Attractors in flows with transverse dynamics

Victor E. Ambruș

Department of Physics, West University of Timișoara, Romania

PRD 105 (2022) 014031, WIP

Work in collaboration with C. Werthmann & S. Schlichting [Bielefeld U]

ICNFP 2022, Kolymbari, Crete, Greece

Outline

Introduction

Initial state and observables

Pre-equilibrium evolution

Systems with transverse profiles

Conclusions

Hadronic Collisions in Experiment

Figure (cropped): CMS Collaboration PLB 724 (2013) 213

Aims of our Work

- Describe spacetime evolution of QCD fireball created in a hadronic collision
- Examine how pre-equilibrium dynamics affects final-state observables (energy dE_{\perp}/dy , Fourier coefficients v_n)
- small densities, large gradients: hydro not necessarily applicable; alternative: microscopic description in terms of kinetic theory
- numerical transport codes simulate these dynamics quite well

AMPT: He, Edmonds, Lin, Liu, Molnar, Wang [PLB 753 (2016) 506]

BAMPS: Greif, Greiner, Schenke, Schlichting, Xu [PRD 96 (2017) 091504]

Employ simplified description in conformal kinetic theory and conformal hydro to understand the effects of pre-equilibrium dynamics on final-state observables in small and large systems.

Hiroshi Masui (2008)

Microscopic description: Kinetic theory (RTA)

 \blacktriangleright We employ the averaged on-shell phase-space distribution f:

$$f(\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y) = \frac{(2\pi)^3}{\nu_{\text{eff}}} \frac{dN}{d^3 x \, d^3 p} (\tau, \mathbf{x}_{\perp}, \eta, \mathbf{p}_{\perp}, y). \tag{1}$$

- ▶ For simplicity, we assume boost invariance: (2+1)+3D description.
- \blacktriangleright Time evolution of f governed by Boltzmann eq. in RTA:

$$p^{\mu}\partial_{\mu}f = C_{RTA}[f] = -\frac{p_{\mu}u^{\mu}}{\tau_R}(f - f_{eq}), \qquad \tau_R = \frac{5\eta/s}{T},$$
 (2)

where the specific shear viscosity $\eta/s \simeq {\rm const.}$

▶ Numerical solution: Relativistic lattice Boltzmann (RLB) method.

[PRC 98 (2018) 035201; PRD 104 (2021) 094022; PRD 105 (2022) 014031]

Macroscopic description: Müller-Israel-Stewart hydro

lacksquare Writing $T^{\mu\nu}=(\epsilon+P)u^{\mu}u^{\nu}-Pg^{\mu\nu}+\pi^{\mu\nu}$, $\partial_{\mu}T^{\mu\nu}=0$ leads to

$$\dot{\epsilon} + (\epsilon + P)\theta - \pi^{\mu\nu}\sigma_{\mu\nu} = 0, \tag{3a}$$

$$(\epsilon + P)\dot{u}^{\mu} - \nabla^{\mu}P + \Delta^{\mu}{}_{\lambda}\partial_{\nu}\pi^{\lambda\nu} = 0, \tag{3b}$$

where $\theta = \partial_{\mu} u^{\mu}$ and $\sigma_{\mu\nu} = \nabla_{\langle \mu} u_{\nu \rangle}$.

- ▶ In ideal hydro, $\pi^{\mu\nu} = 0$.
- ▶ In MIS viscous hydro, $\pi^{\mu\nu}$ evolves according to

$$\tau_{\pi}\dot{\pi}^{\langle\mu\nu\rangle} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} + \text{h.o.t.}$$
 (3c)

Numerical solution obtained using vHLLE.

[Karpenko, Huovinen, Bleicher, CPC 185 (2014) 3016]

Initial state $(\tau_0 \to 0)$

Jiligie event.

