Rigidly-rotating quantum thermal states in bounded systems

Victor E. Ambrus,

West University of Timișoara

The 15th MARCEL GROSSMANN MEETING

ROME - 1–7 JULY 2018

K ロ K K @ K K X 할 K K 할 K (할 K)

 299

Outline

[Motivation](#page-2-0)

[Relativistic Kinetic Theory formulation](#page-3-0)

[Rigid rotation](#page-4-0)

[Thermal SET for the bounded K-G field](#page-5-0)

[Macroscopic boundary conditions](#page-9-0)

[Non-equilibrium effects](#page-12-0)

[Conclusion](#page-15-0)

Motivation

- \triangleright In QFT, the boundary conditions are imposed at the level of the field operator / quantum modes.
- \blacktriangleright The boundary conditions must preserve the mathematical consistency of the theory (self-adjointness of the Hamiltonian, time-invariance of the inner product, charge conjugation symmetry).
- ▶ For the Klein-Gordon field: Dirichlet, von Neumann, Robin boundary conditions.¹
- For the Dirac field: spectral,² Berry,³ MIT bag boundary conditions.⁴
- \triangleright The connection between the boundary conditions and the emergent expectation values is far from trivial.
- \triangleright This contribution discusses a procedure to prescribe b.c.s in order to achieve given macroscopic variables in the setup of rigidly-rotating thermal states.
- \blacktriangleright The discussion is limited to the Klein-Gordon field, but can be extended to the Dirac case.⁵

¹A. Romeo, A. A. Saharian, Phys. Rev. D 63 (2001) 105019.

- 2 M. Hortacsu, K. Rothe, B. Schroer, Nucl. Phys. B171 (1980) 530.
- ³M. V. Berry, R. J. Mondragon, Proc. R. Soc. Lond. A 412 (1987) 53–74.
- ⁴A. Chodos, R. Jaffe, K. Johnson, C. Thorn, V. Weisskopf, PRD 9 (1974) 3471.
- 5 V. Ambrus, E. Winstanley, Phys. Rev. D 93 (2016) [104](#page-1-0)[01](#page-3-0)[4.](#page-1-0) \oplus > < \bar{z} > < \bar{z} > \quad \bar{z} \rightarrow \circ \circ \circ

Landau frame

 \blacktriangleright The Landau (energy) frame⁶ energy density E and macroscopic velocity u^{μ} can be obtained by solving the eigenvalue equation:

$$
T^{\mu}{}_{\nu}u^{\nu}=-E\,u^{\mu}.
$$

In the Landau frame, $T^{\mu\nu}$ can be decomposed as follows:

$$
T^{\mu\nu} = E u^{\mu} u^{\nu} + (P + \overline{\omega}) \Delta^{\mu\nu} + \Pi^{\mu\nu},
$$

where $\Delta^{\mu\nu} = u^{\mu}u^{\nu} + g^{\mu\nu}$ and

$$
E = u_{\mu} T^{\mu\nu} u_{\nu}, \qquad P + \overline{\omega} = \frac{1}{3} \Delta_{\mu\nu} T^{\mu\nu},
$$

$$
\Pi^{\mu\nu} = T^{<\mu\nu>} = \left[\frac{1}{2} \left(\Delta^{\mu}{}_{\alpha} \Delta^{\nu}{}_{\beta} + \Delta^{\mu}{}_{\beta} \Delta^{\nu}{}_{\alpha} \right) - \frac{1}{3} \Delta^{\mu\nu} \Delta_{\alpha\beta} \right] T^{\alpha\beta}.
$$

- In thermal equilibrium, $T^{\mu\nu} = (E+P)u^{\mu}u^{\nu} + P\eta^{\mu\nu}$.
- **I** The dynamic pressure $(\overline{\omega})$ and pressure deviator $(\Pi^{\mu\nu})$ represent non-equilibrium contributions to the SET $T^{\mu\nu}$.

⁶L. D. Landau, E. M. Lifshitz, Fluid mechanics, 2nd e[d.](#page-2-0) ([19](#page-4-0)[8](#page-2-0)[7\).](#page-3-0) A REARE REARE PORC

Rigid rotation: Kinetic theory results

- \blacktriangleright $u^{\mu} = \gamma (\partial_t + \Omega \partial_{\varphi}) \Rightarrow v = \rho \Omega$ and $\gamma = (1 \rho^2 \Omega^2)^{-1/2}.$
- ► The local inverse temperature is $\hat{\beta} = \beta \gamma^{-1}$.

