Attractors for flow observables in 2 + 1D Bjorken flow

Victor E. Ambruș¹, Clemens Werthmann², Sören Schlichting²

¹ Physics Faculty, West University of Timişoara, Romania ² Physics Faculty, University of Bielefeld, Germany

PRD 105 (2022) 014031, WIP

TIM-2022, Timișoara, Romania

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Outline

Introduction

Initial state and observables

Pre-equilibrium evolution

Systems with transverse profiles

Conclusions

Quark-gluon plasma

QGP in the laboratory

- Bjorken coordinates: $\tau = \sqrt{t^2 - z^2};$ $\eta = \tanh^{-1}(z/t).$
- Ultra-relatistic heavy-ion collisions ($\sqrt{s_{NN}} = 5.02$ TeV PbPb) deposit $dE_{\perp}/d\eta \sim 1280$ GeV.
- Due to rapid longitudinal expansion, the QGP cools, reaching k_BT ~ 350 MeV at τ ≃ 1 fm/c.

[M. Venaruzzo, PhD Thesis, 2011] ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ■

SQ Q

CMC wahaaaa]

Transverse plane observables

- The overlap region between the colliding nuclei also expands in the transverse plane.
- The strong coupling of the QGP leads to hydrodynamic-like behaviour.
- lnitial eccentricities ϵ_n lead to momentum-space anisotropies, characterized by flow harmonics v_n .
- \blacktriangleright $v_2 \equiv$ elliptic flow was one of the first exp. signatures for the formation of the QGP medium.

Hadronic Collisions in Experiment

Aims of our Work

- Describe spacetime evolution of QCD fireball created in a hadronic collision
- Examine how pre-equilibrium dynamics affects final-state observables (energy dE_⊥/dy, Fourier coefficients v_n)
- small densities, large gradients: hydro not necessarily applicable; alternative: microscopic description in terms of kinetic theory
- numerical transport codes simulate these dynamics quite well

AMPT: He, Edmonds, Lin, Liu, Molnar, Wang [PLB 753 (2016) 506] BAMPS: Greif, Greiner, Schenke, Schlichting, Xu [PRD 96 (2017) 091504]

Employ simplified description in conformal kinetic theory and conformal hydro to understand the effects of pre-equilibrium dynamics on final-state observables in small and large systems.

Microscopic description: Kinetic theory (RTA)

We employ the averaged on-shell phase-space distribution f:

$$f(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y) = \frac{(2\pi)^3}{\nu_{\text{eff}}} \frac{dN}{d^3 x \, d^3 p}(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y).$$
(1)

$$p^{\mu}\partial_{\mu}f = C_{RTA}[f] = -\frac{p_{\mu}u^{\mu}}{\tau_R}(f - f_{eq}), \qquad \tau_R = \frac{5\eta/s}{T},$$
 (2)

where the specific shear viscosity $\eta/s \simeq \text{const.}$

Numerical solution: Relativistic lattice Boltzmann (RLB) method.

[PRC 98 (2018) 035201; PRD 104 (2021) 094022; PRD 105 (2022) 014031]

Macroscopic description: Müller-Israel-Stewart hydro

• Writing
$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu} + \pi^{\mu\nu}$$
, $\partial_{\mu}T^{\mu\nu} = 0$ leads to

$$\dot{\epsilon} + (\epsilon + P)\theta - \pi^{\mu\nu}\sigma_{\mu\nu} = 0, \qquad (3a)$$

$$(\epsilon + P)\dot{u}^{\mu} - \nabla^{\mu}P + \Delta^{\mu}{}_{\lambda}\partial_{\nu}\pi^{\lambda\nu} = 0, \qquad (3b)$$

where
$$\theta = \partial_{\mu} u^{\mu}$$
 and $\sigma_{\mu\nu} = \nabla_{\langle \mu} u_{\nu \rangle}$.

ln ideal hydro,
$$\pi^{\mu\nu} = 0$$
.

• In MIS viscous hydro,
$$\pi^{\mu\nu}$$
 evolves according to

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} + \text{h.o.t.}$$
(3c)

Numerical solution obtained using vHLLE.

