Rigidly-rotating quantum thermal states in bounded systems

Victor E. Ambruș

West University of Timișoara

The 15th MARCEL GROSSMANN MEETING ROME - 1–7 JULY 2018

Outline

Motivation

Relativistic Kinetic Theory formulation

Rigid rotation

Thermal SET for the bounded K-G field

Macroscopic boundary conditions

Non-equilibrium effects

Conclusion

Motivation

- ▶ In QFT, the boundary conditions are imposed at the level of the field operator / quantum modes.
- ► The boundary conditions must preserve the mathematical consistency of the theory (self-adjointness of the Hamiltonian, time-invariance of the inner product, charge conjugation symmetry).
- For the Klein-Gordon field: Dirichlet, von Neumann, Robin boundary conditions.¹
- ► For the Dirac field: spectral, ² Berry, ³ MIT bag boundary conditions. ⁴
- ▶ The connection between the boundary conditions and the emergent expectation values is far from trivial.
- ▶ This contribution discusses a procedure to prescribe b.c.s in order to achieve given macroscopic variables in the setup of rigidly-rotating thermal states.
- ► The discussion is limited to the Klein-Gordon field, but can be extended to the Dirac case.⁵

¹A. Romeo, A. A. Saharian, Phys. Rev. D **63** (2001) 105019.

²M. Hortacsu, K. Rothe, B. Schroer, Nucl. Phys. B171 (1980) 530.

³M. V. Berry, R. J. Mondragon, Proc. R. Soc. Lond. A **412** (1987) 53–74.

⁴A. Chodos, R. Jaffe, K. Johnson, C. Thorn, V. Weisskopf, PRD **9** (1974) 3471.

Landau frame

► The Landau (energy) frame⁶ energy density E and macroscopic velocity u^{μ} can be obtained by solving the eigenvalue equation:

$$T^{\mu}{}_{\nu}u^{\nu}=-E\ u^{\mu}.$$

▶ In the Landau frame, $T^{\mu\nu}$ can be decomposed as follows:

$$T^{\mu\nu} = Eu^{\mu}u^{\nu} + (P + \overline{\omega})\Delta^{\mu\nu} + \Pi^{\mu\nu},$$

where $\Delta^{\mu
u} = u^{\mu} u^{
u} + g^{\mu
u}$ and

$$\begin{split} E &= u_{\mu} T^{\mu\nu} u_{\nu}, \qquad \qquad P + \overline{\omega} = \frac{1}{3} \Delta_{\mu\nu} T^{\mu\nu}, \\ \Pi^{\mu\nu} &= T^{<\mu\nu>} = \left[\frac{1}{2} \left(\Delta^{\mu}{}_{\alpha} \Delta^{\nu}{}_{\beta} + \Delta^{\mu}{}_{\beta} \Delta^{\nu}{}_{\alpha} \right) - \frac{1}{3} \Delta^{\mu\nu} \Delta_{\alpha\beta} \right] T^{\alpha\beta}. \end{split}$$

- ▶ In thermal equilibrium, $T^{\mu\nu} = (E + P)u^{\mu}u^{\nu} + P\eta^{\mu\nu}$.
- ► The dynamic pressure $(\overline{\omega})$ and pressure deviator $(\Pi^{\mu\nu})$ represent non-equilibrium contributions to the SET $T^{\mu\nu}$.

⁶L. D. Landau, E. M. Lifshitz, *Fluid mechanics*, 2nd ed. (1987). → ⟨፮→ ⟨፮→ ⟨፮→ ⟨३⟩

Rigid rotation: Kinetic theory results

- $u^{\mu} = \gamma(\partial_t + \Omega \partial_{\varphi}) \Rightarrow v = \rho \Omega$ and $\gamma = (1 \rho^2 \Omega^2)^{-1/2}$.
- ▶ The local inverse temperature is $\widetilde{\beta} = \beta \gamma^{-1}$.
- ▶ The energy density for massless B-E particles is $E_{\mathrm{B-E}} = \frac{\pi^2 \gamma^4}{30 \beta^4}$. ⁷

Klein-Gordon field: mode solutions

▶ The K-G field operator can be written as:

$$\phi = \sum_{j} (a_j f_j + a_j^{\dagger} f_j^*), \qquad f_j = \frac{e^{-i\omega_j t + ik_j z + im_j \varphi}}{\sqrt{8\pi^2 \omega_j}} J_{m_j}(q_j \rho),$$

where
$$q_j=\sqrt{\omega_j^2-k_j^2-\mu^2}$$
 and $[a_j,a_{j'}^\dagger]=\delta(j,j').$

 $ightharpoonup f_i$ are normalised using the inner product:

$$\langle f, h \rangle = i \int d^3x \sqrt{-g} (f^* \partial_t h - h \partial_t f^*),$$

such that $\langle f_i, f_{i'} \rangle = \delta(j, j')$ and $\langle f_i, f_{i'}^* \rangle = 0$.

