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Motivation

The adS/CFT correspondence sparked an explosion of interest in the
behaviour of classical and quantum fields on asymptotically adS
space-times.

There has been recent quantitative analyses of quantum corrections to
thermal states in various geometries.1,2,3

Our study shows that kinetic theory results represent a certain limit of
the semi-classical QFT in curved spaces.

Similarly, the full theory of quantum gravity may reduce in some limit to
QFT in curved spaces.

We focus on (the covering space of) pure adS, where analytic expressions
can be obtained using both kinetic theory and QFT.

1F. Becattini and E. Grossi, Phys. Rev. D 92 (2015) 045037.
2R. Panerai, Phys. Rev. D 93 (2016) 104021.
3V. E. Ambrus,, Phys. Lett. B 771 (2017) 151.
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Anti-de Sitter space

In the 5D embedding space, adS is a
hyperboloid:

z2
0 − z2

1 − z2
2 − z2

3 + z2
4 =

1

ω2
,

where ω is the inverse radius of curvature.

AdS is a maximally symmetric vacuum
solution of the Einstein equations with
negative cosmological constant Λ = −3ω2.

Coordinates for static chart:

z0 =
1

ω

cosωt

cosωr
, z5 =

1

ω

sinωt

cosωr
,

zi =
tanωr

ωr
xi,

where t ∈ (−∞,∞) and 0 ≤ ωr < π
2 .
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Geometry of adS

Line element of adS:

ds2 =
1

cos2 ωr

[
−dt2 + dr2 +

sin2 ωr

ω2

(
dθ2 + sin2 θdϕ2

)]
, (1)

Geodetic interval s(x, x′) is given through:

cosωs =
cosω∆t

cosωr cosωr′
− cos γ tanωr tanωr′, (2)

where ∆t = t− t′ and cos γ = cos θ cos θ′ + sin θ sin θ′ cos ∆ϕ.

The metric can be put in Minkowski form ηα̂β̂ = gµνe
µ
α̂e
ν
β̂

using the

tetrad:4

et̂ = cosωr ∂t, eî = cosωr

[
ωr

sinωr

(
δij −

xixj

r2

)
+
xixj

r2

]
∂j ,

ωt̂ =
dt

cosωr
, ωî =

1

cosωr

[
sinωr

ωr

(
δij −

xixj

r2

)
+
xixj

r2

]
dxj . (3)

4I. I. Cotăescu, Rom. J. Phys. 52 (2007) 895.
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Kinetic theory
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Boltzmann equation

The relativistic Boltzmann equation on a curved space-time reads:5

pα̂eµα̂
∂f

∂xµ
− Γîα̂σ̂p

α̂pσ̂
∂f

∂pî
= J [f ], (4)

where f ≡ f(xµ,p) is the Boltzmann distribution function, while

ηα̂β̂p
α̂pβ̂ = −m2.

J [f ] drives the system towards thermodynamic equilibrium:

f
(eq)
−1 (β, uα̂) =

4

(2π)3
(e−β̃p

α̂uα̂ + 1)−1, (5)

where β̃ is the local inverse temperature and uα̂ is the macroscopic
four-velocity (u2 = −1).

5C. Cercignani, G. Kremer, The relativistic Boltzmann equation: theory and
applications, Birkhäuser Verlag, Basel (2002).
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Thermodynamic equilibrium

f = f (eq) satisfies the Bolzmann equation (4) if:

∇α̂(βuβ̂) +∇β̂(βuα̂) = 0.

We are interested in static solutions u = et̂, such that:6,7

β̃ = β
√
−gtt =

β

cosωr
, (6)

where β is the inverse temperature at r = 0.

The temperature β̃−1 monotonically decreases from β−1 at the origin
down to 0 on the space-time boundary ωr = π/2.

6R. C. Tolman, Phys. Rev. 35 (1930) 904;
R. C. Tolman, P. Ehrenfest, Phys. Rev. 36 (1930) 1791.

7V. E. Ambrus,, I. I. Cotăescu, Phys. Rev. D 94 (2016) 085022.
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Moments of f

The particle four-flow N α̂ and stress-energy tensor T α̂β̂ can be obtained
as moments of f = f (eq):

N α̂ =

∫
d3p

pt̂
f (eq) pα̂ = nuα̂,

T α̂β̂ =

∫
d3p

pt̂
f (eq) pα̂pβ̂ = (E + P )uα̂uβ̂ + P ηα̂β̂ . (7)

For Fermi-Dirac statistics, E and P can be expressed as:8

P−1(β̃) =− 2m2

π2β2
(cosωr)2

∞∑
j=1

(−1)j

j2
K2

(
mjβ

cosωr

)

−−−→
m=0

7π2

180β4
(cosωr)4,

E−1(β̃)− 3P−1(β̃) =− 2m3 cosωr

π2β

∞∑
j=1

(−1)j

j
K1

(
mjβ

cosωr

)
−−−→
m=0

0. (8)

8V. E. Ambrus,, R. Blaga, Annals of West University of Timis,oara - Physics 58 (2015) 89.
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Quantum field theory
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The Feynman Green’s function SF (x, x′)

On maximally symmetric spaces, SF can be written as:

iSF (x, x′) = [AF (s) + BF (s)/n]Λ(x, x′).

