = Upk COSyy;ij-
@ The coefficients a N( q) can be obtained analytically (6 = T/ Ty):
~ - u - 3 3
ageq()) =1, agfq; =5 ageq% Warcsmh u+1-— 52
0 4u6 40 u?
~(ea) __ (eq) 2 ~(ea) __ (eq) ~(ea) __ (eq)
a10 =200 — ﬁ(?’ +4u7), a1 =3ap1 — 3 ajp, =39, — 3,0

etc. ..
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Numerical scheme

@ In order to implement the advection, we write the Boltzmann equation in the
following form:

of of
e i 2
Ot + 0z > (25)

where £ = p*/p and the flow is assumed to be homogeneous along the x and
y directions.
e Writing 0.f = L[f], the TVD RK-3 scheme consists of the following steps:*

FO) = f(t) + StL[f(t)],

3 1 1
2 _ 2 ) 4 Zse e
f 4f(t)+4f +45 [F)],

1 2 2
f(t+0t) = Sf(t) + §f<2> + §5tL[f(2)]. (26)

@ The advection is implemented using WENO-5:°

O(&f) _ Fsy1j2— Fs-172
0z Zs41/2 — £z-1/2 '

4C.-W. Shu, S. Osher, J. Comput. Phys. 77 (1988) 439-471.
L. Rezzolla, O. Zanotti, Relativistic hydrodynamics (Oxford University Press, Oxford, UK,
2013).

(27)
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Arbitrary coordinates and General relativity
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Arbitrary coordinates

o Let us employ arbitrary coordinates {x"} with p/ = axu p“

o Geodesic motion is ensured using the Christoffel symbols (7% = 7/m):®

dx* P dp*
= p,
dr* dr*

= —mwphp”. (28)

@ The Boltzmann equation in covariant form reads:

~

df L Of 5 . 5 Of NG

= pt—— — zpH = J[f = —ph. 29
dr= P oxn PP op* 7] P OxH (29)

6C. Cercignani, G. M. Kremer, The Relativistic Boltzmann Equation - Theory and
Applications (Birkhauser Basel, 2002).
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General relativity

e In GR, 1, (flat space-time) — g,,,,(curved space-time).

® g, satisfies the Einstein equations:
Gy =81T,,. (30)
@ The metric tensor is linked to the line element through:
ds® = g, dx"dx”. (31)
@ The formalism presented previously (29) applies unchanged for GR flows:

3f 87‘
9 i, — Jif], 2

au

where the Chirstoffel symbols must be computed from the metric:

)\ar

1
r>\,u1/ — 8 ouY s ra,ul/ — E(gd,u,l/ + Bov,u — g,uy,a)- (33)
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Tetrad field

@ The mass-shell condition p? = g pp” = —m? implies:
pe — &P’ —
P]t == z d 3 Pt = —\/—m2gtt — (gttgij - gtigtj)P'Pj-
tt

@ We introduce the tetrad frame ez = eg(?u and the one-form coframe
we = wﬁdx“:

g,ul/egeg :7’,&3, <wa7nﬁl\> :wge :5045/\

T

o Defining p& = wf‘:p“, the mass-shell condition becomes:

p>=—(p’)? +p? = -—m? = p’ = \/p2 + m2.

(34)

(35)

(36)
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Spherical coordinates in momentum space

o pl e {pi,pﬁ,pé} can be expressed using p* € {p, &, o}

pl = py/1—Ecosy,  pP=py/1—-E5ing,  p°=pt, (37)

where & = cosf.

o The mass-shell condition implies p? = \/m? 4 p2.

@ The parametrisation (37) introduces a metric \;5 in the momentum space:

1 0 0
dd? = Mzdp'dp’,  Nz=|0 p*/(1-¢&) 0 . (38)
0 0 p*(1—&?)
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Boltzmann equation using tetrads

7

@ The Boltzmann equation (29) can be put in conservative form:

1 : P 9
—a'u (\/Tgegpaf) — T% <PZ rlL

= ff ) — J[f].  (39)

B po
o P! = dp7/dp’ has components:®

/ V1—E&2cosp \/1—£2sin<p £ \
pi —%Vl—fzcosgo \/1—§2S|ng0 1—5) | (40)

sin @ COS

- 0
\ pyv1—¢&2 pyv1—¢&2 /

(S

7C. Y. Cardall, E. Endeve, A. Mezzacappa, Phys. Rev. D 88 (2013) 023011.
8V. E. Ambrus, R. Blaga, Annals of West University of Timisoara - Physics 58 (2015) 89-108.
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Macroscopic moments

@ The macroscopic moments are obtained as on Minkowski space:
(7is) = [ ()
Tap p0 p% pP
00 2T 64
p
— d d dof 41
[Tao (5) [ o[ Taer( ). e

@ The above integrals can be recovered as on Minkowski space, using the
Gauss-Laguerre (p), Gauss-Legendre (£) and Mysovskikh (¢) quadratures.

@ The conservation equations V4N = 0 and VB T8 = imply the following
conserved quantities:

N:/d3x —gel N9, ﬁZ/d3X —geéT&Bk“a (42)

where kB;“ + k. A 55 = = 0.