[Karpenko, Huovinen, Bleicher, CPC 185 (2014) 3016]

Initial state $(\tau_0 \rightarrow 0)$

[Borghini, Borrell, Feld, Roch, Schlichting, Werthmann, arXiv: 2209.01176]

► We consider the initial $dE_{\perp}^0/d\eta d^2 \mathbf{x}_{\perp}$ for averaged 30 - 40% centrality PbPb collisions at 5.02 TeV, characterized by

$$\frac{dE_{\perp}^{0}}{d\eta} = 1280 \text{ GeV}, \qquad R = 2.78 \text{ fm},$$

 $\epsilon_{2} = 0.42, \quad \epsilon_{4} = 0.21, \quad \epsilon_{6} = 0.09.$ (4)

Final-state observables ($\tau = 4R$)

- ln order to facilitate the comparison between RTA and hydro, we choose final-state observables computable directly from $T^{\mu\nu}$.
- As a proxy for $dE_{\perp}/d\eta$, we consider

$$\frac{dE_{\rm tr}}{d\eta} = \tau \int_{\mathbf{x}_{\perp}} (T^{xx} + T^{yy}).$$
(5)

 \blacktriangleright Similarly, we characterize the flow ellipticity v_2 via

$$\varepsilon_p e^{2i\Psi_p} = \frac{\int_{\mathbf{x}_\perp} (T^{xx} - T^{yy} + 2iT^{xy})}{\int_{\mathbf{x}_\perp} (T^{xx} + T^{yy})},\tag{6}$$

where Ψ_p is an event-plane angle.

Standard model of heavy-ion collisions

τ_{coll} ≡ τ₀ → 0 to account for pre-eq. dynamics.
 Initially, the system is strongly off-equilibrium (P_L ≃ 0).

Kinetic theorypre-equilibriumhydrodynamicsKinetic theory η τ_0 $\tau_{eq} \sim \hat{\gamma}^{-4/3}$ Naive $\hat{\gamma} \rightarrow \infty$ η τ_0 $\tau_{eq} \sim \hat{\gamma}^{-4/3}$

If \(\tau_{Hydro} \equiv \tau_{eq} \le \tau_0\), the pre-eq. phase is not correctly modeled.
 Due to transverse structure, a new time scale \(R\) enters the picture
 If \(\tau_{eq} \ge \) \(R\), equilibration is interrupted by transverse expansion and the system remains off-equilibrium throughout the evolution.

0 + 1-D Bjorken flow

[Ambruş, Bazzanini, Gabbana, Simeoni, Succi, Nature Comput. Sci. 2, 641 (2022)]

 \blacktriangleright At early times $au \ll R$, transverse expansion is negligible and

$$T^{\mu}{}_{\nu} \simeq \operatorname{diag}(\epsilon, -\mathcal{P}_T, -\mathcal{P}_T, -\mathcal{P}_L),$$

$$\mathcal{P}_T = P - \pi_d/2, \qquad \mathcal{P}_L = P + \pi_d. \tag{7}$$

• $\epsilon = 3P$ evolves according to $\tau \frac{\partial(\tau^{4/3}\epsilon)}{\partial \tau} + (\tau^{4/3}\epsilon)f_{\pi} = 0.$ • $f_{\pi} = \pi_d/\epsilon$ exhibits attractor behaviour. [Heller, Spalinski, PRL 115 (2015) 072501]

Scaling solutions

• Along the attractor, f_{π} and $\tau^{4/3}\epsilon$ are given by

$$f_{\pi} \equiv f_{\pi}(\tilde{w}), \qquad \tau^{4/3} \epsilon = \frac{\tau_0^{4/3} \epsilon_0}{\mathcal{E}(\tilde{w}_0)} \mathcal{E}(\tilde{w}), \tag{8}$$

where $\tilde{w} = \frac{\tau T}{4\pi\eta/s}$ is the scaling variable.

▲□▶▲□▶▲□▶▲□▶▲□ ● のへ⊙

Pre-equilibrium dynamics ($\tilde{w} \ll 1$)

Around $\tilde{w} = 0$ (FS fixed point), f_{π} and \mathcal{E} behave like

$$f_{\pi}(\tilde{w} \ll 1) \simeq f_{\pi;0},$$

$$\mathcal{E}(\tilde{w} \ll 1) \simeq C_{\infty}^{-1} \tilde{w}^{\gamma},$$
(9)

where the constants $f_{\pi;0}$, γ and C_{∞} depend on the theory:

$$\gamma_{\rm RTA} = \frac{4}{9}, \qquad \gamma_{\rm hydro} = \frac{1}{18}(\sqrt{505} - 13) \simeq 0.526.$$
 (10)

When Eq. (9) applies, we have

$$\epsilon(\tilde{w} \ll 1) \simeq \left(\frac{\tau_0}{\tau}\right)^{\left(\frac{4}{3} - \gamma\right)/(1 - \gamma/4)} \epsilon_0.$$
(11)

ln RTA: $\tau \epsilon \simeq \text{const.}$

• In hydro: $\tau \epsilon \propto \tau^{0.07}$ increases with time.

