Lattice Boltzmann models derived by Gauss quadratures and microfluidics applications

Victor Eugen Ambruş and Victor Sofonea

Center for Fundamental and Advanced Technical Research, Romanian Academy Bd. Mihai Viteazul 24, R – 300223 Timişoara, Romania

Boltzmann Equation

• Evolution equation of the one-particle distribution function $f \equiv f(\mathbf{x}, \mathbf{p})$

 $\partial_t f + \frac{1}{m} p_\alpha \partial_\alpha f = J[f], \qquad J \text{ describes inter-particle collisions}$

• Hydrodynamic moments give macroscopic quantities:

number density:

$$n = \int d^{3}pf,$$
velocity:

$$\mathbf{u} = \frac{1}{nm} \int d^{3}pf \mathbf{p},$$
temperature:

$$T = \frac{1}{3nm} \int d^{3}pf \boldsymbol{\xi}^{2}, \quad (\boldsymbol{\xi} = \mathbf{p} - m\mathbf{u}),$$
heat flux:

$$\mathbf{q} = \frac{1}{2m^{2}} \int d^{3}pf \boldsymbol{\xi}^{2} \boldsymbol{\xi}.$$

• Single relaxation collision term:

$$J[f] = -\frac{1}{\tau} [f - g], \qquad \tau = \frac{Kn}{n}$$
 is the relaxation time.

- *f* is relaxing towards *g*
- Shakhov collision model:

$$g = f^{(\text{eq})} \left\{ 1 + \frac{1 - \Pr}{nT^2} \left[\frac{\xi^2}{(D+2)mT} - 1 \right] \boldsymbol{\xi} \cdot \mathbf{q} \right\}, \qquad \mathbf{q} \text{ is the heat flux.}$$

- Pr = 2/3 for an ideal gas
- The BGK model $g = f^{(eq)}$ is recovered when Pr = 1.
- $f^{(eq)}$ is the Maxwell-Boltzmann distribution function:

$$f^{(\text{eq})} = \frac{n}{(2\pi mT)^{D/2}} \exp\left(-\frac{\xi^2}{2mT}\right) \qquad (\xi = \mathbf{p} - m\mathbf{u})$$

Macroscopic quantities and moments of $f^{(eq)}$

• Chapman-Enskog expansion gives *f* in terms of *f*^(eq):

$$f = f^{(eq)} + Knf^{(1)} + Kn^2f^{(2)} + \dots$$

• From the Boltzmann equation, $f^{(n)} = f^{(eq)} \times \text{polynomial in } \mathbf{p}$, hence:

 $f = f^{(eq)} P(\mathbf{p}, Kn), P$ is a polynomial (series) in \mathbf{p} and Kn.

• The macroscopic quantities, calculated as moments of *f*, can be approximated using moments of *f*^(eq), defined as:

$$\mathcal{M}_{\{\alpha_l\}}^{(s)} = \int d^3 p f^{(\text{eq})} \prod_{\ell=1}^{s} p_{\alpha_\ell}$$
$$\mathcal{M}_{mnp} = \int d^3 p f^{(\text{eq})} p_x^m p_y^n p_z^p$$

(for spherical coordinates),

(for Cartesian coordinates).

Moments of $f^{(eq)}$

The moments of order *n* of $f^{(eq)}$ are polynomials of order *n* in **u**

$$\int d^3 p f^{(\text{eq})} \prod_{s=1}^n p_{\alpha_s} = \left[\prod_{s=0}^n \left(T \frac{\partial}{\partial u_{\alpha_s}} + m u_{\alpha_s} \right) \right] n.$$

Examples:

$$\int d^{3}p f^{(\text{eq})} = n, \qquad \int d^{3}p f^{(\text{eq})} p_{\alpha} = \rho u_{\alpha}, \qquad \int d^{3}p f^{(\text{eq})} p_{\alpha} p_{\beta} = \rho u_{\alpha} u_{\beta} + \rho T \delta_{\alpha\beta},$$

$$\int d^{3}p f^{(\text{eq})} p_{\alpha} p_{\beta} p_{\gamma} = m^{2} \rho u_{\alpha} u_{\beta} u_{\gamma} + m \rho T u_{\delta} \Delta_{\alpha\beta\gamma\delta}, \qquad (\Delta_{\alpha\beta\gamma\delta} = \delta_{\alpha\beta} \delta_{\gamma\delta} + \delta_{\alpha\gamma} \delta_{\beta\delta} + \delta_{\alpha\delta} \delta_{\beta\gamma})$$

$$\int d^{3}p f^{(\text{eq})} p_{\alpha} p_{\beta} p_{\gamma} p_{\delta} = m^{3} \rho u_{\alpha} u_{\beta} u_{\gamma} u_{\delta} + \frac{1}{2} m^{2} \rho T \left(u_{\varepsilon} u_{\eta} \Delta_{\alpha\beta\gamma\delta\varepsilon\eta} - \mathbf{u}^{2} \Delta_{\alpha\beta\gamma\delta} \right) + m \rho T^{2} \Delta_{\alpha\beta\gamma\delta},$$

$$(\Delta_{\alpha\beta\gamma\delta\varepsilon\eta} = \delta_{\alpha\beta} \Delta_{\gamma\delta\varepsilon\eta} + \delta_{\alpha\gamma} \Delta_{\beta\delta\varepsilon\eta} + \dots \delta_{\alpha\eta} \Delta_{\beta\gamma\delta\varepsilon}).$$

