Quantum corrections in thermal states of fermions on anti-de Sitter spacetime

Victor E. Ambruș¹, Elizabeth Winstanley²

TIM-17, 26/05/2017

arXiv:1704.00614 [hep-th]

¹ Department of Physics, West University of Timișoara, Bd. Vasile Parvan 4, RO 300223 Timișoara, Romania

² Consortium for Fundamental Physics, School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom

Outline

- 1 Introduction
- 2 Anti-de Sitter space
- 3 Kinetic theory
- 4 Quantum field theory
- **6** Comparison
- 6 Conclusion

Introduction

Motivation

- The adS/CFT correspondence sparked an explosion of interest in the behaviour of classical and quantum fields on asymptotically adS space-times.
- There has been recent quantitative analyses of quantum corrections to thermal states in various geometries. 1,2,3
- Our study shows that kinetic theory results represent a certain limit of the semi-classical QFT in curved spaces.
- Similarly, the full theory of quantum gravity may reduce in some limit to QFT in curved spaces.
- We focus on (the covering space of) pure adS, where analytic expressions can be obtained using both kinetic theory and QFT.

¹F. Becattini and E. Grossi, Phys. Rev. D 92 (2015) 045037.

 $^{^2{\}rm R.}$ Panerai, Phys. Rev. D ${\bf 93}~(2016)~104021.$

³V. E. Ambruş, Phys. Lett. B **771** (2017) 151.

Anti-de Sitter space

Anti-de Sitter space

• In the 5D embedding space, adS is a hyperboloid:

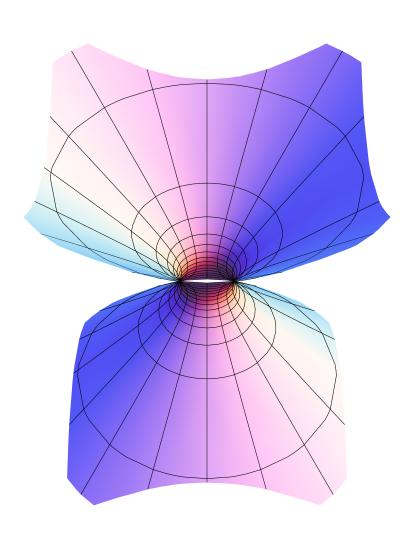
$$z_0^2 - z_1^2 - z_2^2 - z_3^2 + z_4^2 = \frac{1}{\omega^2},$$

where ω is the inverse radius of curvature.

- AdS is a maximally symmetric vacuum solution of the Einstein equations with negative cosmological constant $\Lambda = -3\omega^2$.
- Coordinates for static chart:

$$z^{0} = \frac{1}{\omega} \frac{\cos \omega t}{\cos \omega r}, \qquad z^{5} = \frac{1}{\omega} \frac{\sin \omega t}{\cos \omega r},$$
$$z^{i} = \frac{\tan \omega r}{\omega r} x^{i},$$

where $t \in (-\infty, \infty)$ and $0 \le \omega r < \frac{\pi}{2}$.



Geometry of adS

• Line element of adS:

$$ds^{2} = \frac{1}{\cos^{2}\omega r} \left[-dt^{2} + dr^{2} + \frac{\sin^{2}\omega r}{\omega^{2}} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right) \right], \tag{1}$$

• Geodetic interval s(x, x') is given through:

$$\cos \omega s = \frac{\cos \omega \Delta t}{\cos \omega r \cos \omega r'} - \cos \gamma \tan \omega r \tan \omega r', \tag{2}$$

where $\Delta t = t - t'$ and $\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos \Delta \varphi$.