AF and BF depend only on s and reduce when m = 0 to:

AF cm=0 =
ω3

16π2

(
cos

ωs

2

)−3

, BF cm=0 =
iω3

16π2

(
sin

ωs

2

)−3

. (9)

nα̂ = ∇α̂s(x, x′) is the normalised tangent to the geodesic at x.
The bi-spinor of parallel transport satisfying nα̂Dα̂Λ(x, x′) = 0 is given
by:9

Λ(x, x′) =
sec(ωs/2)√

cosωr cosωr′

[

cos
ω∆t

2

(
cos

ωr

2
cos

ωr′

2
+ sin

ωr

2
sin

ωr′

2

x · γ
r

x′ · γ
r′

)
+ sin

ω∆t

2

(
sin

ωr

2
cos

ωr′

2

x · γ
r

γ t̂ + sin
ωr′

2
cos

ωr

2

x′ · γ
r′

γ t̂
)]

.

9V. E. Ambrus,, E. Winstanley, AIP Conf. Proc. 1634 (2014) 40.
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Expectation values from two-point functions

Consider the Feynman two-point function:

iSF (x, x′) = 〈θ(t− t′)ψ(x)ψ(x′)− θ(t′ − t)ψ(x′)ψ(x)〉 .

The expectation values of ψψ, Jµ and Tµν can be obtained as:10

〈ψψ〉 =− lim
x′→x

tr[iSF (x, x′)Λ(x′, x)],

〈J α̂〉 =− lim
x′→x

tr[γα̂iSF (x, x′)Λ(x′, x)],

〈Tα̂σ̂〉 =− 1

2
lim
x′→x

tr

{[
γ(α̂Dσ̂)SF (x, x′)− gα̂α̂

′
gσ̂
σ̂′
SF (x, x′)

←−
D (α̂′γσ̂′)

]

× Λ(x′, x)

}
.

10P. B. Groves, P. R. Anderson, E. D. Carlson, Phys. Rev. D 66 (2002) 124017.
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Feynman Green’s function SβF (x, x′) for a thermal state

SβF (x, x′) is antiperiodic with respect to the imaginary time:11

SβF (∆t;x,x′) =
∞∑

j=−∞
(−1)jSF (∆t+ ijβ;x,x′).

The closed form expression of SF (x, x′) can be used to deduce that the
quantum t.e.v. of the SET (relative to the vacuum state) is in ideal form:

〈: T α̂σ̂ :〉β = (Eβ + Pβ)uα̂uσ̂ + Pβη
α̂σ̂,

where Eβ reduces in the massless limit to:

Eβcm=0 = −3ω4

4π2
(cosωr)4

∞∑
j=1

(−1)j
cosh ωjβ

2

(sinh ωjβ
2 )4

. (10)

An expansion of Eq. (10) in powers of βω recovers the BOP
approximation:12

Eβcm=0 =
7π2

60β4
(cosωr)4

[
1− 5β2ω2

14π2
− 17β4ω4

112π4
+O([βω]6)

]
. (11)

11N. D. Birrell, P. C. W. Davies, Quantum fields in curved space (CUP, 1982)
12M. R. Brown, A. C. Ottewill, D. N. Page, Phys. Rev. D 33 (1986) 2840.
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Energy density profiles
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The kinetic theory and QFT results are almost overlapped at small βω,
for a wide range of k = m/ω.

When βω is decreased, the QFT energy density becomes significantly
lower than the kinetic theory one.
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Energy density: massless limit

O[( )0]

O[( )4]
nmax=0
nmax=5

Numerical

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
E /E-1(

˜
)

r = 0, k = 0

In the massless case:(
Eβ

E−1(β̃)

)
=

(
Eβ

E−1(β̃)

)
r=0

(cosωr)4

At ωβ → 0, the classical limit
is reached and Eβ/E−1(β̃)→ 1:

Eβcm=0 =
7π2

60β4
(cosωr)4

[
1− 5β2ω2

14π2
− 17β4ω4

112π4
+O([βω]6)

]
.

As ωβ →∞, Eβ becomes strongly quenched by quantum corrections:

Eβ = −6ω4

π2

(cosωr)4

1 + e
3
2ωβ

∞∑
n=0

e−nωβ
(

1 +
13n

6
+

3n2

2
+
n3

3

)
1 + e−

3
2ωβ

1 + e−( 3
2 +n)ωβ

.
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Energy density - behaviour at the origin
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˜
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Eβ/E−1(β̃) approaches an
asymptotic value as k →∞.

Pβ/P−1(β̃) is quenched at
a lesser rate.

wβ/w−1(β̃) increases with
ωβ when k > 0.