H. D. Chen and X. W. Shan, Physica D 237, 2003 (2008)

V.E.Ambruş and V. Sofonea

Computation of the moments of $f^{(eq)}$: Cartesian and spherical coordinates

 $f^{(eq)}$ can be factorised according to the coordinate system chosen for the computation of \mathcal{M} :

Cartesian coordinates Spherical coordinates

$$f^{(eq)} = nF_xF_yF_z, \qquad f^{(eq)} = nEF, \qquad F_{\alpha} = (2\pi mT)^{-1/2}\exp\left(-\frac{\xi_{\alpha}^2}{2mT}\right), \qquad F = (2\pi mT)^{-3/2}\exp\left(-\frac{p^2}{2mT}\right), \qquad E = \exp\left(-\frac{m\mathbf{u}^2}{2T}\right)\exp\frac{\mathbf{p}\cdot\mathbf{u}}{T}, \qquad M_{n_x,n_y,n_z} = n\prod_{\alpha}\int_{-\infty}^{\infty} dp_{\alpha}F_{\alpha}p_{\alpha}^{n_{\alpha}}, \qquad \mathcal{M}^{(s)}_{\{\alpha_l\}} = n\int_{0}^{\infty} dp\,F\,p^{s+2}\int d\Omega\,E\prod_{\ell=1}^{s}e_{\alpha_l}$$

1

Series expansion of $f^{(eq)}$: HLB and SLB

For *N*′th order accuracy, the following series expansion can be performed

HLB SLB

$$F_{\alpha} = e^{-p_{\alpha}^{2}/2} \sum_{\ell=0}^{Q_{\alpha}-1} \mathfrak{a}_{\alpha,\ell} H_{\ell}(p_{\alpha}), \qquad F = e^{-p} \sum_{\ell=0}^{K-1} \mathcal{F}_{\ell} L_{\ell}^{(1/2)}(p),$$

$$Q_{\alpha} > N, \qquad E = \text{ series expansion up to } \mathbf{u}^{N},$$

$$K > N$$

$$\begin{aligned} H_{\ell} & \text{satisfy} \int_{-\infty}^{\infty} dp_{\alpha} \, e^{-p_{\alpha}^{2}} H_{\ell}(p_{\alpha}) H_{\ell'}(p_{\alpha}) \sim \delta_{\ell\ell'} \\ L_{\ell}^{(1/2)} & \text{satisfy} \int_{0}^{\infty} dp \, e^{-p} p^{2} L_{\ell}^{(1/2)}(p) L_{\ell'}^{(1/2)}(p) \sim \delta_{\ell\ell'} \end{aligned}$$

X.Shan, X.-F.Yuan and H.Chen, J. Fluid Mech. (2006), **550**, 413–441 V.E.Ambruş and V.Sofonea, Phys.Rev.E (2012), **86**, 016708 The Gauss-Hermite quadrature rule for a polynomial P_n or order n:

$$\int_{-\infty}^{\infty} dp_{\alpha} \, e^{-p_{\alpha}^2/2} P_n(p_{\alpha}) = \sum_{s=1}^Q w_s P_n(p_{\alpha,s}), \qquad \text{when } 2Q > n.$$

Hence:

$$\int_{-\infty}^{\infty} dp_{\alpha} F_{\alpha}(p_{\alpha}) P_{n}(p_{\alpha}) = \sum_{\ell=0}^{Q_{\alpha}-1} \mathfrak{a}_{\alpha,\ell} \sum_{s=1}^{Q_{\alpha}} w_{\alpha,s} H_{\ell}(p_{\alpha,s}) P_{n}(p_{\alpha,s}), \qquad \text{when } Q_{\alpha} > n.$$

 $p_{\alpha,s}$ - roots of $H_{Q_{\alpha}}$ $w_{\alpha,s}$ - Gauss-Hermite quadrature weights. The moments of *f* can be approximated using $Q_x \times Q_y \times Q_z$ functions f_{ijk} :

$$\int d^3pf P_n(\mathbf{p}) \rightarrow \sum_{i=1}^{Q_x} \sum_{j=1}^{Q_y} \sum_{k=1}^{Q_z} f_{ijk} P_n(\mathbf{p}_{ijk}),$$

where $\mathbf{p}_{ijk} = (p_{x,i}, p_{y,j}, p_{z,k})$ and f_{ijk} corresponds to $f(\mathbf{p}_{ijk})$. To each f_{ijk} there corresponds an $f_{ijk}^{(eq)}$ defined by:

$$f_{ijk}^{(\text{eq})} = nF_{x,i}F_{y,j}F_{z,k},$$
$$F_{\alpha,k} = w_{\alpha,k}\sum_{\ell=0}^{Q_{\alpha-1}} \mathfrak{a}_{\alpha,\ell}H_{\ell}(p_{\alpha,k}).$$

Minimum number of vectors for N'th order accuracy: $(N + 1)^3$.