► The energy density for massless B-E particles is $E_{\rm B-E} = \frac{\pi^2 \gamma^4}{30 \beta^4}$ $rac{\pi \gamma}{30\beta^4}$.⁷

⁷V. E. Ambrus, , I. Cot˘aescu, Phys. Rev. D 94 (2016) [08](#page-3-0)5[02](#page-5-0)[2.](#page-3-0)

Klein-Gordon field: mode solutions

 \triangleright The K-G field operator can be written as:

$$
\phi = \sum_j (a_j f_j + a_j^\dagger f_j^*), \qquad f_j = \frac{e^{-i\omega_j t + ik_j z + im_j \varphi}}{\sqrt{8\pi^2 \omega_j}} J_{m_j}(q_j \rho),
$$

where $q_j = \sqrt{\omega_j^2 - k_j^2 - \mu^2}$ and $[a_j, a_{j'}^\dagger] = \delta(j,j').$

 \blacktriangleright f_i are normalised using the inner product:

$$
\langle f, h \rangle = i \int d^3x \sqrt{-g} (f^* \partial_t h - h \partial_t f^*),
$$

such that $\langle f_j, f_{j'} \rangle = \delta(j,j')$ and $\langle f_j, f_{j'}^* \rangle = 0$.

 \blacktriangleright The stress-energy tensor (SET) operator is:⁸

$$
\mathcal{T}_{\mu\nu} = \frac{1}{3} \{ \nabla_{\mu} \phi, \nabla_{\nu} \phi \} - \frac{1}{6} \{ \phi, \nabla_{\mu} \nabla_{\nu} \phi \} - \frac{1}{6} g_{\mu\nu} [(\nabla \phi)^2 - \mu^2 \phi^2].
$$

8N. D. Birrell, P. C. W. Davies, Quantum fields in curved space, Cambridge University Press (1982).K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Rigidly-rotating thermal states

 \triangleright RRTS can be constructed using

$$
\langle A \rangle_{\beta} = Z^{-1} \text{Tr}(W A), \qquad Z = \text{Tr}(W), \qquad W = \exp(-\beta H + \Omega \cdot \mathbf{J}).
$$

 \blacktriangleright The t.e.v. of the one-particle operators is: 9

$$
\langle: a_j^{\dagger} a_{j'} : \rangle_{\beta} = \frac{\delta(j,j')}{e^{\beta \widetilde{\omega}_j} - 1}, \qquad \widetilde{\omega} = \omega - \Omega m.
$$

- **►** The first problem is that $\langle : a_j^{\dagger} a_{j'} : \rangle_{\beta} \rightarrow -\delta(j, j')$ when $\tilde{\omega}_j < 0$ and $\beta \to \infty$ (vacuum) \Rightarrow spurious β -independent contributions.
- The second problem can be seen by investigating the t.e.v. of ϕ^2 .

$$
\langle : \phi^2 : \rangle_{\beta} = \frac{1}{8\pi^2} \sum_{m=-\infty}^{\infty} \int_{\mu}^{\infty} d\omega \int_{-\rho}^{\rho} \frac{dk}{e^{\beta \widetilde{\omega}} - 1} J_m^2(q\rho),
$$

which $\rightarrow \infty$ when $\rho > 0$ since at sufficiently large m, there are values of ω such that $\tilde{\omega} = 0$.

- \blacktriangleright Note: finite quantum corrections can be obtained perturbatively.¹⁰ ⁹A. Vilenkin, Phys. Rev. D 8 (1980) 2260-2269.
- 10 F. Becattini, E. Grossi, Phys. Rev. D 92, 045037 (2[015](#page-5-0))[.](#page-7-0) \longleftrightarrow $\overline{\longleftrightarrow}$ \longleftrightarrow $\overline{\rightleftharpoons}$ \Longrightarrow $\overline{\rightleftharpoons}$ \Longrightarrow $\Diamond \Diamond \Diamond$

Bounded K-G field

- In Let the system be bounded at $\rho = R$.
- \blacktriangleright The b.c.s must leave \langle , \rangle time-invariant:

$$
i\partial_t \langle f, h \rangle = - \int d\Sigma^i \sqrt{g} (f^* \partial_i h - h \partial_i f^*).
$$

 \blacktriangleright For the cylindrical boundary and $f_{R;j} = N_{R;j} f_j$, this entails:

$$
\langle f_{R;j}, f_{R;j'}\rangle = \frac{N_j^* N_{j'}}{2\sqrt{\omega_j\omega_{j'}}} e^{i(\omega_j - \omega_{j'})t} \delta_{m_j, m_{j'}} \delta(k_j - k_{j'})
$$

$$
\times \left\{J_{m_j}(q_j R)[q_{j'} R J'_{m_{j'}}(q_{j'} R)] - [q_j R J'_{m_j}(q_j R)] J_{m_{j'}}(q_{j'} R)\right\}.
$$

- \blacktriangleright The time-independence is ensured if:
	- $1. J_{m_j}(q_j R) = 0$ (Dirichlet), 11
	- 2. $J'_{m_j}(q_jR) = 0$ (von Neumann),
	- 3. $[q_j R J'_{m_j} (q_j R)] + \Psi J_{m_j} (q_j R) = 0$ (Robin) .¹

¹¹G. Duffy, A. Ottewill, Phys. Rev. D 67 (2003) 044002.