Scaled hydrodynamics

• Taking into account that $\tilde{w}_0 = \tau_0 T_0 / (4\pi\eta/s)$ and $T_0 = (\epsilon_0/a)^{1/4}$, the solution is

$$\epsilon_0^{\text{hydro}} = \left[\left(\frac{4\pi\eta/s}{\tau_0} a^{1/4} \right)^{\frac{1}{2} - \frac{9\gamma}{8}} \left(\frac{C_{\infty}^{\text{RTA}}}{C_{\infty}^{\text{hydro}}} \right)^{9/8} \epsilon_0^{\text{RTA}} \right]^{\frac{8/9}{1 - \gamma/4}}.$$
 (12)

Final state ($\tau = 4R$): Transverse energy $dE_{\rm tr}/d\eta$

- ▶ [Naive hydro, small η/s] Larger $\tau_0 \Leftrightarrow$ larger final-state value, since late-time $dE_{\rm tr}/d\eta \propto \tau^{-1/3}$ decrease lasts less.
- [Naive hydro, large η/s] Smaller $\tau_0 \Leftrightarrow$ larger $dE_{tr}/d\eta$ due to pre-eq. increase.
- [Scaled hydro, small η/s] Works well for $4\pi\eta/s \lesssim 3$.
- ► [Scaled hydro, large η/s] Transverse expansion interrupts pre-eq. $\Rightarrow dE_{tr}/d\eta$ doesn't increase sufficiently to match RTA.

Inhomogeneous cooling and scaled eccentricity

- 0.42Kinetic theory For $\tau \lesssim 0.1R$, the system Naive hydro Scaled hydro 0.415Bjorken scaling evolves as a collection of 0 + 1-D Bjorken flows 0.41Eccentricity $\epsilon_2(\tau)$ \Rightarrow inhomogeneous cooling. 0.405• If $\tilde{w} \gtrsim 1$ when $\tau \sim R$, Hydrodynamization 0.4equilibration occurs before transverse expansion sets in 0.395(Pre-ec and late-time limits governed by $0.39 \\ 10^{-6}$ 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} $(\tau^{4/3}\epsilon)_{\infty} \propto \tau_0^{\frac{4}{3}-\gamma} \epsilon_0^{1-\gamma/4}.$ Time τ/R (13)
- The eccentricity $\epsilon_2 = (\int_{\mathbf{x}_{\perp}} \epsilon)^{-1} \int_{\mathbf{x}_{\perp}} \epsilon x_{\perp}^2 \cos(2\phi)$ changes according to

$$\epsilon_n \simeq \left(\int_{\mathbf{x}_\perp} \epsilon_0^{1-\gamma/4} \right)^{-1} \int_{\mathbf{x}_\perp} \epsilon_0^{1-\gamma/4} x_\perp^2 \cos(2\phi).$$
(14)

► The exponent $1 - \frac{\gamma}{4}$ implies that ϵ_2 changes differently in hydro compared to RTA \Rightarrow scaled hydro changes initial ϵ_2 s.t. $\lim_{\tau \to \infty} \epsilon_2^{\text{hydro}} = \lim_{\tau \to \infty} \epsilon_2^{\text{RTA}}$.

Final state ($\tau = 4R$): Elliptic flow ε_p

- [Naive hydro, small η/s] Remains in disagreement with naive ideal hydro. Approach to RTA: lucky coincidence?
- [Scaled hydro, small η/s] In excellent agreement with scaled ideal hydro & RTA.
- [Hydro, large η/s] Pre-equilibrium in hydro leads to negative build-up of ε_p (less for larger τ_0), which persists at late times (in contrast to RTA).

Conclusions

- ▶ Bjorken 0 + 1-D attractor governs the system's evolution for $\tau \lesssim 0.1R$.
- Differences in the early-time behaviour of hydro and RTA lead to discrepancies in final-state observables.
- Agreement between RTA and hydro is restored at small η/s by scaling the initial conditions for hydro in order to balance the pre-equilibrium differences.
- For the sample 30 40% centrality class of Pb Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, scaled hydro provides a reasonable description when $4\pi\eta/s \lesssim 3$.
- Possible improvements include hybrid schemes: kinetic theory for pre-equilibrium and equilibration and hydro for the rest.
- This work was supported through a grant of the Ministry of Research, Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-1707, within PNCDI III.