HLB models in 2D : momentum sets

widely used since 1992!

Quadratures for the SLB models

Mysovskikh quadrature for a trigonometric polynomial *P*_l of order *l*:

$$\int_0^{2\pi} d\varphi \, P_n(\cos\varphi, \sin\varphi) = \frac{2\pi}{M} \sum_{i=1}^M P_l(\cos\varphi_i, \sin\varphi_i), \quad \text{when } M > l.$$

...combined with Gauss-Legendre quadrature for polynomials in $\cos \theta$:

$$\int_{-1}^{1} d(\cos \theta) Q_n(\cos \theta) = \sum_{j=1}^{K} w_j^P Q_m(\cos \theta_j), \quad \text{when } K > 2m,$$

...and with the Gauss-Laguerre quadrature for polynomials in *p*:

$$\int_0^\infty dp \, p^2 e^{-p} \, R_n(p) = \sum_{k=1}^L w_k^L R_n(p_k), \qquad \text{when } L > 2n,$$

conspire to give the following formula for $\mathcal{M}_{\{\alpha_l\}}^{(s)}$:

$$\int d^3p f^{(\text{eq})} P(p,\theta,\varphi) = \sum_{k=1}^L \sum_{j=1}^K \sum_{i=1}^M f_{kji}^{(\text{eq})} P(p_k,\theta_j,\varphi_i).$$

The SLB(*N*;*K*,*L*,*M*) models

The moments of *f* can be approximated using $K \times L \times M$ functions f_{kji} :

$$\int d^3 p f P_n(\mathbf{p}) \rightarrow \sum_{k=1}^K \sum_{j=1}^{Q_y} \sum_{i=1}^M f_{kji} P_n(\mathbf{p}_{kji}),$$

where $\mathbf{p}_{kji} = (p_k, \theta_j, \varphi_i)$ and f_{kji} corresponds to $f(\mathbf{p}_{kji})$. To each f_{kji} there corresponds an $f_{kji}^{(eq)}$ defined by:

$$f_{ijk}^{(eq)} = nE_{kji}F_k,$$

$$E_{kji} = \frac{2\pi w_j^P}{M} \times \text{Series expansion up to } \mathbf{u}^N \text{ of } \exp\left(\frac{\mathbf{p} \cdot \mathbf{u}}{T} - \frac{m\mathbf{u}^2}{2T}\right),$$

$$F_k = w_k^K \sum_{\ell=0}^{K-1} \mathcal{F}_\ell L_\ell^{(1/2)}(p_k),$$

where $\varphi_i = \phi_0 + \frac{2\pi}{M}(i-1)$ (M > 2N), θ_j are the roots of $P_L(\cos \theta)$ (L > N) and p_k are the roots of $L_K(p)$ (K > N). Minimum number of vectors for N'th order accuracy: $(N + 1)^2 \times (2N + 1)$.

Minimal SLB(N; K, L, M) models : SLB(N; K = N + 1, L = N + 1, M = 2N + 1) (1)

SLB(1; 2, 2, 3)

SLB(2; 3, 3, 5)

V. E. Ambruş and V. Sofonea, Physical Review E 86 (2012) 016708

LB models for microfluidics

Minimal SLB(N; K, L, M) models : SLB(N; K = N + 1, L = N + 1, M = 2N + 1) (2)

SLB(3; 4, 4, 7)

SLB(4; 5, 5, 9)

V. E. Ambruş and V. Sofonea, Physical Review E 86 (2012) 016708

LB models for microfluidics

f^(eq) in *SLB*(*N*;*K*,*L*,*M*): explicit examples

General formula:

$$f_{kji}^{(\text{eq})} = nF_k E_{kji}, \quad F_k = \frac{w_k^{(L)}}{M\sqrt{\pi}} \sum_{\ell=0}^{K-1} (1 - 2mT)^\ell L_\ell^{(1/2)}(p_k^2), \quad E_{kji} = w_j^{(P)} E^{(N)}(\mathbf{p}_{kji}; \mathbf{u}, T)$$