V. Ambrus, and E. Winstanley (UVT) Quantum corrections on adS TIM-17, 26/05/2017 19 / 25



Equation of state w = P/E

k = 0

k = 4

k = 6

k = 8

0.2 0.4 0.6 0.8 1.0

r

π /2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

w

ω = 0.5

On the boundary ωr = π/2, wβ goes to a finite value, while w−1 vanishes
for all k = m/ω 6= 0:

wβ '
[
3 + 2k − 2k(2 + k)

1 + 2k

Sk+1

Sk
cos2 ωr

]−1

,

w−1(β̃) '
(
mβ +

3

2
cosωr

)−1

cosωr. (12)

[Sν = −
∞∑
j=1

(−1)
j cosh ωjβ

2

(sinh ωjβ
2 )4+2ν

]
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Fermion condensate
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The fermion condensate satisfies 〈: ψψ :〉β :

〈: ψψ :〉β = − 1

m
〈: T α̂α̂ :〉β .

The kinetic theory FC can be defined similarly: FC−1 = − 1
mT

α̂
−1,α̂.

The quantum FC is non-zero even when k = 0, where the kinetic theory
FC vanishes.
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Fermion condensate - behaviour at the origin

ωβ = 0.5

ωβ = 0.6

ωβ = 0.7

ωβ = 0.8

2 4 6 8 10
k

0.2

0.4
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At the origin, FC−1(β̃) has the same value as in Minkowski:

FC−1(β̃)
⌋
ωr=0

= −2m2

π2β

∞∑
j=1

(−1)j

j
K1 (mjβ) .

FCβ no longer exhibits a maximum w.r.t. k when

d(FCβ)

dk

⌋
k=0,ωr=0

= − ω3

2π2

∞∑
j=1

(−1)j
(

1

cosh ωjβ
2

sinh2 ωjβ
2

−
ln
[
sinh2 ωjβ

2

]
cosh3 ωjβ

2

)
≤ 0.

Equality is attained when ωβ ' 2.82857, which is close, but not equal to√
8 ' 2.82843.
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Conclusion

Using an analytic expression for SF (x, x′) written in terms of Λ(x, x′), the
t.e.v.s of the quantum Dirac field were investigated.

The quantum SET was shown to describe an ideal (perfect) fluid.

Quantum corrections were highlighted in comparison to the classical
relativistic kinetic theory predictions.

wβ = Pβ/Eβ = (3 + 2k)−1 on the adS boundary, whereas w−1(β̃) vanishes
when m 6= 0.

FCβ = 〈: ψψ :〉β is finite at k = 0, whereas FC−1(β̃) vanishes identically.

At large βω, Eβ/E−1(β̃) is strongly quenched by quantum corrections.

More details can be found in arXiv:1704.00614 [hep-th].
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Feynman Green’s function

On maximally symmetric spaces, SF can be written as:

iSF (x, x′) = [AF (s) + BF (s)/n]Λ(x, x′),

where

AF =
ω3Γ (2 + k)

16π
3
2 4kΓ

(
1
2 + k

) cos
(ωs

2

) [
− sin2

(ωs
2

)]−2−k

× 2F1

(
1 + k, 2 + k; 1 + 2k; cosec2

(ωs
2

))
,

BF =
iω3Γ (2 + k)

16π
3
2 4kΓ

(
1
2 + k

) sin
(ωs

2

) [
− sin2

(ωs
2

)]−2−k

× 2F1

(
k, 2 + k; 1 + 2k; cosec2

(ωs
2

))
.
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Quantum thermal expectation values

The t.e.v. of the SET and of the FC are given by:

〈: T α̂σ̂ :〉β =(Eβ + Pβ)uα̂uσ̂ + Pβη
α̂σ̂, Eβ + Pβ = −2ω4Γ(3 + k)(cosωr)4+2k

π3/241+kΓ( 1
2 + k)

∞∑
j=1

(−1)j
cosh ωjβ

2

(sinh ωjβ
2 )4+2k

× 2F1

[
k, 3 + k; 1 + 2k;− cos2 ωr

sinh2 ωjβ
2

]
,

Pβ =− ω4Γ(2 + k)(cosωr)4+2k

π3/241+kΓ( 1
2 + k)

∞∑
j=1

(−1)j
cosh ωjβ

2

(sinh ωjβ
2 )4+2k

× 2F1

[
k, 2 + k; 1 + 2k;− cos2 ωr

sinh2 ωjβ
2

]
,

FCβ = 〈: ψψ :〉β = −2ω3Γ(2 + k)(cosωr)4+2k

π3/241+kΓ( 1
2 + k)

∞∑
j=1

(−1)j
cosh ωjβ

2

(sinh ωjβ
2 )4+2k

× 2F1

(
1 + k, 2 + k; 1 + 2k;− cos2 ωr

sinh2 ωjβ
2

)
.
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