- V.E.Ambruș, E. Molnár, D. H. Rischke
Transport coefficients of second-order relativistic fluid dynamics in the relaxation-time approximation
Phys. Rev. D 106 (2022) 076005. DOI: 10.1103/PhysRevD.106.076005. - V.E.Ambruș, M.N.Chernodub
Vortical effects in Dirac fluids with vector, chiral and helical charges
Eur. Phys. J. C 83 (2023) 111. DOI: 10.1140/epjc/s10052-023-11244-0.
Partially funded from PN-III-P1-1.1-PD-2016-1423. - V. E. Ambruș, E. Molnár
Shakhov-type extension of the relaxation time approximation in relativistic kinetic theory and fluid dynamics
Phys. Lett. B 855 (2024) 138795. DOI: 10.1016/j.physletb.2024.138795. - V. E. Ambruș, S. Schlichting, C. Werthmann
Establishing the range of applicability of hydrodynamics in high-energy collisions
Phys. Rev. Lett. 130 (2023) 152301. DOI: 10.1103/PhysRevLett.130.152301. - V. E. Ambruș, S. Schlichting, C. Werthmann
Opacity dependence of transverse flow, preequilibrium and applicability of hydrodynamics in heavy-ion collisions
Phys. Rev. D 107 (2023) 094013. DOI: 10.1103/PhysRevD.107.094013. - D. Wagner, N. Weickgennant, E. Speranza
Generating tensor polarization from shear stress
Phys. Rev. Research 5 (2023) 013187. DOI: 10.1103/PhysRevResearch.5.013187. - V.E.Ambruș, M.N.Chernodub
Rigidly-rotating scalar fields: between real divergence and imaginary fractalization
Phys. Rev. D 108 (2023) 085016. DOI: 10.1103/PhysRevD.108.085016. - V.E.Ambruș, M.N.Chernodub
Helical Separation Effect and helical heat transport for Dirac fermions
Eur. Phys. J. C 84 (2024) 282. DOI: 10.1140/epjc/s10052-024-12636-6. - D. Wagner, N. Weickgennant, E. Speranza
Quantum kinetic theory with interactions for massive vector bosons
Phys. Rev. D 108 (2023) 116017. DOI: 10.1103/PhysRevD.108.116017.
- D. Wagner, V.E.Ambruș, E. Molnár
Analytical structure of the binary collision integral and the ultrarelativistic limit of transport coefficients of an ideal gas
Phys. Rev. D 109 (2024) 056018. DOI: 10.1103/PhysRevD.109.056018.
- D. Wagner, L. Gavassino
The regime of applicability of Israel-Stewart hydrodynamics
Phys. Rev. D 109 (2024) 016019. DOI: 10.1103/PhysRevD.109.016019.
- V.E.Ambruș, E. Molnár, D. H. Rischke
Relativistic second-order dissipative and anisotropic fluid dynamics in the relaxation-time approximation for an ideal gas of massive particles
Phys. Rev. D 109 (2024) 076001. DOI: 10.1103/PhysRevD.109.076001. - V.E.Ambruș, D. Wagner
High-order Shakhov-like extension of the relaxation time approximation in relativistic kinetic theory
Under review. Preprint at arXiv:2401.04017.