Explicitly:

$$\begin{split} F_{k} &= \frac{w_{k}^{(L)}}{M\sqrt{\pi}} \Big[1 + (1 - 2mT) \left(\frac{3}{2} - p_{k}^{2} \right) + (1 - 2mT)^{2} \left(\frac{15}{8} - \frac{5}{4} p_{k}^{2} + \frac{1}{2} p_{k}^{4} \right) \\ &+ (1 - 2mT)^{3} \left(\frac{35}{16} - \frac{35}{8} p_{k}^{2} + \frac{7}{4} p_{k}^{4} - \frac{1}{6} p_{k}^{6} \right) + \dots \Big], \\ E^{(N)} &= 1 + \frac{p_{\alpha}}{T} u_{\alpha} + \left(-\frac{m\delta_{\alpha\beta}}{2T} \frac{p_{\alpha}}{T} \frac{p_{\beta}}{T} \right) + \left(-\frac{p_{\alpha}}{T} \frac{m\delta_{\beta\gamma}}{2T} + \frac{p_{\alpha}}{T} \frac{p_{\beta}}{T} \frac{p_{\gamma}}{T} \right) u_{\alpha} u_{\beta} u_{\gamma} \\ &+ \left(\frac{1}{2} \frac{m\delta_{\alpha\beta}}{2T} \frac{m\delta_{\gamma\delta}}{2T} - \frac{1}{2!} \frac{p_{\alpha}}{T} \frac{p_{\beta}}{T} \frac{m\delta_{\gamma\delta}}{2T} \right) u_{\alpha} u_{\beta} u_{\gamma} u_{\delta} \end{split}$$

Momentum vectors in *SLB*(*N*;*K*,*L*,*M*)

p_k^2 are the roots of $L_K^{(1/2)}$:			
K	p_k	$w_k^{(L)}$	
2	0.958572	0.723363	
	2.02018	0.162864	
3	0.816288	0.567186	
	1.67355	0.305372	
	2.65196	1.36689×10^{-2}	
4	0.723551	0.453009	
	1.46855	0.381617	
	2.26658	5.07946×10^{-2}	
	3.19099	8.06591×10^{-4}	
5	0.65681	0.370451	
	1.32656	0.412584	
	2.02595	9.77798×10^{-2}	
	2.78329	5.37342×10^{-3}	
	3.66847	3.87463×10^{-5}	

θ_i are the roots of P_L :

L	$ heta_j$	$w_j^{(P)}$
2	± 0.577350	1
3	0	0.888889
	± 0.774597	0.555556
4	± 0.339981	0.652145
	± 0.861136	0.347855
5	0	0.568889
	± 0.538469	0.478629
	± 0.906180	0.236927
6	± 0.238619	0.467914
	± 0.661209	0.360762
	± 0.932470	0.171324
7	0	0.417959
	± 0.405845	0.381830
	± 0.741531	0.279705
	± 0.949108	0.129485

Application: Couette flow

- flow between parallel plates moving along the *y* axis
- $x_t = -x_b = 0.5$
- Velocity of plates: $u_t = -u_b = 0.42$
- Temperature of plates: $T_b = T_t = 1.0$
- Number of nodes: $n_x = 100$, $n_y = n_z = 2$
- Lattice spacing: $\delta s = 1/100$
- Time step: $\delta t = 10^{-4}$
- Periodic boundary conditions on the *y* and *z* axes
- Diffuse reflection boundary conditions on the *x* axis
- *MCD* flux limiter scheme for $p_{\alpha}\partial_{\alpha}$

Simulations done using PETSc 3.1 at:

- NANOSIM cluster collaboration with Prof. Daniel Vizman, West University of Timişoara, Romania
- IBM-SP6, CINECA collaboration with Prof. Giuseppe Gonnella, University of Bari, Italy
- MATRIX system, CASPUR collaboration with dr. Antonio Lamura, IAC-CNR, Section of Bari, Italy
- BlueGene cluster collaboration with Prof. Daniela Petcu, West University of Timişoara, Romania

Boundary conditions for the distribution function

Diffuse reflection boundary conditions

evolution equation: outgoing / incoming fluxes $\mathcal{F}_{kji\alpha}^{out}(\mathbf{x}, t)$ and $\mathcal{F}_{kji\alpha}^{in}(\mathbf{x}, t)$

$$f_{kji}(\mathbf{x}, t + \delta t) = f_{kji}(\mathbf{x}, t) - \sum_{\alpha} \frac{p_{kji\alpha}}{m} \frac{\delta t}{\delta s} \left[\mathcal{F}_{kji\alpha}^{out}(\mathbf{x}, t) - \mathcal{F}_{kji\alpha}^{in}(\mathbf{x}, t) \right]$$
$$-\frac{\delta t}{\tau} \left\{ f_{kji}(\mathbf{x}, t) - f_{kji}^{(eq)}(\mathbf{x}, t) \left[1 + S_{kji}(\mathbf{x}, t) \right] \right\}$$

incoming flux on the boundary:

$$\mathcal{F}_{kji\alpha}^{in}(\mathbf{x}_b,t) = -f^{(eq)}(n_w,u_w,T_w)p_{kji\alpha} = -n_w F_k(T_w)E_{kji}(\mathbf{u}_w,T_w)p_{kji\alpha}$$

with n_w computed using half-space integrals

$$n_{w} = \frac{\int_{\mathbf{p}\cdot\boldsymbol{\chi}>0} f(\mathbf{x}_{w},t)\mathbf{p}\cdot\boldsymbol{\chi} d^{D}p}{(\beta_{w}/\pi)^{D/2} \int_{\mathbf{p}\cdot\boldsymbol{\chi}<0} e^{-\beta_{w}(\mathbf{p}-m\mathbf{u}_{w})^{2}}\mathbf{p}\cdot\boldsymbol{\chi} d^{D}p} = -\frac{\sum_{p_{kji\alpha}>0} \mathcal{F}_{kji\alpha}^{out}(\mathbf{x}_{b},t)}{\sum_{p_{kji\alpha}<0} F_{k}(T_{w})E_{kji}(\mathbf{u}_{w},T_{w})p_{kji\alpha}}$$