• The metric can be put in Minkowski form $\eta_{\hat{\alpha}\hat{\beta}} = g_{\mu\nu}e^{\mu}_{\hat{\alpha}}e^{\nu}_{\hat{\beta}}$ using the tetrad:⁴

$$e_{\hat{t}} = \cos \omega r \, \partial_t, \qquad e_{\hat{i}} = \cos \omega r \left[\frac{\omega r}{\sin \omega r} \left(\delta_{ij} - \frac{x^i x^j}{r^2} \right) + \frac{x^i x^j}{r^2} \right] \partial_j,$$

$$\omega^{\hat{t}} = \frac{dt}{\cos \omega r}, \qquad \omega^{\hat{i}} = \frac{1}{\cos \omega r} \left[\frac{\sin \omega r}{\omega r} \left(\delta_{ij} - \frac{x^i x^j}{r^2} \right) + \frac{x^i x^j}{r^2} \right] dx^j. \tag{3}$$

⁴I. I. Cotăescu, Rom. J. Phys. **52** (2007) 895.

Kinetic theory

Boltzmann equation

• The relativistic Boltzmann equation on a curved space-time reads:⁵

$$p^{\hat{\alpha}}e^{\mu}_{\hat{\alpha}}\frac{\partial f}{\partial x^{\mu}} - \Gamma^{\hat{i}}{}_{\hat{\alpha}\hat{\sigma}}p^{\hat{\alpha}}p^{\hat{\sigma}}\frac{\partial f}{\partial p^{\hat{i}}} = J[f], \tag{4}$$

where $f \equiv f(x^{\mu}, \mathbf{p})$ is the Boltzmann distribution function, while $\eta_{\hat{\alpha}\hat{\beta}}p^{\hat{\alpha}}p^{\hat{\beta}} = -m^2$.

• J[f] drives the system towards thermodynamic equilibrium:

$$f_{-1}^{(\text{eq})}(\beta, u^{\hat{\alpha}}) = \frac{4}{(2\pi)^3} (e^{-\tilde{\beta}p^{\hat{\alpha}}u_{\hat{\alpha}}} + 1)^{-1}, \tag{5}$$

where $\widetilde{\beta}$ is the *local* inverse temperature and $u^{\hat{\alpha}}$ is the macroscopic four-velocity $(u^2 = -1)$.

⁵C. Cercignani, G. Kremer, *The relativistic Boltzmann equation: theory and applications*, Birkhäuser Verlag, Basel (2002).

Thermodynamic equilibrium

• $f = f^{(eq)}$ satisfies the Bolzmann equation (4) if:

$$\nabla_{\hat{\alpha}}(\beta u_{\hat{\beta}}) + \nabla_{\hat{\beta}}(\beta u_{\hat{\alpha}}) = 0.$$

• We are interested in static solutions $u = e_{\hat{t}}$, such that:^{6,7}

$$\widetilde{\beta} = \beta \sqrt{-g_{tt}} = \frac{\beta}{\cos \omega r},\tag{6}$$

where β is the inverse temperature at r=0.

• The temperature $\tilde{\beta}^{-1}$ monotonically decreases from β^{-1} at the origin down to 0 on the space-time boundary $\omega r = \pi/2$.

⁶R. C. Tolman, Phys. Rev. **35** (1930) 904;

R. C. Tolman, P. Ehrenfest, Phys. Rev. **36** (1930) 1791.

 $^{^7\}mathrm{V}.$ E. Ambruș, I. I. Cotăescu, Phys. Rev. D $\mathbf{94}$ (2016) 085022.

Moments of f

• The particle four-flow $N^{\hat{\alpha}}$ and stress-energy tensor $T^{\hat{\alpha}\hat{\beta}}$ can be obtained as moments of $f = f^{(eq)}$:

$$N^{\hat{\alpha}} = \int \frac{d^3 p}{p^{\hat{t}}} f^{(\text{eq})} p^{\hat{\alpha}} = n u^{\hat{\alpha}},$$

$$T^{\hat{\alpha}\hat{\beta}} = \int \frac{d^3 p}{p^{\hat{t}}} f^{(\text{eq})} p^{\hat{\alpha}} p^{\hat{\beta}} = (E + P) u^{\hat{\alpha}} u^{\hat{\beta}} + P \eta^{\hat{\alpha}\hat{\beta}}.$$
(7)