 1 A. Romeo, A. A. Saharian, Phys. Rev. D $\bf{63}$ (2001) [105](#page-6-0)[01](#page-8-0)[9.](#page-6-0) approximately we see that \sim

Bounded K-G: SET

$$
\blacktriangleright \text{ Imposing } \langle f_{km\ell}, f_{k'm'\ell'} \rangle = \delta(k - k') \delta_{m,m'} \delta_{\ell,\ell'} \text{ gives:}^1
$$

$$
|N_{km\ell}|^2 = \frac{2q_{m,\ell}^2}{R^2 J_m^2 (q_{m,\ell}R)(q_{m,\ell}^2R^2 + \Psi^2 - m^2)}.
$$

In The t.e.v. of the SFT is: 12

$$
\langle:T_{\mu\nu}:\rangle_{\beta}=\sum_{m=-\infty}^{\infty}\sum_{\ell=1}^{\infty}\int_{-\infty}^{\infty}\frac{|N_{km\ell}|^2dk}{12\pi^2\omega_{km\ell}(e^{\beta\widetilde{\omega}_{km\ell}}-1)}F_{\mu\nu},
$$

where $\tilde{\omega} = \omega - \Omega m$ and

$$
F_{\hat{0}\hat{0}} = (6\omega^2 + \rho^{-2}m^2 - q^2) J_m^2 + q^2 J_m^2,
$$

\n
$$
F_{\hat{\varphi}\hat{0}} = -6\omega\rho^{-1} m J_m^2,
$$

\n
$$
F_{\hat{\rho}\hat{\rho}} = (-3\rho^{-2}m^2 + 3q^2) J_m^2 + 2q\rho^{-1} J_m J_m' + 3q^2 J_m^2,
$$

\n
$$
F_{\hat{\varphi}\hat{\varphi}} = (5\rho^{-2}m^2 + q^2) J_m^2 - 2q\rho^{-1} J_m J_m' - q^2 J_m'^2,
$$

\n
$$
F_{\hat{z}\hat{z}} = (6k^2 - \rho^{-2}m^2 + q^2) J_m^2 - q^2 J_m'^2,
$$

where m, ℓ and the explicit dependence on $q\rho$ where dropped. 1 A. Romeo, A. A. Saharian, Phys. Rev. D 63 (2001) 105019. 12 V. E. Ambrus, Phys. Lett. B 771 (2017) 151–156. The property of property $\epsilon \equiv r$, the property of ϵ

Macroscopic boundary conditions

▶ The eigenvalue eq. $\varUpsilon^{\hat{\alpha}}{}_{\hat{\gamma}}u^{\hat{\gamma}}=-Eu^{\hat{\alpha}}$ can be solved exactly:

$$
v=\frac{\mathcal{T}^{\hat{0}\hat{\varphi}}}{E+\mathcal{T}^{\hat{\varphi}\hat{\varphi}}},\qquad E=\frac{1}{2}[\mathcal{T}^{\hat{0}\hat{0}}-\mathcal{T}^{\hat{\varphi}\hat{\varphi}}+\sqrt{(\mathcal{T}^{\hat{0}\hat{0}}+\mathcal{T}^{\hat{\varphi}\hat{\varphi}})^2-4(\mathcal{T}^{\hat{0}\hat{\varphi}})^2}],
$$

 \blacktriangleright The following relation holds:

$$
T^{\hat{0}\hat{\varphi}} = \frac{v}{1+v^2} (T^{\hat{0}\hat{0}} + T^{\hat{\varphi}\hat{\varphi}}).
$$

In order to impose $v = v_b$ on the cylinder $(\rho = R)$, Ψ can be obtained iteratively:

$$
\Psi = \frac{3\sum_{m,\ell}\left(1+\frac{\Psi^2-m^2}{q^2R^2}\right)^{-1}\int \frac{dk}{\omega(e^{\beta\widetilde{\omega}}-1)}\left[\omega Rm-\frac{v_{\rm b}\left(\omega^2R^2+m^2\right)}{1+v_{\rm b}^2}\right]}{\frac{v_{\rm b}}{1+v_{\rm b}^2}\sum_{m,\ell}\left(1+\frac{\Psi^2-m^2}{q^2R^2}\right)^{-1}\int \frac{dk}{\omega(e^{\beta\widetilde{\omega}}-1)}}\right}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Solving for Ψ

- **If** The purpose of the boundary is to eliminate the modes with $\tilde{\omega} < 0$.
- **►** This is guaranteed for $\Psi \ge 0$ ($\xi'_{m,\ell} > m$).
- **If** There are ranges for $\Psi < 0$ where the modes with $\tilde{\omega} < 0$ reappear.