Ansumali and Karlin, Physical Review E 66 (2002) 026311; Meng and Zhang, Physical Review E 83 (2011) 036704

Couette flow : HLB(4;10,10,10) simulation results 1/2

Couette flow at Kn = 0.01, Kn = 0.1 and Kn = 0.5. Stationary profiles recovered with N = 4 and Q = 10: fluid velocity (left) and temperature (right). $(u_{walls} = \pm 0.42, T_{walls} = 1.0, \delta s = 1/100, \delta t = 10^{-4})$

B. Piaud, S. Blanco, R. Fournier, V. E. Ambruş and V. Sofonea, DSFD 2012, Bangalore (India) DSMC results kindly provided by Professor Henning Struchtrup (University of Victoria, Canada)

Couette flow : HLB(4;10,10,10) simulation results 2/2

Couette flow at Kn = 0.01, Kn = 0.1 and Kn = 0.5. Stationary profiles recovered with N = 4 and Q = 10: transversal (left) and longitudinal (right) heat fluxes. ($u_{walls} = \pm 0.42$, $T_{walls} = 1.0$, $\delta s = 1/100$, $\delta t = 10^{-4}$)

B. Piaud, S. Blanco, R. Fournier, V. E. Ambruş and V. Sofonea, DSFD 2012, Bangalore (India) DSMC results kindly provided by Professor Henning Struchtrup (University of Victoria, Canada)

Comparison BGK - Shakhov (Kn = 0.05, 0.10 and 0.50)

large *SLB* velocity sets are required to ensure good accuracy for Kn > 0.10 bad news : *SLB*(6; 22, 22, 13) is needed at Kn = 0.50 (walls $\perp x$ axis)

for Kn > 0.1 the simplified collision term (single relaxation time) is no longer appropriate !! also observed by other authors : L.Mieussens and H.Struchtrup, Physics of Fuids **16** (2004) 2797

V.E.Ambruş and V. Sofonea

LB models for microfluidics

June, 2013 – Toulouse 22 / 49

SLB(6;22,L,13) models : effect of quadrature order L

velocity and temperature profiles converge when increasing L (even or odd) SLB models with even values of L give better results

V.E.Ambruş and V. Sofonea

LB models for microfluidics

SLB(6;K,22,13) models : effect of quadrature order K

temperature profiles converge when increasing K (even or odd) SLB models with even values of K give better results

SLB models : convergence of temperature profiles

 $\Rightarrow \text{lower quadrature orders may be used when Kn} \rightarrow 0$ K = L = even (z axis perpendicular to the wall)

HLB versus SLB : effect of quadrature order Q

convergence of the temperature value in the center of the channel half space quadratures are not exactly recovered with HLB or SLB models \Rightarrow high order quadratures are needed to get accurate results for Kn $\gtrsim 0.1$ large Q \Leftrightarrow large velocity sets \Leftrightarrow computational costs + poor numerical stability

Problems with HLB and SLB

- BC's require the recovery of integrals over half of the momentum space (half-moments)
- HLB and SLB cannot recover half-moments
- Example:

$$\int_{p_z>0} d^3p \, e^{-p^2} p_x^l p_y^m p_z^n = \int_0^\infty dp \, p^{l+m+n+2} \int_0^1 d\cos\theta \, (\cos\theta)^n (\sin\theta)^{l+m}$$
$$\times \int_0^{2\pi} d\varphi \, (\cos\varphi)^l (\sin\varphi)^m$$
$$= \frac{1}{4} \int_0^\infty dx \, x^{\frac{1}{2}} e^{-x} x^{\frac{l+m+n}{2}} \int_{-1}^1 d\cos\theta \, \times \text{polynomial in} \, |\cos\theta|$$

- The φ integral is zero for odd l + m
- For full-moments, the θ integral is non-vanishing when l + m + n is even $\Rightarrow p$ integral amenable to Gauss-Laguerre quadrature methods
- Gauss-Legendre does not work on polynomials in $|\cos \theta|!$
- Since odd *l* + *m* + *n* make non-vanishing contributions in half-moments, the Gauss-Laguerre method will have to evaluate integrals of half-integer powers of *p*

V.E.Ambruş and V. Sofonea

Exact recovery of half-space integrals

- Strategy: use an integration method which explicitly deals with half-moments
- Solution: split the 3*D* momentum space into octants:

$$\int d^3 p \, g(\mathbf{p}) = \int_0^\infty dp_x \int_0^\infty dp_y \int_0^\infty dp_z \left[g(+,+,+) + g(+,+,-) + \dots \right],$$
$$g(+,-,-) \equiv g(p_x,-p_y,-p_z), \text{ etc.}$$

