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Motivation
I In QFT, the boundary conditions are imposed at the level of the

field operator / quantum modes.

I The boundary conditions must preserve the mathematical
consistency of the theory (self-adjointness of the Hamiltonian,
time-invariance of the inner product, charge conjugation symmetry).

I For the Klein-Gordon field: Dirichlet, von Neumann, Robin boundary
conditions.1

I For the Dirac field: spectral,2 Berry,3 MIT bag boundary conditions.4

I The connection between the boundary conditions and the emergent
expectation values is far from trivial.

I This contribution discusses a procedure to prescribe b.c.s in order to
achieve given macroscopic variables in the setup of rigidly-rotating
thermal states.

I The discussion is limited to the Klein-Gordon field, but can be
extended to the Dirac case.5

1A. Romeo, A. A. Saharian, Phys. Rev. D 63 (2001) 105019.
2M. Hortaçsu, K. Rothe, B. Schroer, Nucl. Phys. B171 (1980) 530.
3M. V. Berry, R. J. Mondragon, Proc. R. Soc. Lond. A 412 (1987) 53–74.
4A. Chodos, R. Jaffe, K. Johnson, C. Thorn, V. Weisskopf, PRD 9 (1974) 3471.
5V. Ambrus, , E. Winstanley, Phys. Rev. D 93 (2016) 104014.



Landau frame

I The Landau (energy) frame6 energy density E and macroscopic
velocity uµ can be obtained by solving the eigenvalue equation:

Tµ
νu
ν = −E uµ.

I In the Landau frame, Tµν can be decomposed as follows:

Tµν = Euµuν + (P + ω)∆µν + Πµν ,

where ∆µν = uµuν + gµν and

E = uµT
µνuν , P + ω =

1

3
∆µνT

µν ,

Πµν = T<µν> =

[
1

2
(∆µ

α∆ν
β + ∆µ

β∆ν
α)− 1

3
∆µν∆αβ

]
Tαβ .

I In thermal equilibrium, Tµν = (E + P)uµuν + Pηµν .

I The dynamic pressure (ω) and pressure deviator (Πµν) represent
non-equilibrium contributions to the SET Tµν .

6L. D. Landau, E. M. Lifshitz, Fluid mechanics, 2nd ed. (1987).



Rigid rotation: Kinetic theory results

Ω

z

x

y

(ρ, ϕ, z)

I uµ = γ(∂t + Ω∂ϕ) ⇒ v = ρΩ and γ = (1− ρ2Ω2)−1/2.

I The local inverse temperature is β̃ = βγ−1.

I The energy density for massless B-E particles is EB−E = π2γ4

30β4 .7

7V. E. Ambrus, , I. Cotăescu, Phys. Rev. D 94 (2016) 085022.



Klein-Gordon field: mode solutions

I The K-G field operator can be written as:

φ =
∑
j

(aj fj + a†j f
∗
j ), fj =

e−iωj t+ikjz+imjϕ√
8π2ωj

Jmj (qjρ),

where qj =
√
ω2
j − k2

j − µ2 and [aj , a
†
j′ ] = δ(j , j ′).

I fj are normalised using the inner product:

〈f , h〉 = i

∫
d3x
√
−g(f ∗∂th − h∂t f

∗),

such that 〈fj , fj′〉 = δ(j , j ′) and 〈fj , f ∗j′ 〉 = 0.

I The stress-energy tensor (SET) operator is:8

Tµν =
1

3
{∇µφ,∇νφ} −

1

6
{φ,∇µ∇νφ} −

1

6
gµν [(∇φ)2 − µ2φ2].

8N. D. Birrell, P. C. W. Davies, Quantum fields in curved space, Cambridge
University Press (1982).



Rigidly-rotating thermal states
I RRTS can be constructed using

〈A〉β = Z−1Tr(WA), Z = Tr(W ), W = exp (−βH + Ω · J) .

I The t.e.v. of the one-particle operators is:9

〈: a†j aj′ :〉
β

=
δ(j , j ′)

eβω̃j − 1
, ω̃ = ω − Ωm.