• For Fermi-Dirac statistics, E and P can be expressed as:⁸

$$P_{-1}(\widetilde{\beta}) = -\frac{2m^2}{\pi^2 \beta^2} (\cos \omega r)^2 \sum_{j=1}^{\infty} \frac{(-1)^j}{j^2} K_2 \left(\frac{mj\beta}{\cos \omega r}\right)$$

$$\xrightarrow{m=0} \frac{7\pi^2}{180\beta^4} (\cos \omega r)^4,$$

$$E_{-1}(\widetilde{\beta}) - 3P_{-1}(\widetilde{\beta}) = -\frac{2m^3 \cos \omega r}{\pi^2 \beta} \sum_{j=1}^{\infty} \frac{(-1)^j}{j} K_1 \left(\frac{mj\beta}{\cos \omega r}\right)$$

$$\xrightarrow{m=0} 0.$$

⁸V. E. Ambrus, R. Blaga, Annals of West University of Timişoara - Physics **58** (2015) 89.

(8)

Quantum field theory

The Feynman Green's function $S_F(x, x')$

• On maximally symmetric spaces, S_F can be written as:

$$iS_F(x,x') = [\mathcal{A}_F(s) + \mathcal{B}_F(s) \eta] \Lambda(x,x').$$

• \mathcal{A}_F and \mathcal{B}_F depend only on s and reduce when m=0 to:

$$\mathcal{A}_F\rfloor_{m=0} = \frac{\omega^3}{16\pi^2} \left(\cos\frac{\omega s}{2}\right)^{-3}, \qquad \mathcal{B}_F\rfloor_{m=0} = \frac{i\omega^3}{16\pi^2} \left(\sin\frac{\omega s}{2}\right)^{-3}. \tag{9}$$

- $n_{\hat{\alpha}} = \nabla_{\hat{\alpha}} s(x, x')$ is the normalised tangent to the geodesic at x.
- The bi-spinor of parallel transport satisfying $n^{\hat{\alpha}}D_{\hat{\alpha}}\Lambda(x,x')=0$ is given by:⁹

$$\Lambda(x, x') = \frac{\sec(\omega s/2)}{\sqrt{\cos \omega r \cos \omega r'}} \left[\cos \frac{\omega \Delta t}{2} \left(\cos \frac{\omega r}{2} \cos \frac{\omega r'}{2} + \sin \frac{\omega r}{2} \sin \frac{\omega r'}{2} \frac{\mathbf{x} \cdot \boldsymbol{\gamma}}{r} \frac{\mathbf{x}' \cdot \boldsymbol{\gamma}}{r'} \right) + \sin \frac{\omega \Delta t}{2} \left(\sin \frac{\omega r}{2} \cos \frac{\omega r'}{2} \frac{\mathbf{x} \cdot \boldsymbol{\gamma}}{r} \gamma^{\hat{t}} + \sin \frac{\omega r'}{2} \cos \frac{\omega r}{2} \frac{\mathbf{x}' \cdot \boldsymbol{\gamma}}{r'} \gamma^{\hat{t}} \right) \right].$$

 $^{^9\}mathrm{V}.$ E. Ambruș, E. Winstanley, AIP Conf. Proc. $\mathbf{1634}$ (2014) 40.

Expectation values from two-point functions

• Consider the Feynman two-point function:

$$iS_F(x,x') = \langle \theta(t-t')\psi(x)\overline{\psi}(x') - \theta(t'-t)\overline{\psi}(x')\psi(x) \rangle.$$

• The expectation values of $\overline{\psi}\psi$, J^{μ} and $T_{\mu\nu}$ can be obtained as:¹⁰

$$\langle \psi \psi \rangle = -\lim_{x' \to x} \operatorname{tr}[iS_{F}(x, x')\Lambda(x', x)],$$

$$\langle J^{\hat{\alpha}} \rangle = -\lim_{x' \to x} \operatorname{tr}[\gamma^{\hat{\alpha}}iS_{F}(x, x')\Lambda(x', x)],$$

$$\langle T_{\hat{\alpha}\hat{\sigma}} \rangle = -\frac{1}{2}\lim_{x' \to x} \operatorname{tr} \left\{ \left[\gamma_{(\hat{\alpha}}D_{\hat{\sigma})}S_{F}(x, x') - g_{\hat{\alpha}}{}^{\hat{\alpha}'}g_{\hat{\sigma}}{}^{\hat{\sigma}'}S_{F}(x, x') \overline{D}_{(\hat{\alpha}'}\gamma_{\hat{\sigma}')} \right] \right.$$

$$\times \Lambda(x', x) \right\}.$$

Quantum corrections on adS

 $^{^{10}}$ P. B. Groves, P. R. Anderson, E. D. Carlson, Phys. Rev. D $\mathbf{66}$ (2002) 124017.