• The integration domain [0, ∞) is amenable to the Gauss-Laguerre quadrature method:

$$\int_0^\infty dp_\alpha g(p_\alpha) = \sum_{k=1}^{Q_\alpha} w_{\alpha;k} e^{p_{\alpha,k}} g(p_{\alpha,k})$$

• Now integrals over octants are exactly recovered, giving an accurate implementation of diffuse reflection boundary conditions

V. E. Ambruş and V. Sofonea, paper in preparation

•

Expanding $f^{(eq)}$

• The distribution function is split into $f^{\pm} = f(\pm |p_{\alpha}|)$:

$$\int_{-\infty}^{\infty} dp_{\alpha} f(p_{\alpha}) g(p_{\alpha}) = \sum_{k=1}^{Q_{\alpha}} w_{\alpha,k} e^{p_{\alpha,k}} \left[f^+(p_{\alpha,k}) g(p_{\alpha,k}) + f^-(p_{\alpha,k}) g(-p_{\alpha,k}) \right]$$

• The equilibrium distribution function in LLB models is factorized as:

$$f^{(\text{eq})} = ng_x g_y g_z, \qquad g_\alpha(p_\alpha; u_\alpha, T) = \sqrt{\frac{1}{2\pi mT}} \exp\left[-\frac{(p_\alpha - mu_\alpha)^2}{2mT}\right]$$

• Thus, $g_{\alpha}^{\pm} = g_{\alpha}(|p_{\alpha}|; \pm u_{\alpha}, T)$

E. P. Gross, E. A. Jackson and S. Ziering, Annals of Physics, 1, 141-167 (1957)

LLBE - SLB style expansion of $f^{(eq)}$

• Separate the **u**-dependent part in *g*_{*α*}:

$$g_{\alpha}(p_{\alpha}; u_{\alpha}, T) = F_{\alpha}(p_{\alpha}^{2})E_{\alpha}(p_{\alpha}; u_{\alpha}, T),$$

$$F_{\alpha} = \sqrt{\frac{1}{2\pi mT}}\exp\left(-\frac{p_{\alpha}^{2}}{2mT}\right),$$

$$E_{\alpha} = \exp\left(-\frac{mu_{\alpha}^{2}}{2T}\right)\exp\left(\frac{\mathbf{p} \cdot \mathbf{u}}{T}\right),$$

• ... and expand *E* up to order *N* in powers of **u**:

$$E^{N} = \sum_{j=0}^{\lfloor N/2 \rfloor} \frac{1}{j!} \left(-\frac{mu_{\alpha}^{2}}{2T} \right)^{j} \sum_{r=0}^{N-2j} \frac{1}{r!} \left(\frac{p_{\alpha}u_{\alpha}}{T} \right)^{r}$$

- Shortcomings:
 - The half-moments are generally non-polynomial functions of **u**
 - A large number of quadrature points is required for *N*'th order accuracy (more on this later)

Half-moments of $f^{(eq)}$

• General half-moments:

. . .

$$M_{0} = \int_{0}^{\infty} \frac{dp}{\sqrt{2\pi mT}} \exp\left[-\frac{(p-mu)^{2}}{2mT}\right] = \frac{1}{2}\left[1 + \operatorname{erf}\left(\frac{mu}{\sqrt{2mT}}\right)\right],$$
$$M_{1} = \int_{0}^{\infty} \frac{dp}{\sqrt{2\pi mT}} p \exp\left[-\frac{(p-mu)^{2}}{2mT}\right] = muM_{0} + mT \exp\left(-\frac{mu^{2}}{2T}\right),$$

$$M_{n} = \int_{0}^{\infty} \frac{dp}{\sqrt{2\pi mT}} p^{n-1}(p - mu + mu) \exp\left[-\frac{(p - mu)^{2}}{2mT}\right]$$

= $muM_{n-1} + mT(n-1)M_{n-2}.$

• Now for Couette at equilibrium: $\mathbf{u} = (0, u_y, 0)$, and the diffuse reflection BCs only need half-moments along the *x* axis:

$$M_{x,0} = \frac{1}{2}, \qquad M_{x,1} = mT$$

• In general, at the boundary, $\mathbf{u} \cdot \boldsymbol{\chi} = 0$, so a series expansion of *E* should still work

LLBE - expansion of F_{α}

• Expand F_{α} with respect to $L_{\ell}(p_{\alpha})$:

$$F_{\alpha} = \sqrt{\frac{1}{2\pi mT}} \exp\left(-\frac{p_{\alpha}^2}{2mT}\right) = e^{-|p_{\alpha}|} \sum_{\ell=0}^{Q_{\alpha}-1} \mathcal{F}_{\alpha,\ell}(T) L_{\ell}(|p_{\alpha}|)$$