I The first problem is that 〈: a†j aj′ :〉
β
→ −δ(j , j ′) when ω̃j < 0 and

β →∞ (vacuum) ⇒ spurious β-independent contributions.

I The second problem can be seen by investigating the t.e.v. of φ2:

〈: φ2 :〉β =
1

8π2

∞∑
m=−∞

∫ ∞
µ

dω

∫ p

−p

dk

eβω̃ − 1
J2
m(qρ),

which →∞ when ρ > 0 since at sufficiently large m, there are
values of ω such that ω̃ = 0.

I Note: finite quantum corrections can be obtained perturbatively.10

9A. Vilenkin, Phys. Rev. D 8 (1980) 2260–2269.
10F. Becattini, E. Grossi, Phys. Rev. D 92, 045037 (2015).



Bounded K-G field

I Let the system be bounded at ρ = R.

I The b.c.s must leave 〈,〉 time-invariant:

i∂t 〈f , h〉 = −
∫

dΣi√g(f ∗∂ih − h∂i f
∗).

I For the cylindrical boundary and fR;j = NR;j fj , this entails:

〈fR;j , fR;j′〉 =
N∗j Nj′

2
√
ωjωj′

e i(ωj−ωj′ )tδmj ,mj′ δ(kj − kj′)

×
{
Jmj (qjR)[qj′RJ

′
mj′

(qj′R)]− [qjRJ
′
mj

(qjR)]Jmj′ (qj′R)
}
.

I The time-independence is ensured if:

1. Jmj (qjR) = 0 (Dirichlet),11

2. J ′
mj

(qjR) = 0 (von Neumann),

3. [qjRJ
′
mj

(qjR)] + ΨJmj (qjR) = 0 (Robin).1

11G. Duffy, A. Ottewill, Phys. Rev. D 67 (2003) 044002.
1A. Romeo, A. A. Saharian, Phys. Rev. D 63 (2001) 105019.



Bounded K-G: SET
I Imposing 〈fkm`, fk′m′`′〉 = δ(k − k ′)δm,m′δ`,`′ gives:1

|Nkm`|2 =
2q2

m,`

R2J2
m(qm,`R)(q2

m,`R
2 + Ψ2 −m2)

.

I The t.e.v. of the SET is:12

〈: Tµν :〉β =
∞∑

m=−∞

∞∑
`=1

∫ ∞
−∞

|Nkm`|2dk
12π2ωkm`(eβω̃km` − 1)

Fµν ,

where ω̃ = ω − Ωm and

F0̂0̂ =
(
6ω2 + ρ−2m2 − q2

)
J2
m + q2J ′m

2,

Fϕ̂0̂ = −6ωρ−1mJ2
m,

Fρ̂ρ̂ =
(
−3ρ−2m2 + 3q2

)
J2
m + 2qρ−1JmJ

′
m + 3q2J ′m

2,

Fϕ̂ϕ̂ =
(
5ρ−2m2 + q2

)
J2
m − 2qρ−1JmJ

′
m − q2J ′m

2,

Fẑ ẑ =
(
6k2 − ρ−2m2 + q2

)
J2
m − q2J ′m

2,

where m, ` and the explicit dependence on qρ where dropped.
1A. Romeo, A. A. Saharian, Phys. Rev. D 63 (2001) 105019.

12V. E. Ambrus, , Phys. Lett. B 771 (2017) 151–156.



Macroscopic boundary conditions

I The eigenvalue eq. T α̂
γ̂u

γ̂ = −Euα̂ can be solved exactly:

v =
T 0̂ϕ̂

E + T ϕ̂ϕ̂
, E =

1

2
[T 0̂0̂−T ϕ̂ϕ̂+

√
(T 0̂0̂ + T ϕ̂ϕ̂)2 − 4(T 0̂ϕ̂)2],

I The following relation holds:

T 0̂ϕ̂ =
v

1 + v2
(T 0̂0̂ + T ϕ̂ϕ̂).