Feynman Green's function $S_F^{\beta}(x,x')$ for a thermal state

• $S_F^{\beta}(x,x')$ is antiperiodic with respect to the imaginary time:¹¹

$$S_F^{\beta}(\Delta t; \mathbf{x}, \mathbf{x}') = \sum_{j=-\infty}^{\infty} (-1)^j S_F(\Delta t + ij\beta; \mathbf{x}, \mathbf{x}').$$

• The closed form expression of $S_F(x, x')$ can be used to deduce that the quantum t.e.v. of the SET (relative to the vacuum state) is in ideal form:

$$\langle : T^{\hat{\alpha}\hat{\sigma}} : \rangle_{\beta} = (E_{\beta} + P_{\beta})u^{\hat{\alpha}}u^{\hat{\sigma}} + P_{\beta}\eta^{\hat{\alpha}\hat{\sigma}},$$

where E_{β} reduces in the massless limit to:

$$E_{\beta}\rfloor_{m=0} = -\frac{3\omega^4}{4\pi^2}(\cos\omega r)^4 \sum_{j=1}^{\infty} (-1)^j \frac{\cosh\frac{\omega j\beta}{2}}{(\sinh\frac{\omega j\beta}{2})^4}.$$
 (10)

• An expansion of Eq. (10) in powers of $\beta\omega$ recovers the BOP approximation:¹²

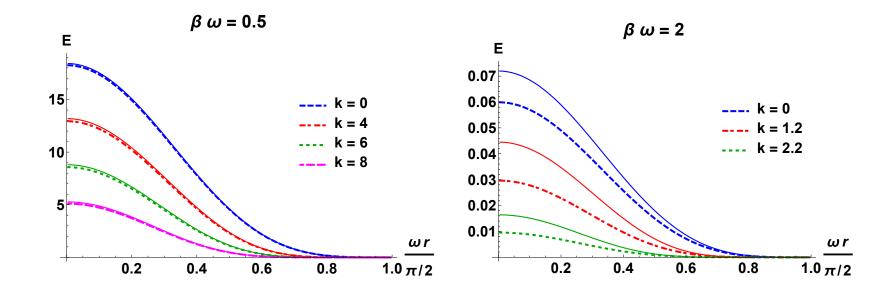
$$E_{\beta} \rfloor_{m=0} = \frac{7\pi^2}{60\beta^4} (\cos \omega r)^4 \left[1 - \frac{5\beta^2 \omega^2}{14\pi^2} - \frac{17\beta^4 \omega^4}{112\pi^4} + O([\beta\omega]^6) \right]. \tag{11}$$

¹¹N. D. Birrell, P. C. W. Davies, Quantum fields in curved space (CUP, 1982)

¹²M. R. Brown, A. C. Ottewill, D. N. Page, Phys. Rev. D **33** (1986) 2840.

Comparison

Energy density profiles



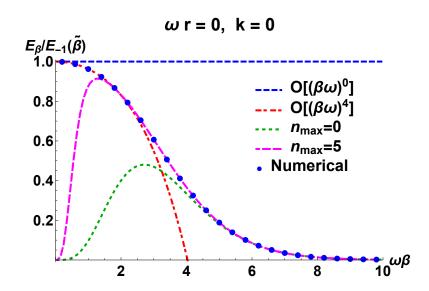
- The kinetic theory and QFT results are almost overlapped at small $\beta\omega$, for a wide range of $k=m/\omega$.
- When $\beta\omega$ is decreased, the QFT energy density becomes significantly lower than the kinetic theory one.

