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Abstract
Starting from the closed form analytic expression for the vacuum Feynman Green’s function on the anti-de Sitter (adS) spacetime, thermal

expectation values are constructed using the (anti-)periodicity properties of the finite temperature Feynman Green’s function for scalars (fermions).

The results are compared with classical expectation values computed using relativistic kinetic theory, highlighting the regimes where quantum

corrections are important. Focussing on the static (non-rotating) case, we find that the structure of the stress-energy tensor (SET) for the K-G

field is no longer that of a perfect fluid, with anisotropies developing between the radial and angular pressure components. For simplicity, the

analysis is restricted to the case of massless particles. [V. E. Ambrus, , C. Kent and E. Winstanley, Int. J. Mod. Phys. D 27 (2018) 1843014]

CadS: coordinates and metric
Denoting by ω the inverse radius of curvature of adS (R = −12ω2), the line

element can be parametrised as follows:

ds2 =
1

cos2ωr

[
−dt2 + dr2 +

(
sinωr

ω

)2

dΩ2

]
,

where the range of t ∈ (−∞,∞) is infinite in the covering space of adS

(CadS).

Classical approach: Relativistic kinetic theory
In global thermal equilibrium and at vanishing chemical potential, massless

uncharged boson and charged fermion particles are distributed according to B-E

and F-D statistics:

f
(eq)
B−E =

1/(2π)3

e−β̃(p·u) − 1
, f

(eq)
F−D =

4/(2π)3

e−β̃(p·u) + 1
,

where the inverse of the local temperature (β̃) and the four-velocity of the fluid

(u) are given by:

β̃ =
β

cosωr
, u = cosωr ∂t,

where β is the inverse temperature when r = 0.

The stress-energy tensor (SET) takes the form:

T µν = diag(−E,P, P, P ),

where P = 1
3
E and

EB−E =
π2

30β4
(cosωr)4, EF−D =

7π2

60β4
(cosωr)4.

Feynman Green’s functions for adS vacuum
Due to the maximal symmetry of adS, the Feynman Green’s functions

GF (x, x′) and SF (x, x′) can be written as:a

GF ≡ GF (s), SF ≡ [AF (s) + BF (s)/n]Λ(x, x′),

where s is the geodesic interval between x and x′, nµ = ∇µs is the geodesic
tangent at x and Λ is the bi-spinor of parallel transport:b

Λ(x, x′) =
sec(ωs/2)

√
cosωr cosωr′

[
cos ω∆t

2

(
cos ωr

2
cos ωr

′

2
+ sin ωr

2
sin ωr′

2
x·γ
r
x′·γ
r′

)
+ sin ω∆t

2

(
sin ωr

2
cos ωr

′

2
x·γ
r
γ t̂ + sin ωr′

2
cos ωr

2
x′·γ
r′
γ t̂
) ]
.

[valid for the tetrad in the Cartesian gauge and the Dirac rep. of the γ matrices]

Solving (2− ξR)GF = δ4(x− x′)/
√
−g yields:

Gξ=0
F =

ω2

4π2

[
cosωs

sin2ωs
+

1

2
ln

(
− cot2 ωs

2

)]
,

G
ξ=1

6

F =−
ω2

4π2 sin2ωs
.

Solving i /DSF = δ4(x− x′)/
√
−g yields:

iSF (x, x′) =
ω3[tan3

(
ωs
2

)
+ i/n]

16π2 sin3(ωs/2)
Λ(x, x′).

a
W. Mück, J. Phys. A: Math. Gen. 33 (2000) 3021–3026.

b
V. E. Ambrus, , E. Winstanley, Class. Quantum Grav. 34 (2017) 145010.

Green’s functions for static thermal states
The thermal Feynman Green’s functions can be obtained from GF and SF due

to their periodicity/anti-periodicity w.r.t. imaginary time:a

Gβ
F (x, x′) =

∞∑
j=−∞

GF (t+ ijβ, x; t′, x′),

SβF (x, x′) =
∞∑

j=−∞

(−1)jSF (t+ ijβ, x; t′, x′).

a
N. D. Birrell, P. C. W. Davies, Quantum fields in curved space (CUP, 1982).

Results for the scalar field
In the case of the scalar field, the SET is given by:

〈: T µν :〉β = diag(−E,P + Π, P − 1
2
Π, P − 1

2
Π),

where the pressure deviator Π is a purely quantum effect.

As a typical example, Emc
K−G corresponding to the minimally coupled (mc) K-G field can be

computed using:

Emc
K−G =

3ω4

8π2
(cosωr)6

∞∑
j=1

sinh−4(jβω/2)

[cos(2ωr) + cosh(jβω)]
.

It is worth noting that, while E = 3P in the conformally coupled (cc) case, this relation does
not hold in the mc case.
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The QFT results for E and P (solid lines) are generally below the RKT results, more markedly for
the mc case. In the RKT case, Π = 0, while Πmc

K−G seems to exceed the values of Πcc
K−G.

Results for the Dirac field
In the case of the massless Dirac field, Π = 0 and E = 3P , where

ED =
3ω4

4π2

∞∑
j=1

(−1)j−1 cosh(jβω/2)

sinh4(jβω/2)
' EF−D

(
1−

5β2ω2

14π2
−

17β4ω4

112π4
+ . . .

)
.
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Like in the K-G cc case, the QFT result is quite close to the RKT result. On the right, it can
be seen that EDirac decreases w.r.t. the RKT result as ωβ is increased.

Conclusion
On adS, analytic closed form expressions can be obtained for the vacuum two-point functions
for the Klein-Gordon and Dirac fields.

The point-splitting formalism allows these expressions to be employed when constructing
thermal states.

The K-G field exhibits non-vanishing pressure deviator Π, even for conformal coupling ξ = 1/6.

Quantum corrections are stronger for mc compared to cc.

In the case of the Dirac field, the SET is in perfect fluid form.

Quantum corrections are stronger at larger ωβ.
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