• Use the explicit form of the Laguerre polynomials:

$$L_{\ell}(p) = \sum_{s=0}^{\ell} {\ell \choose s} \frac{(-p)^s}{s!},$$

• ...and the orthogonality relation:

$$\int_0^\infty dp \, e^{-p} L_\ell(p) L_{\ell'}(p) = \delta_{\ell\ell'},$$

• ...to calculate $F_{\alpha,k}$:

$$\mathcal{F}_{\alpha,\ell} = \frac{1}{2\sqrt{\pi}} \sum_{s=0}^{\ell} {\ell \choose s} \frac{(-1)^s}{s!} (2mT)^{s/2} \Gamma\left(\frac{s+1}{2}\right)$$

$LLBE(N; Q_x, Q_y, Q_z)$

• (Half-)Moments required for *N*′th order accuracy:

$$\int_{-\infty}^{\infty} dp_{\alpha} F_{\alpha} E_{\alpha} P(p_{\alpha}) = \sum_{\ell=0}^{Q_{\alpha}-1} \mathcal{F}_{\alpha,\ell} \int_{0}^{\infty} dp_{\alpha} e^{-p_{\alpha}} L_{\ell}(p_{\alpha}) \times [E^{N}(p_{\alpha};u_{\alpha})P(p_{\alpha}) + E^{N}(p_{\alpha};-u_{\alpha})P(-p_{\alpha})]$$

- Since $L_{\ell}(p_{\alpha})$ is orthogonal on $p_{\alpha}^{n < \ell}$, $Q_{\alpha} > 2N$ for N'th order accuracy
- The polynomial part in the integrand is of order $Q_{\alpha} + 2N > 4N$
- The Gauss-Laguerre quadrature method requires at least $Q_{\alpha}/2 + N + 1$ quadrature points
- Solution: Use $Q_{\alpha} > 2N$ quadrature points $p_{\alpha,k}$, satisfying $L_{Q_{\alpha}}(p_{\alpha},k) = 0$

$LLBE(N; Q_x, Q_y, Q_z)$ - velocity set

• (Half-)Moments of *f*:

$$\int_{-\infty}^{\infty} dp_{\alpha} f(p_{\alpha}) g(p_{\alpha}) \to \sum_{k=1}^{Q_{\alpha}} e^{p_{\alpha,k}} w_{\alpha,k} [f(p_{\alpha,k})g(p_{\alpha,k}) + f(-p_{\alpha,k})g(-p_{\alpha,k})]$$
$$\to \sum_{k=1}^{2Q_{\alpha}} e^{|p_{\alpha,k}|} w_{\alpha,k} f(p_{\alpha,k})g(p_{\alpha,k})$$

• Velocity set and quadrature weights given by:

$$p_{\alpha,k} = \begin{cases} k' \text{th root of } L_{Q_{\alpha}} & 1 \le k \le Q_{\alpha}, \\ -p_{\alpha,k-Q_{\alpha}} & Q_{\alpha} < k \le 2Q_{\alpha}, \end{cases}$$
$$w_{\alpha,k} = \begin{cases} \frac{p_{\alpha,k}}{(Q_{\alpha}+1)^2 \left[L_{Q_{\alpha}+1}(p_{\alpha,k})\right]^2} & 1 \le k \le Q_{\alpha}, \\ w_{\alpha,k-Q_{\alpha}} & Q_{\alpha} < k \le 2Q_{\alpha}. \end{cases}$$

LLBE(N; Q_x , Q_y , Q_z) - discretisation of **p**

• In the linearised collision term approximation, the exponential $e^{-p_{\alpha}}$ and the quadrature weights $w_{\alpha,k}$ can be absorbed into f_{ijk} and $f_{ijk}^{(eq)}$:

$$\begin{split} f_{ijk}^{(\text{eq})} &= ng_{x,i}g_{y,j}g_{z,k}, \\ g_{\alpha,k} &= E^N(p_{\alpha,k};u_\alpha,T)F_{\alpha,k}, \\ F_{\alpha,k} &= w_{\alpha,k}\sum_{s=0}^{Q_\alpha-1}\frac{(-1)^s}{\sqrt{\pi s!}}(2mT)^{\frac{s}{2}}\Gamma\left(\frac{s+1}{2}\right)\mathcal{L}_s^{Q_\alpha}(p_{\alpha,k}), \\ \mathcal{L}_s^{Q_\alpha}(p_{\alpha,k}) &= \sum_{\ell=s}^{Q_\alpha-1}\binom{\ell}{s}L_\ell(p_{\alpha,k}) \end{split}$$

• Thus, the moments of *f* are approximated using:

$$\int d^3pf \, p_x^l p_y^m p_z^n \to \sum_{i=1}^{2Q_x} \sum_{j=1}^{2Q_y} \sum_{k=1}^{2Q_z} f_{ijk} p_{x,i}^l p_{y,j}^m p_{z,k}^n.$$

• Minimal order of order N has $8(2N + 1)^3$ momentum vectors.