Energy density: massless limit

• In the massless case:

$$\begin{pmatrix} E_{\beta} \\ E_{-1}(\widetilde{\beta}) \end{pmatrix} = \begin{pmatrix} E_{\beta} \\ E_{-1}(\widetilde{\beta}) \end{pmatrix}_{r=0} (\cos \omega r)^4$$

• At $\omega\beta \to 0$, the classical limit is reached and $E_{\beta}/E_{-1}(\widetilde{\beta}) \to 1$:

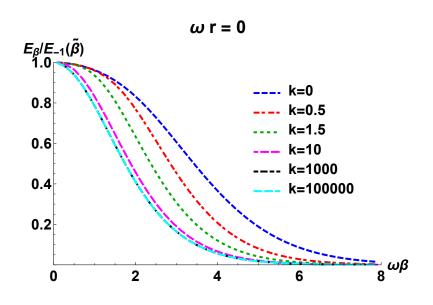


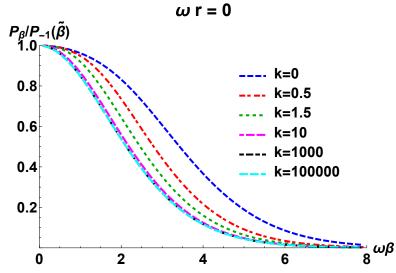
$$E_{\beta}|_{m=0} = \frac{7\pi^2}{60\beta^4} (\cos \omega r)^4 \left[1 - \frac{5\beta^2 \omega^2}{14\pi^2} - \frac{17\beta^4 \omega^4}{112\pi^4} + O([\beta\omega]^6) \right].$$

• As $\omega\beta \to \infty$, E_{β} becomes strongly quenched by quantum corrections:

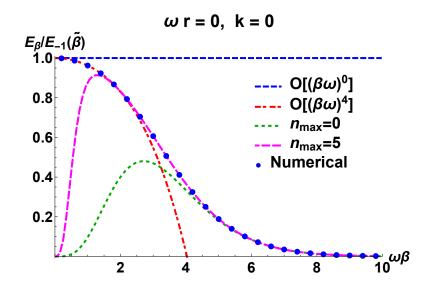
$$E_{\beta} = -\frac{6\omega^4}{\pi^2} \frac{(\cos \omega r)^4}{1 + e^{\frac{3}{2}\omega\beta}} \sum_{n=0}^{\infty} e^{-n\omega\beta} \left(1 + \frac{13n}{6} + \frac{3n^2}{2} + \frac{n^3}{3} \right) \frac{1 + e^{-\frac{3}{2}\omega\beta}}{1 + e^{-(\frac{3}{2} + n)\omega\beta}}.$$

Energy density - behaviour at the origin

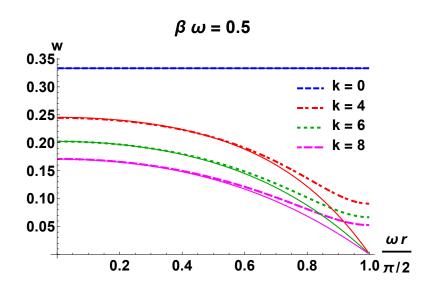




- $E_{\beta}/E_{-1}(\widetilde{\beta})$ approaches an asymptotic value as $k \to \infty$.
- $P_{\beta}/P_{-1}(\widetilde{\beta})$ is quenched at a lesser rate.
- $w_{\beta}/w_{-1}(\widetilde{\beta})$ increases with $\omega\beta$ when k>0.