▶ The stress-energy tensor (SET) operator is:8

$$T_{\mu\nu} = \frac{1}{3} \{ \nabla_{\mu} \phi, \nabla_{\nu} \phi \} - \frac{1}{6} \{ \phi, \nabla_{\mu} \nabla_{\nu} \phi \} - \frac{1}{6} g_{\mu\nu} [(\nabla \phi)^2 - \mu^2 \phi^2].$$

⁸N. D. Birrell, P. C. W. Davies, *Quantum fields in curved space*, Cambridge University Press (1982).

Rigidly-rotating thermal states

RRTS can be constructed using

$$\left< A \right>_eta = Z^{-1} \mathrm{Tr}(\mathit{WA}), \qquad Z = \mathrm{Tr}(\mathit{W}), \qquad W = \exp\left(-eta \mathit{H} + \Omega \cdot \mathit{J} \right).$$

► The t.e.v. of the one-particle operators is:⁹

$$\langle: a_j^{\dagger} a_{j'} : \rangle_{\beta} = \frac{\delta(j,j')}{e^{\beta \widetilde{\omega}_j} - 1}, \qquad \widetilde{\omega} = \omega - \Omega m.$$

- ▶ The first problem is that $\langle : a_j^{\dagger} a_{j'} : \rangle_{\beta} \to -\delta(j,j')$ when $\widetilde{\omega}_j < 0$ and $\beta \to \infty$ (vacuum) \Rightarrow spurious β -independent contributions.
- ▶ The second problem can be seen by investigating the t.e.v. of ϕ^2 :

$$\langle:\phi^2:
angle_{eta}=rac{1}{8\pi^2}\sum_{m=-\infty}^{\infty}\int_{\mu}^{\infty}d\omega\int_{-\rho}^{\rho}rac{dk}{e^{eta\widetilde{\omega}}-1}J_m^2(q
ho),$$

which $\to \infty$ when $\rho > 0$ since at sufficiently large m, there are values of ω such that $\widetilde{\omega} = 0$.

▶ Note: finite quantum corrections can be obtained perturbatively. 10

⁹A. Vilenkin, Phys. Rev. D **8** (1980) 2260-2269.

Bounded K-G field

- ▶ Let the system be bounded at $\rho = R$.
- ► The b.c.s must leave ⟨,⟩ time-invariant:

$$i\partial_t \langle f, h \rangle = -\int d\Sigma^i \sqrt{g} (f^*\partial_i h - h\partial_i f^*).$$

▶ For the cylindrical boundary and $f_{R;j} = N_{R;j}f_j$, this entails:

$$\begin{split} \langle f_{R;j}, f_{R;j'} \rangle &= \frac{N_j^* N_{j'}}{2 \sqrt{\omega_j \omega_{j'}}} e^{i(\omega_j - \omega_{j'})t} \delta_{m_j, m_{j'}} \delta(k_j - k_{j'}) \\ &\times \left\{ J_{m_j}(q_j R) [q_{j'} R J'_{m_{j'}}(q_{j'} R)] - [q_j R J'_{m_j}(q_j R)] J_{m_{j'}}(q_{j'} R) \right\}. \end{split}$$

- ▶ The time-independence is ensured if:
 - 1. $J_{m_i}(q_iR) = 0$ (Dirichlet), 11
 - 2. $J'_{m_i}(q_iR) = 0$ (von Neumann),
 - 3. $[q_j R J'_{m_i}(q_j R)] + \Psi J_{m_i}(q_j R) = 0$ (Robin).¹

¹¹G. Duffy, A. Ottewill, Phys. Rev. D **67** (2003) 044002.