KORK ERKER ADE YOUR

 \blacktriangleright There are ranges where they don't (e.g., $0 < \Psi < -0.7$, $-1 < \Psi < -1.2$).

Connection between Ψ and $V_{\rm b}$

 $(R = 1; \Omega = 0.5; \mu = 0)$

KORK ERKER ADE YOUR

- For fixed v_b , Ψ decreases as β is increased.
- At fixed β , $v_{\rm b} = \Omega R = 0.5$ is unattainable for $\Psi > 0$.
- **Negative Ψ required to reach** $v_b = 0.5$ **.**

Landau energy E and velocity v

Relativistic Kinetic Theory (RKT): $E = \frac{\pi^2 \gamma^4}{38.24}$ $\frac{n-\gamma}{30\beta^4}$, $v = \rho\Omega$.

► For $\Psi \gg 0$: close to RKT at $\rho \simeq 0$; The b.c.s cause the decrease of v and E as $\rho \rightarrow R$.

 299

For $\Psi = 0$ $\Psi = 0$ $\Psi = 0$: $E < E_{RKT}$ $E < E_{RKT}$ $E < E_{RKT}$ [a](#page-13-0)t $\rho \simeq 0$ and increa[ses](#page-11-0) [wi](#page-13-0)[ld](#page-11-0)[ly](#page-12-0) as $\rho \rightarrow R$ [.](#page-15-0)

Non-equilibrium effects

 \triangleright Rigid rotation is an exact equilibrium solution of the relativistic Boltzmann equation, giving $T^{\hat{\alpha}\hat{\gamma}} = (E+P)u^{\hat{\alpha}}u^{\hat{\gamma}} + P\eta^{\hat{\alpha}\hat{\gamma}}$.

 \blacktriangleright For the current system, $u^{\hat{\alpha}} = \gamma(1,0,\nu,0)^T$ and

$$
\mathcal{T}^{\hat{\alpha}\hat{\gamma}}=\begin{pmatrix}\mathcal{T}^{\hat{0}\hat{0}}&0&\mathcal{T}^{\hat{0}\hat{\varphi}}&0\\0&\mathcal{T}^{\hat{\rho}\hat{\rho}}&0&0\\0&0&\mathcal{T}^{\hat{\varphi}\hat{\varphi}}&0\\0&0&0&\mathcal{T}^{2\hat{z}}\end{pmatrix},\quad \Pi^{\hat{\alpha}\hat{\gamma}}=\begin{pmatrix}\beta^2\gamma^2\Pi&0&\beta\gamma^2\Pi&0\\0&\Pi^{\hat{\rho}\hat{\rho}}&0&0\\ \beta\gamma^2\Pi&0&\gamma^2\Pi&0\\0&0&0&\Pi^{\hat{z}\hat{z}}\end{pmatrix},
$$

where Π is the shear pressure, while $\Pi^{\hat{\rho}\hat{\rho}}=T^{\hat{\rho}\hat{\rho}}-P$ and $\Pi^{\hat{z}\hat{z}}=T^{\hat{z}\hat{z}}-P$ are the longitudinal and transversal pressure deviators.

The tracelessness of $\Pi^{\hat{\alpha}\hat{\gamma}}$ implies:

$$
\Pi + \Pi^{\hat{\rho}\hat{\rho}} + \Pi^{\hat{z}\hat{z}} = 0.
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Pressure deviators

 $\bar{\Xi}$ 299

Conclusion

- \triangleright Boundary conditions are required in order to render the t.e.v. of the rigidly-rotating K-G field finite.
- \triangleright The most general formulation is given as Robin boundary conditions.
- $\blacktriangleright \psi > 0$ ensures that the t.e.v.s remain finite.
- For some negative values of Ψ , the t.e.v.s can become divergent.
- A systematic procedure giving Ψ in terms of v_b was derived.
- **If** There is a maximum value for v_b which can be reached for $\Psi > 0$ and it is less than OR .
- \triangleright Since the SET is not in perfect fluid form, thermodynamic equilibrium is not achieved.
- \triangleright An open challenge is to disentangle quantum corrections from boundary interaction effects.
- \blacktriangleright Future work: extend the analysis to the Dirac field.
- \triangleright This work was supported by a grant of the Romanian Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-PD-2016-1423, within PNCDI III.

KORK ERKER ADE YOUR