Equation of state w = P/E



• On the boundary $\omega r = \pi/2$, w_{β} goes to a finite value, while w_{-1} vanishes for all $k = m/\omega \neq 0$:

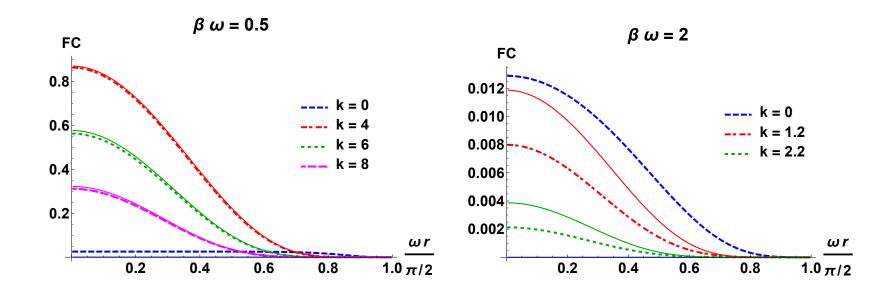
$$w_{\beta} \simeq \left[3 + 2k - \frac{2k(2+k)}{1+2k} \frac{S_{k+1}}{S_k} \cos^2 \omega r \right]^{-1},$$

$$w_{-1}(\widetilde{\beta}) \simeq \left(m\beta + \frac{3}{2} \cos \omega r \right)^{-1} \cos \omega r.$$

$$[S_{\nu} = -\sum_{j=1}^{\infty} (-1)^j \frac{\cosh \frac{\omega j\beta}{2}}{(\sinh \frac{\omega j\beta}{2})^{4+2\nu}}]$$

$$(12)$$

Fermion condensate

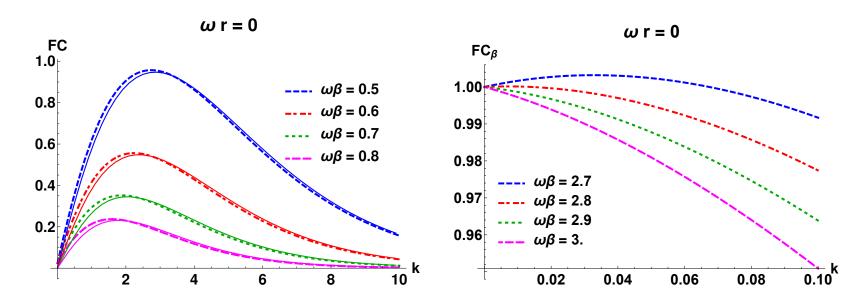


• The fermion condensate satisfies $\langle : \overline{\psi}\psi : \rangle_{\beta}$:

$$\langle : \overline{\psi}\psi : \rangle_{\beta} = -\frac{1}{m} \langle : T^{\hat{\alpha}}{}_{\hat{\alpha}} : \rangle_{\beta}.$$

- The kinetic theory FC can be defined similarly: $FC_{-1} = -\frac{1}{m}T_{-1,\hat{\alpha}}^{\hat{\alpha}}$.
- The quantum FC is non-zero even when k = 0, where the kinetic theory FC vanishes.

Fermion condensate - behaviour at the origin



• At the origin, $FC_{-1}(\widetilde{\beta})$ has the same value as in Minkowski:

$$FC_{-1}(\widetilde{\beta})\Big|_{\omega r=0} = -\frac{2m^2}{\pi^2 \beta} \sum_{j=1}^{\infty} \frac{(-1)^j}{j} K_1(mj\beta).$$

• FC $_{\beta}$ no longer exhibits a maximum w.r.t. k when

$$\frac{d(FC_{\beta})}{dk}\bigg|_{k=0,\omega r=0} = -\frac{\omega^3}{2\pi^2} \sum_{j=1}^{\infty} (-1)^j \left(\frac{1}{\cosh \frac{\omega j\beta}{2} \sinh^2 \frac{\omega j\beta}{2}} - \frac{\ln\left[\sinh^2 \frac{\omega j\beta}{2}\right]}{\cosh^3 \frac{\omega j\beta}{2}} \right) \le 0.$$

• Equality is attained when $\omega\beta \simeq 2.82857$, which is close, but not equal to $\sqrt{8} \simeq 2.82843$.

