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Motivation

>

In QFT, the boundary conditions are imposed at the level of the
field operator / quantum modes.

The boundary conditions must preserve the mathematical
consistency of the theory (self-adjointness of the Hamiltonian,
time-invariance of the inner product, charge conjugation symmetry).
For the Klein-Gordon field: Dirichlet, von Neumann, Robin boundary
conditions.!

» For the Dirac field: spectral,2 Berry,® MIT bag boundary conditions.*

» The connection between the boundary conditions and the emergent

>

expectation values is far from trivial.

This contribution discusses a procedure to prescribe b.c.s in order to
achieve given macroscopic variables in the setup of rigidly-rotating
thermal states.

The discussion is limited to the Klein-Gordon field, but can be
extended to the Dirac case.’
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Landau frame

» The Landau (energy) frame® energy density E and macroscopic
velocity u* can be obtained by solving the eigenvalue equation:

TH u” = —E u*.
» In the Landau frame, T#¥ can be decomposed as follows:
T = Euu” + (P +w)AM + 1M,
where A*Y = y*u¥ + gh and
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» In thermal equilibrium, T#¥ = (E + P)utu” + Pn*”.

» The dynamic pressure (w) and pressure deviator (") represent
non-equilibrium contributions to the SET TH¥.

L. D. Landau, E. M. Lifshitz, Fluid mechanics, 2nd ed. (1987).



Rigid rotation: Kinetic theory results
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> ut = (0 +Q0,) = v=pQand vy = (1L - p?Q?)"1/2,

» The local inverse temperature is B = py L.
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» The energy density for massless B-E particles is Eg_g =

V. E. Ambrus, I. Cotdescu, Phys. Rev. D 94 (2016) 085022.



Klein-Gordon field: mode solutions

» The K-G field operator can be written as:

efiwjt+ika+imjtp

6= (afi+alf"),  fi=——=—=—JIn(q0),
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where q; = \/w? — k? — p2 and [a;, a},] =60,/

> f; are normalised using the inner product:

(f, h) = i/d3x\/—g(f*8th— ho.f*),

such that (f;, fi:) = 6(j,j') and (f;, ) = 0.

» The stress-energy tensor (SET) operator is:®

%{Vm,vm} 16, ViV - gw[(W) e

8N. D. Birrell, P. C. W. Davies, Quantum fields in curved space, Cambridge
University Press (1982).



Rigidly-rotating thermal states

» RRTS can be constructed using

(A) g = Z ' Tr(WA), Z = Tr(W), W =exp(—BH+Q-J).

» The t.e.v. of the one-particle operators is:®
-
R _ 5(./a./ ) ~
(-ajay '>ﬂ_7e5@'—1’ w=w-—Qm.

> The first problem is that (: aTaj :>B — —6(j,j') when @; < 0 and
B — oo (vacuum) = spurious S-independent contributions.
» The second problem can be seen by investigating the t.e.v. of ¢

(: ¢? Z/ dw/ w(ap),

m=—00

which — oo when p > 0 since at sufficiently large m, there are
values of w such that w = 0.
» Note: finite quantum corrections can be obtained perturbatively.°

9A. Vilenkin, Phys. Rev. D 8 (1980) 2260-2269.
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Bounded K-G field

> Let the system be bounded at p = R.

» The b.c.s must leave (,) time-invariant:

i0; (f, h) = —/dzf@(f*a,-h — hO;f*).
» For the cylindrical boundary and fg.; = Ng;f;, this entails:
Ve
% { Uy (Rl R, (a1 R)] = [9R I (6R) 1, (a1 R) }

<fR;j7 fR;j'> = ei(wj_wj/)témj,mjz 5(/(] — kj’)

» The time-independence is ensured if:
1. Jm(q;R) = 0 (Dirichlet),"
2. Jpm(qjR) = 0 (von Neumann),
3. [qjRJpm,(qR)] + Wm,(q;R) = 0 (Robin).!

11G. Duffy, A. Ottewill, Phys. Rev. D 67 (2003) 044002.
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Bounded K-G: SET
> Imposing (fume, firme) = 0(k — k")Om, m0r.0 gives:
2G5,
Nimel* = 557 7 w2
R2J2(qm.eR)(qz, RE+V —m?)

» The t.e.v. of the SET is:12
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where w = w — Qm and
F@G = (6w2 + p72m2 —
—6wp tmJ2,

(=3p72m* +3¢°) S5, + 2qp "Iy + 367 )2,
2J/ 2

) 3+

Fso
Fop =
Foo = (5p7°m* + %) J7 = 2qp " ImJ), — q
Fss = (6K* — p72m? + ¢?) J2 — ¢*J}2,

where m, ¢ and the explicit dependence on gp where dropped.

IA. Romeo, A. A. Saharian, Phys. Rev. D 63 (2001) 105019.
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Macroscopic boundary conditions

» The eigenvalue eq. Ta:,u& = —Eu® can be solved exactly:
T()@ 80 1o An A A
_ - T¢® 00 2 _ 052
V= _ [T /(T 4+ To0)2 — a(TO2)2],

> The following relation holds:

A
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> In order to impose v = v on the cylinder (p = R), W can be
obtained iteratively:

—m\ ! dk 7 (w2R2 + m2)
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Solving for W

N (2 dy'+W Jy)
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(m =1; N provides an arbitrary normalisation)

» The purpose of the boundary is to eliminate the modes with w < 0.
> This is guaranteed for ¥ >0 (&, , > m).
» There are ranges for ¥ < 0 where the modes with w < 0 reappear.

> There are ranges where they don't (e.g., 0 < ¥ < —0.7,
—1<V¥ <-12).



Connection between V and v,
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» For fixed v,, ¥ decreases as (3 is increased.

Vp v
0 00
0.1 1673.76
0.125 1040.09
0.2 467.099
0.3 162.162
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0.510355 -1
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> At fixed 3, v, = QR = 0.5 is unattainable for ¥ > 0.

» Negative W required to reach v, = 0.5.




Landau energy E and velocity v
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Relativistic Kinetic Theory (RKT): E =

2 74
3084’

v = pQ.

For W > 0: close to RKT at p >~ 0; The b.c.s cause the decrease of

For W =0: E < Egrkr at p ~ 0 and increases wildly as p — R.




Non-equilibrium effects

» Rigid rotation is an exact equilibrium solution of the relativi
Boltzmann equation, giving T%7 = (E + P)u®u’ + Pn®7.
» For the current system, u® = ~(1,0,v,0)" and

Tﬁf)
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where M is the shear pressure, while 7?7 = T#? — P and

M# = T?2 — P are the longitudinal and transversal pressure
deviators.

» The tracelessness of M%7 implies:

N+ N +n# =o.
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Pressure deviators
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» For V>0, M~MN?% <0and N’ > 0.
» For W =0, M?” and M?? change sign and are both larger in
magnitude than 1 almost everywhere.



Conclusion

>

vV v v v Y

Boundary conditions are required in order to render the t.e.v. of the
rigidly-rotating K-G field finite.

The most general formulation is given as Robin boundary conditions.
W > 0 ensures that the t.e.v.s remain finite.

For some negative values of W, the t.e.v.s can become divergent.

A systematic procedure giving W in terms of v, was derived.

There is a maximum value for v;, which can be reached for ¥ > 0
and it is less than QR.

Since the SET is not in perfect fluid form, thermodynamic
equilibrium is not achieved.

An open challenge is to disentangle quantum corrections from
boundary interaction effects.

Future work: extend the analysis to the Dirac field.
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