Averaged:

▶ We consider the initial $dE_{\perp}^0/d\eta d^2\mathbf{x}_{\perp}$ for averaged 30-40% centrality PbPb collisions at $5.06~\mathrm{TeV}$, characterized by

$$\frac{dE_{\perp}^{0}}{d\eta} = 1280 \text{ GeV}, \qquad R = 2.78 \text{ fm},$$

$$\epsilon_{2} = 0.42, \quad \epsilon_{4} = 0.21, \quad \epsilon_{6} = 0.09. \tag{4}$$

Final-state observables ($\tau = 4R$)

- In order to facilitate the comparison between RTA and hydro, we choose final-state observables computable directly from $T^{\mu\nu}$.
- ▶ As a proxy for $dE_{\perp}/d\eta$, we consider

$$\frac{dE_{\rm tr}}{d\eta} = \tau \int_{\mathbf{x}_{\perp}} (T^{xx} + T^{yy}). \tag{5}$$

ightharpoonup Similarly, we characterize the flow ellipticity v_2 via

$$\varepsilon_p e^{2i\Psi_p} = \frac{\int_{\mathbf{x}_\perp} (T^{xx} - T^{yy} + 2iT^{xy})}{\int_{\mathbf{x}_\perp} (T^{xx} + T^{yy})},\tag{6}$$

where Ψ_p is an event-plane angle.

Standard model of heavy-ion collisions

- ightharpoonup $au_{
 m coll} \equiv au_0
 ightarrow 0$ to account for pre-eq. dynamics.
- ▶ Initially, the system is strongly off-equilibrium $(P_L \simeq 0)$.

- ▶ If $\tau_{\rm Hydro} \equiv \tau_{\rm eq} \lesssim \tau_0$, the pre-eq. phase is not correctly modeled.
- ightharpoonup Due to transverse structure, a new time scale R enters the picture
- ▶ If $\tau_{\rm eq} \gtrsim R$, equilibration is interrupted by transverse expansion and the system remains off-equilibrium throughout the evolution.

0 + 1-D Bjorken flow

[Ambruş, Bazzanini, Gabbana, Simeoni, Succi, Nature Comput. Sci., in press (DOI: 10.21203/rs.3.rs-1558550/v1)]

lacktriangle At early times $au \ll R$, transverse expansion is negligible and

$$T^{\mu}_{\nu} \simeq \operatorname{diag}(\epsilon, -\mathcal{P}_T, -\mathcal{P}_T, -\mathcal{P}_L),$$

$$\mathcal{P}_T = P - \pi_d/2, \qquad \mathcal{P}_L = P + \pi_d. \tag{7}$$

- \bullet $\epsilon=3P$ evolves according to $\tau \frac{\partial (\tau^{4/3}\epsilon)}{\partial \tau} + (\tau^{4/3}\epsilon)f_{\pi}=0.$
- $f_{\pi} = \pi_d/\epsilon$ exhibits attractor behaviour.

[Heller, Spalinski, PRL 115 (2015) 072501]

Scaling solutions

lacktriangle Along the attractor, f_π and $au^{4/3}\epsilon$ are given by

$$f_{\pi} \equiv f_{\pi}(\tilde{w}), \qquad \tau^{4/3} \epsilon = \frac{\tau_0^{4/3} \epsilon_0}{\mathcal{E}(\tilde{w}_0)} \mathcal{E}(\tilde{w}),$$
 (8)

where $\tilde{w} = \frac{\tau T}{4\pi \eta/s}$ is the scaling variable.

Pre-equilibrium dynamics ($\tilde{w} \ll 1$)

ightharpoonup Around $ilde{w}=0$ (FS fixed point), f_{π} and $\mathcal E$ behave like

$$f_{\pi}(\tilde{w} \ll 1) \simeq f_{\pi;0},$$

$$\mathcal{E}(\tilde{w} \ll 1) \simeq C_{\infty}^{-1} \tilde{w}^{\gamma},$$
(9)

where the constants $f_{\pi;0}$, γ and C_{∞} depend on the theory:

$$\gamma_{\text{RTA}} = \frac{4}{9}, \qquad \gamma_{\text{hydro}} = \frac{1}{18} (\sqrt{505} - 13) \simeq 0.526.$$
 (10)

▶ When Eq. (9) applies, we have

$$\epsilon(\tilde{w} \ll 1) \simeq \left(\frac{\tau_0}{\tau}\right)^{(\frac{4}{3}-\gamma)/(1-\gamma/4)} \epsilon_0.$$
 (11)

- ▶ In RTA: $\tau \epsilon \simeq \text{const.}$
- ▶ In hydro: $\tau \epsilon \propto \tau^{0.07}$ increases with time.

Asymptotic late-time behaviour and scaled hydrodynamics

- At $\tilde{w} \gg 1$, the RTA and hydro attractors agree (hydro fixed-point).
- ▶ When $\tilde{w}_0 \ll 1$, ϵ asymptotes at late times to:

$$(\tau^{4/3}\epsilon)_{\infty} = C_{\infty} \left(\frac{4\pi\eta}{s} a^{1/4}\right)^{\gamma} \left(\tau_0^{(\frac{4}{3}-\gamma)/(\gamma-1/4)} \epsilon_0\right)^{1-\gamma/4},$$
 (12)

where $C_{\infty}^{\rm RTA} \simeq 0.88$ and $C_{\infty}^{\rm hydro} = 0.82$.