@ Our numerical schemes are constructed such that NV and 7y are exactly
preserved.
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Global thermodynamic equilibrium

@ The Boltzmann equation on curved spaces reads:

of & o p50f
— Tt p%p®=—— = J[f]. 43
a8P P 5 [f] (43)

& 1
e, ——
< OxH

p

@ The collision term J[f]| cancels when f =

. 1
- o 55) :

exp T T € 3 ( )

where ¢ = —1, 1 and 0 for Fermi-Dirac, Bose-Einstein and Maxwell-Juttner

statistics.
o {9 satisfies Eq. (43) when:
v (ﬂ)—o v, (2 +vA(”€“)—o (45)
& T — Y, & T B T — V.

@ The flow is in global thermal equilibrium if 1/ T is constant and when u®/T
is a Killing vector field.
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Conformal transformations
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Conformal transformations

o A conformal (Weyl) transformation is g, = Q°(x)gy..
@ Under a Weyl transformation:

el =Q et pr=Q 7 pY, w=u*, f=f, T=Q'T,

= a—p3 1 y & B v 3 v —
Ms6P' P = [r”’d@p p” + (e5p® — p’e5pa)d.Q 1] ,
(0uF)g = (0uf) i — (0,2 1)p O, f. (46)
@ The Boltzmann equation transforms as:
A — =~ a0f
pYel o, f —T . pop° — — J[f] =
pe,0, adP P o [f]
L pteta - oto? O g - prteroro,0 1\ (a7
@pe&lﬁ_ &Bppapfg_ []—PU €aVpt T Oy 7()
o J[f] =Q2J[f] is ensured if T ~ T71, ie.:
p-u c,
f p— f — f(eq) = — 48
Y L N2 (48)

@ The Boltzmann equation is conformally invariant if p? = 0.°

9G. Denicol et al, Phys. Rev. D 90 (2014) 125026.
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Conformal soliton flow. AdS, ® S,!!

e First proposed as a spherically symmetric expanding wave.?

@ To derive the flow velocity, a conformal transformation with Q = r=1 is
performed:
2 ds® 2 2 2 2 . 2 2
ds® = —- = —cosh® pdT* + dp” + dO° + sin” 0dp°, (49)
r

where T and p are:

[2 1 2 _ 42
cosh p = —\/[L2 AP+ (r=07, tanT = +2ru ]
(50)
@ The flow is described by ' = 1/ cosh p which in Minkowski corresponds to:
VI + (r+ 0)2[L2 + (r — t)?]
2t
u" = ’ . (51)

VIE A+ (r+ )2)[2 + (r — 1))

10J. J. Friess, S. S. Gubser, G. Michalogiorgakis, S. S. Pufu, JHEP04(2007)080.
11). Noronha, G. S. Denicol, Phys. Rev. D 92 (2015) 114032.
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AdS; ® S,: Boltzmann equation

@ The following tetrad can be employed:

o7 0
=0 - T 5
cosh p’ G 6 =9 % “sing (52)

e

@ In the case when the flow is spherically-symmetric, the Boltzmann equation
reads:

¢ o(fp’ 1 —&2)f
8Tf+£8p(fcoshp)—sinhp{p2 ((‘92) l (‘9;)]}

= COShp(u —v-u)[f — ], (53)

where p? = p¢, pé = py/1 — €2 cosp and p? = py/1 — £2sin .
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AdS; ® S,: LB model

@ The discretisation of the momentum space is performed using
QR = QL X Q¢ x Q, quadrature points.

@ Since the azimuthal degrees of freedom contribute trivially, we set Q, =1
and perform the ¢ integrations analytically in deriving macroscopic moments.

@ The p degrees of freedom are also trivial when m = 0, such that Q; =2 is
sufficient for the exact recovery of the evolution of T4,

@ The derivatives w.r.t. £ and p are computed using:

1 9(fp%) & O(1 — £2)f]
328 S [M200) S

k’'=1
o LQL 19 L(2) 12 (5 4 L(Q)
okt T Tk €—|- 1 (pk) E—l(pk’) o €_|_2 (pk’) )
/=1
e 1€(£
K Z D &) 1Pea(&r) — Peal&r)]. (54)
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Global equilibrium

@ This corresponds to

no
n =

— T =—. 55
cosh® p cosh p (55)
@ The system is initialised with n=ng and T = Ty.

@ On the right boundary p = py, the condition f = ) (ny, T},) is imposed,
where n, and Ty, are given by (55) when p = py,
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Conclusion
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Conclusion

Using a conformal transformation, a complicated flow on Minkowski can
become simple on a curved space.

LB modelling can be useful to investigate dissipative processes in curved
spaces.

Using the vielbein (tetrad) formalism, the LB algorithm is identical to that
for Minkowski space (same quadrature).

Quadrature methods coupled with finite difference are versatile tools for
simulations in arbitrary coordinate systems.

This work was supported by a grant of the Romanian National Authority for
Scientific Research and Innovation, CNCS-UEFISCDI, project number
PN-1I-RU-TE-2014-4-2910.

V. E. Ambrus LB non-Cartesian flows DSFD 2017, 13/07/2017 31 /31



	Relativistic heavy ion collisions
	LB models for flat space (Cartesian coordinates)
	Arbitrary coordinates and General relativity
	Conformal transformations
	Conclusion