Conclusion

Conclusion

- Using an analytic expression for $S_F(x, x')$ written in terms of $\Lambda(x, x')$, the t.e.v.s of the quantum Dirac field were investigated.
- The quantum SET was shown to describe an ideal (perfect) fluid.
- Quantum corrections were highlighted in comparison to the classical relativistic kinetic theory predictions.
- $w_{\beta} = P_{\beta}/E_{\beta} = (3+2k)^{-1}$ on the adS boundary, whereas $w_{-1}(\widetilde{\beta})$ vanishes when $m \neq 0$.
- $FC_{\beta} = \langle : \overline{\psi}\psi : \rangle_{\beta}$ is finite at k = 0, whereas $FC_{-1}(\widetilde{\beta})$ vanishes identically.
- At large $\beta \omega$, $E_{\beta}/E_{-1}(\widetilde{\beta})$ is strongly quenched by quantum corrections.
- More details can be found in arXiv:1704.00614 [hep-th].

Acknowledgement

- No student was harmed in obtaining these results.
- Everybody who contributed to this work is an author or has been formally acknowledged.

- V.E.A. was partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-2910.
- V.E.A. thanks the MSRC in the SoMaS at the University of Sheffield for hospitality while this work was completed.
- The work of E.W. is supported by the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC grant ST/L000520/1.

Feynman Green's function

• On maximally symmetric spaces, S_F can be written as:

$$iS_F(x, x') = [\mathcal{A}_F(s) + \mathcal{B}_F(s) n] \Lambda(x, x'),$$

where

$$\mathcal{A}_{F} = \frac{\omega^{3}\Gamma(2+k)}{16\pi^{\frac{3}{2}}4^{k}\Gamma(\frac{1}{2}+k)}\cos\left(\frac{\omega s}{2}\right)\left[-\sin^{2}\left(\frac{\omega s}{2}\right)\right]^{-2-k}$$

$$\times {}_{2}F_{1}\left(1+k,2+k;1+2k;\csc^{2}\left(\frac{\omega s}{2}\right)\right),$$

$$\mathcal{B}_{F} = \frac{i\omega^{3}\Gamma(2+k)}{16\pi^{\frac{3}{2}}4^{k}\Gamma(\frac{1}{2}+k)}\sin\left(\frac{\omega s}{2}\right)\left[-\sin^{2}\left(\frac{\omega s}{2}\right)\right]^{-2-k}$$

$$\times {}_{2}F_{1}\left(k,2+k;1+2k;\csc^{2}\left(\frac{\omega s}{2}\right)\right).$$

Quantum thermal expectation values

• The t.e.v. of the SET and of the FC are given by:

$$\langle : T^{\hat{\alpha}\hat{\sigma}} : \rangle_{\beta} = (E_{\beta} + P_{\beta})u^{\hat{\alpha}}u^{\hat{\sigma}} + P_{\beta}\eta^{\hat{\alpha}\hat{\sigma}}, E_{\beta} + P_{\beta} =$$

$$\times {}_{2}F_{1} \left[k, 3 + k; 1 + 2k; -\frac{\cos^{2}\omega r}{\sinh^{2}\frac{\omega j\beta}{2}} \right],$$

$$P_{\beta} = -\frac{\omega^{4}\Gamma(2+k)(\cos\omega r)^{4+2k}}{\pi^{3/2}4^{1+k}\Gamma(\frac{1}{2}+k)} \sum_{j=1}^{\infty} (-1)^{j} \frac{\cosh\frac{\omega j\beta}{2}}{(\sinh\frac{\omega j\beta}{2})^{4+2k}}$$

$$\times {}_{2}F_{1} \left[k, 2 + k; 1 + 2k; -\frac{\cos^{2}\omega r}{\sinh^{2}\frac{\omega j\beta}{2}} \right],$$

$$FC_{\beta} = \langle : \overline{\psi}\psi : \rangle_{\beta} = -\frac{2\omega^{3}\Gamma(2+k)(\cos\omega r)^{4+2k}}{\pi^{3/2}4^{1+k}\Gamma(\frac{1}{2}+k)} \sum_{j=1}^{\infty} (-1)^{j} \frac{\cosh\frac{\omega j\beta}{2}}{(\sinh\frac{\omega j\beta}{2})^{4+2k}}$$

$$\times {}_{2}F_{1} \left(1 + k, 2 + k; 1 + 2k; -\frac{\cos^{2}\omega r}{\sinh^{2}\frac{\omega j\beta}{2}} \right).$$