¹A. Romeo, A. A. Saharian, Phys. Rev. D **63** (2001) 105019. → ⟨₹⟩ ⟨₹⟩ ⟨₹⟩ ⟨₹⟩

Bounded K-G: SET

▶ Imposing $\langle f_{km\ell}, f_{k'm'\ell'} \rangle = \delta(k - k') \delta_{m,m'} \delta_{\ell,\ell'}$ gives:¹

$$|N_{km\ell}|^2 = rac{2q_{m,\ell}^2}{R^2J_m^2(q_{m,\ell}R)(q_{m,\ell}^2R^2 + \Psi^2 - m^2)}.$$

▶ The t.e.v. of the SET is:¹²

$$\left\langle : T_{\mu\nu} : \right
angle_{\beta} = \sum_{m=-\infty}^{\infty} \sum_{\ell=1}^{\infty} \int_{-\infty}^{\infty} \frac{\left| N_{km\ell} \right|^2 dk}{12\pi^2 \omega_{km\ell} (e^{\beta \widetilde{\omega}_{km\ell}} - 1)} F_{\mu\nu},$$

where $\widetilde{\omega} = \omega - \Omega m$ and

$$\begin{split} F_{\hat{0}\hat{0}} &= \left(6\omega^2 + \rho^{-2}m^2 - q^2\right)J_m^2 + q^2J_m'^2, \\ F_{\hat{\varphi}\hat{0}} &= -6\omega\rho^{-1}mJ_m^2, \\ F_{\hat{\rho}\hat{\rho}} &= \left(-3\rho^{-2}m^2 + 3q^2\right)J_m^2 + 2q\rho^{-1}J_mJ_m' + 3q^2J_m'^2, \\ F_{\hat{\varphi}\hat{\varphi}} &= \left(5\rho^{-2}m^2 + q^2\right)J_m^2 - 2q\rho^{-1}J_mJ_m' - q^2J_m'^2, \\ F_{\hat{\tau}\hat{\tau}} &= \left(6k^2 - \rho^{-2}m^2 + q^2\right)J_m^2 - q^2J_m'^2, \end{split}$$

where m, ℓ and the explicit dependence on $q\rho$ where dropped.

¹A. Romeo, A. A. Saharian, Phys. Rev. D **63** (2001) 105019.

¹²V. E. Ambrus, Phys. Lett. B **771** (2017) 151–156. ←□→←●→←■→ ←■→ ★■→ ★■→ ◆■→

Macroscopic boundary conditions

▶ The eigenvalue eq. $T^{\hat{\alpha}}{}_{\hat{\gamma}}u^{\hat{\gamma}} = -Eu^{\hat{\alpha}}$ can be solved exactly:

$$v = \frac{T^{\hat{0}\hat{\varphi}}}{E + T^{\hat{\varphi}\hat{\varphi}}}, \qquad E = \frac{1}{2}[T^{\hat{0}\hat{0}} - T^{\hat{\varphi}\hat{\varphi}} + \sqrt{(T^{\hat{0}\hat{0}} + T^{\hat{\varphi}\hat{\varphi}})^2 - 4(T^{\hat{0}\hat{\varphi}})^2}],$$

► The following relation holds:

$$T^{\hat{0}\hat{arphi}}=rac{v}{1+v^2}(T^{\hat{0}\hat{0}}+T^{\hat{arphi}\hat{arphi}}).$$

▶ In order to impose $v = v_b$ on the cylinder $(\rho = R)$, Ψ can be obtained iteratively:

$$\Psi = \frac{3\sum_{\textit{m},\ell} \left(1 + \frac{\Psi^2 - \textit{m}^2}{\textit{q}^2\textit{R}^2}\right)^{-1}\!\!\int \frac{\textit{d}k}{\omega(e^{\beta\widetilde{\omega}} - 1)} \left[\omega\textit{Rm} - \frac{\textit{v}_b\left(\omega^2\textit{R}^2 + \textit{m}^2\right)}{1 + \textit{v}_b^2}\right]}{\frac{\textit{v}_b}{1 + \textit{v}_b^2} \sum_{\textit{m},\ell} \left(1 + \frac{\Psi^2 - \textit{m}^2}{\textit{q}^2\textit{R}^2}\right)^{-1}\int \frac{\textit{d}k}{\omega(e^{\beta\widetilde{\omega}} - 1)}}$$

Solving for Ψ

- ▶ The purpose of the boundary is to eliminate the modes with $\widetilde{\omega} < 0$.
- ▶ This is guaranteed for $\Psi \ge 0$ $(\xi'_{m,\ell} > m)$.
- ▶ There are ranges for $\Psi < 0$ where the modes with $\widetilde{\omega} < 0$ reappear.
- There are ranges where they don't (e.g., $0 < \Psi < -0.7$, $-1 \le \Psi < -1.2$).