▶ Main idea: scale $\epsilon_0^{\mathrm{hydro}}$ such that $(\tau^{4/3}\epsilon)_{\infty}^{\mathrm{hydro}} = (\tau^{4/3}\epsilon)_{\infty}^{\mathrm{RTA}}$:

$$\epsilon_0^{\text{hydro}} = \left[\left(\frac{4\pi\eta/s}{\tau_0} a^{1/4} \right)^{\frac{1}{2} - \frac{9\gamma}{8}} \left(\frac{C_{\infty}^{\text{RTA}}}{C_{\infty}^{\text{hydro}}} \right)^{9/8} \epsilon_0^{\text{RTA}} \right]^{\frac{8/9}{1 - \gamma/4}}, \quad (13)$$

▶ For ideal hydro, $(\tau^{4/3}\epsilon)_{\infty} = \tau_0^{4/3}\epsilon_0^{\mathrm{id}}$, such that

$$\epsilon_0^{\text{id}} = C_\infty^{\text{RTA}} \left(\frac{4\pi (\eta/s)_{\text{RTA}}}{\tau_0} a^{1/4} \right)^{4/9} \epsilon_{0,\text{RTA}}^{8/9}.$$
(14)

Pre-equilibrium in systems with transverse profiles

- ▶ For $\tau \lesssim 0.1R$, the system evolves as a collection of 0+1-D Bjorken flows \Rightarrow inhomogeneous cooling.
- ▶ If $\tilde{w} \lesssim 1$ when $\tau \sim R$, equilibration occurs before transverse expansion sets in and late-time limits governed by

$$(\tau^{4/3}\epsilon)_{\infty} \propto \tau_0^{\frac{4}{3}-\gamma} \epsilon_0^{1-\gamma/4}. \tag{15}$$

► The exponent $1 - \frac{\gamma}{4}$ implies that ϵ_2 changes differently in hydro compared to RTA \Rightarrow scaled hydro changes initial ϵ_2 .

Final state ($\tau=4R$): Transverse energy $dE_{\rm tr}/d\eta$

- Naive hydro, small η/s Larger $\tau_0 \Leftrightarrow$ larger final-state value, since late-time $dE_{\rm tr}/d\eta \propto \tau^{-1/3}$ decrease lasts less.
- [Naive hydro, large η/s] Smaller $au_0 \Leftrightarrow$ larger $dE_{\mathrm{tr}}/d\eta$ due to pre-eq. increase.
- [Scaled hydro, small η/s] Works well for $4\pi\eta/s\lesssim 3$.
- ▶ [Scaled hydro, large η/s] Transverse expansion interrupts pre-eq. $\Rightarrow dE_{\rm tr}/d\eta$ doesn't increase sufficiently to match RTA.

Final state $(\tau = 4R)$: Elliptic flow ε_p

- Naive hydro, small η/s Remains in disagreement with naive ideal hydro. Approach to RTA: lucky coincidence?
- ▶ [Scaled hydro, small η/s] In excellent agreement with scaled ideal hydro & RTA.
- ▶ [Hydro, large η/s] Pre-equilibrium in hydro leads to negative build-up of ε_p (less for larger τ_0), which persists at late times (in contrast to RTA).

Conclusions

- ▶ Bjorken 0+1-D attractor governs the system's evolution for $\tau \lesssim 0.1R$.
- ▶ Differences in the early-time behaviour of hydro and RTA lead to discrepancies in final-state observables.
- Agreement between RTA and hydro is restored at small η/s by scaling the initial conditions for hydro in order to balance the pre-equilibrium differences.
- For the sample 30-40% centrality class of Pb-Pb collisions at $\sqrt{s_{NN}}=5.02~{\rm TeV}$, scaled hydro provides a reasonable description when $4\pi\eta/s\lesssim 3$.
- ► Possible improvements include hybrid schemes: kinetic theory for pre-equilibrium and equilibration and hydro for the rest.
- ► This work was supported through a grant of the Ministry of Research, Innovation and Digitization, CNCS UEFISCDI, project number PN-III-P1-1.1-TE-2021-1707, within PNCDI III.