I In order to impose v = vb on the cylinder (ρ = R), Ψ can be
obtained iteratively:

Ψ =

3
∑
m,`

(
1 +

Ψ2 −m2

q2R2

)−1∫
dk

ω(eβω̃ − 1)

[
ωRm −

vb
(
ω2R2 + m2

)
1 + v2

b

]
vb

1 + v2
b

∑
m,`

(
1 +

Ψ2 −m2

q2R2

)−1 ∫
dk

ω(eβω̃ − 1)



Solving for Ψ

Ψ=∞ [Dirichlet]

Ψ=1 [Robin]

Ψ=0 [von Neumann]

Ψ=-0.8 [Robin]

1 2 3 4 5
z

-0.5

0.5

1.0

N
-1(z J1'+Ψ J1)

(m = 1; N provides an arbitrary normalisation)

I The purpose of the boundary is to eliminate the modes with ω̃ < 0.

I This is guaranteed for Ψ ≥ 0 (ξ′m,` > m).

I There are ranges for Ψ < 0 where the modes with ω̃ < 0 reappear.

I There are ranges where they don’t (e.g., 0 < Ψ < −0.7,
−1 ≤ Ψ < −1.2).



Connection between Ψ and vb
vb Ψ
0 ∞

0.1 1673.76
0.125 1040.09

0.2 467.099
0.3 162.162
0.4 28.602

0.463053 0
0.472814 −0.7
0.510355 −1

(β = 0.5)
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I For fixed vb, Ψ decreases as β is increased.

I At fixed β, vb = ΩR = 0.5 is unattainable for Ψ > 0.

I Negative Ψ required to reach vb = 0.5.



Landau energy E and velocity v
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I Relativistic Kinetic Theory (RKT): E = π2γ4

30β4 , v = ρΩ.

I For Ψ� 0: close to RKT at ρ ' 0; The b.c.s cause the decrease of
v and E as ρ→ R.

I For Ψ = 0: E < ERKT at ρ ' 0 and increases wildly as ρ→ R.



Non-equilibrium effects

I Rigid rotation is an exact equilibrium solution of the relativistic
Boltzmann equation, giving T α̂γ̂ = (E + P)uα̂uγ̂ + Pηα̂γ̂ .

I For the current system, uα̂ = γ(1, 0, v , 0)T and

T α̂γ̂ =


T 0̂0̂ 0 T 0̂ϕ̂ 0

0 T ρ̂ρ̂ 0 0

T 0̂ϕ̂ 0 T ϕ̂ϕ̂ 0
0 0 0 T ẑ ẑ

 , Πα̂γ̂ =


β2γ2Π 0 βγ2Π 0

0 Πρ̂ρ̂ 0 0
βγ2Π 0 γ2Π 0

0 0 0 Πẑ ẑ

 ,

where Π is the shear pressure, while Πρ̂ρ̂ = T ρ̂ρ̂ − P and
Πẑ ẑ = T ẑ ẑ − P are the longitudinal and transversal pressure
deviators.

I The tracelessness of Πα̂γ̂ implies:

Π + Πρ̂ρ̂ + Πẑ ẑ = 0.



Pressure deviators
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I For Ψ� 0, Π ' Πẑ ẑ . 0 and Πρ̂ρ̂ & 0.
I For Ψ = 0, Πρ̂ρ̂ and Πẑ ẑ change sign and are both larger in

magnitude than Π almost everywhere.



Conclusion

I Boundary conditions are required in order to render the t.e.v. of the
rigidly-rotating K-G field finite.

I The most general formulation is given as Robin boundary conditions.

I Ψ ≥ 0 ensures that the t.e.v.s remain finite.

I For some negative values of Ψ, the t.e.v.s can become divergent.

I A systematic procedure giving Ψ in terms of vb was derived.

I There is a maximum value for vb which can be reached for Ψ ≥ 0
and it is less than ΩR.

I Since the SET is not in perfect fluid form, thermodynamic
equilibrium is not achieved.

I An open challenge is to disentangle quantum corrections from
boundary interaction effects.

I Future work: extend the analysis to the Dirac field.
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