Connection between Ψ and v_b

V _b	Ψ
0	∞
0.1	1673.76
0.125	1040.09
0.2	467.099
0.3	162.162
0.4	28.602
0.463053	0
0.472814	-0.7
0.510355	-1
$\beta = 0.5$	

$$(R = 1; \Omega = 0.5; \mu = 0)$$

- ▶ For fixed v_b , Ψ decreases as β is increased.
- At fixed β , $v_b = \Omega R = 0.5$ is unattainable for $\Psi > 0$.
- Negative Ψ required to reach $v_{\rm b} = 0.5$.

Landau energy E and velocity v

- ► Relativistic Kinetic Theory (RKT): $E = \frac{\pi^2 \gamma^4}{30 \beta^4}$, $v = \rho \Omega$.
- ▶ For $\Psi \gg$ 0: close to RKT at $\rho \simeq$ 0; The b.c.s cause the decrease of v and E as $\rho \to R$.
- ▶ For $\Psi=0$: $E < E_{\rm RKT}$ at $\rho \simeq 0$ and increases wildly as $\rho \to R$.

Non-equilibrium effects

- Rigid rotation is an exact equilibrium solution of the relativistic Boltzmann equation, giving $T^{\hat{\alpha}\hat{\gamma}} = (E + P)u^{\hat{\alpha}}u^{\hat{\gamma}} + P\eta^{\hat{\alpha}\hat{\gamma}}$.
- ▶ For the current system, $u^{\hat{\alpha}} = \gamma(1,0,v,0)^T$ and

$$T^{\hat{\alpha}\hat{\gamma}} = \begin{pmatrix} T^{\hat{0}\hat{0}} & 0 & T^{\hat{0}\hat{\varphi}} & 0 \\ 0 & T^{\hat{\rho}\hat{\rho}} & 0 & 0 \\ T^{\hat{0}\hat{\varphi}} & 0 & T^{\hat{\varphi}\hat{\varphi}} & 0 \\ 0 & 0 & 0 & T^{\hat{z}\hat{z}} \end{pmatrix}, \quad \Pi^{\hat{\alpha}\hat{\gamma}} = \begin{pmatrix} \beta^2 \gamma^2 \Pi & 0 & \beta \gamma^2 \Pi & 0 \\ 0 & \Pi^{\hat{\rho}\hat{\rho}} & 0 & 0 \\ \beta \gamma^2 \Pi & 0 & \gamma^2 \Pi & 0 \\ 0 & 0 & 0 & \Pi^{\hat{z}\hat{z}} \end{pmatrix},$$

where Π is the shear pressure, while $\Pi^{\hat{\rho}\hat{\rho}}=T^{\hat{\rho}\hat{\rho}}-P$ and $\Pi^{\hat{z}\hat{z}}=T^{\hat{z}\hat{z}}-P$ are the longitudinal and transversal pressure deviators.

▶ The tracelessness of $\Pi^{\hat{\alpha}\hat{\gamma}}$ implies:

$$\Pi + \Pi^{\hat{\rho}\hat{\rho}} + \Pi^{\hat{z}\hat{z}} = 0.$$

Pressure deviators

- ▶ For $\Psi \gg 0$, $\Pi \simeq \Pi^{\hat{z}\hat{z}} \lesssim 0$ and $\Pi^{\hat{\rho}\hat{\rho}} \gtrsim 0$.
- For $\Psi = 0$, $\Pi^{\hat{\rho}\hat{\rho}}$ and $\Pi^{\hat{z}\hat{z}}$ change sign and are both larger in magnitude than Π almost everywhere.

Conclusion

- Boundary conditions are required in order to render the t.e.v. of the rigidly-rotating K-G field finite.
- ▶ The most general formulation is given as Robin boundary conditions.
- \blacktriangleright $\Psi \geq 0$ ensures that the t.e.v.s remain finite.
- ▶ For some negative values of Ψ , the t.e.v.s can become divergent.
- A systematic procedure giving Ψ in terms of $v_{\rm b}$ was derived.
- ▶ There is a maximum value for v_b which can be reached for $\Psi \ge 0$ and it is less than ΩR .
- Since the SET is not in perfect fluid form, thermodynamic equilibrium is not achieved.
- ▶ An open challenge is to disentangle quantum corrections from boundary interaction effects.
- ▶ Future work: extend the analysis to the Dirac field.
- ► This work was supported by a grant of the Romanian Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-PD-2016-1423, within PNCDI III.