Start again - alternative expansion of $f^{(eq)}$

• Expand g_{α} with respect to $L_{\ell}(p_{\alpha})$:

$$g_{\alpha} = \sqrt{\frac{1}{2\pi mT}} \exp\left(-\frac{(p_{\alpha} - mu_{\alpha})^2}{2mT}\right) = e^{-|p_{\alpha}|} \sum_{\ell=0}^{Q_{\alpha}-1} \mathcal{G}_{\alpha,\ell}(u_{\alpha},T) L_{\ell}(|p_{\alpha}|).$$

- The $p_{\alpha} = \pm |p_{\alpha}|$ are manifestly treated separately
- \mathcal{G}_{α} can be calculated using the orthogonality of $L_{\ell}(p_{\alpha})$ (ask me if you want to see the details!):

$$\begin{aligned} \mathcal{G}_{\alpha,k} &= \sum_{s=0}^{k} \binom{k}{s} \frac{(-1)^{s}}{2} \left(\frac{mT}{2} \right)^{\frac{s}{2}} \left[(1 + \operatorname{erf} z) P_{s}(z) + \frac{2}{\sqrt{\pi}} e^{-z^{2}} P_{s}^{*}(z) \right], \\ P_{s}^{*}(z) &= \sum_{j=0}^{s-1} \binom{s}{j} P_{j}(z) i^{s-j-1} P_{s-j-1}(iz), \\ P_{s}(z) &= e^{-z^{2}} \frac{d^{s}}{dz^{s}} e^{z^{2}}. \end{aligned}$$

LLBN(Q_x , Q_y , Q_z) - discretisation of **p**

• Moments of $f^{(eq)}$:

$$\int_{-\infty}^{\infty} dp_{\alpha} g_{\alpha} P(p_{\alpha}) = \sum_{\ell=0}^{Q_{\alpha}-1} \int_{0}^{\infty} dp_{\alpha} e^{-p_{\alpha}} L_{\ell}(p_{\alpha}) \\ \times [\mathcal{G}_{\alpha,\ell}(u_{\alpha},T)P(p_{\alpha}) + \mathcal{G}_{\alpha,\ell}(-u_{\alpha},T)P(-p_{\alpha})]$$

- The minimum value of Q_{α} for *N*'th order accuracy is N + 1 (due to the orthogonality properties of $L_{\ell}(p_{\alpha})$)
- The series expansion of $f^{(eq)}$ is of order Q_{α} in p_{α} , rather than $Q_{\alpha} + N$, so only $Q_{\alpha} > N$ points needed for the Gauss-Laguerre quadrature.
- Discretization performed similarly to LLBE:
 - p_{α} , *k* are roots of $L_{Q_{\alpha}}$ (for $k \leq Q_{\alpha}$)
 - An exact copy needed for the negative semi-axes

LLBN(N; Q_x , Q_y , Q_z) - discretisation of $f^{(eq)}$

• In the linearised collision term approximation, the exponential $e^{-p_{\alpha}}$ and the quadrature weights $w_{\alpha,k}$ can be absorbed into f_{ijk} and $f_{ijk}^{(eq)}$:

$$\begin{split} f_{ijk}^{(\text{eq})} &= ng_{x,i}g_{y,j}g_{z,k}, \\ g_{\alpha,k} &= w_{\alpha,k} \sum_{s=0}^{Q_{\alpha}-1} \frac{(-1)^{s}}{2s!} \left(\frac{mT}{2}\right)^{\frac{s}{2}} \mathcal{L}_{s}^{Q_{\alpha}}(p_{\alpha,k}) \left[(1 + \text{erf}\zeta_{\alpha})P_{s}(z) + \frac{2}{\sqrt{\pi}}e^{-z^{2}}P_{s}^{*}(z) \right], \\ P_{s}^{*}(z) &= \sum_{j=0}^{s-1} {s \choose j} P_{j}(z)i^{s-j-1}P_{s-j-1}(iz), \qquad P_{s}(z) = e^{-z^{2}} \frac{d^{s}}{dz^{s}}e^{z^{2}}. \end{split}$$

• Thus, the moments of *f* are approximated using:

$$\int d^3pf \, p_x^l p_y^m p_z^n \to \sum_{i=1}^{2Q_x} \sum_{j=1}^{2Q_y} \sum_{k=1}^{2Q_z} f_{ijk} p_{x,i}^l p_{y,j}^m p_{z,k}^n.$$

• Minimal model of order N has $8(N + 1)^3$ momentum vectors (more than 8 times less than LLBE at the same N!).

LLBE vs SLB: Temperature profile in Couette flow at Kn=0.5

LLBN vs SLB: Temperature profile in Couette flow at Kn=0.5

LLBE vs SLB: Velocity profile in Couette flow at Kn=0.5

LLBE(2; 5, 5, 5) is OK for u_y .

 $(u_{walls}=\pm 0.42$, $T_{walls}=1.0$, $\delta s=1/100$, $\delta t=10^{-4}$)

LLBN vs SLB: Velocity profile in Couette flow at Kn=0.5

Q = 4 for BGK and Q = 5 for Shakhov seem to be sufficient for u_y . ($u_{walls} = \pm 0.42$, $T_{walls} = 1.0$, $\delta s = 1/100$, $\delta t = 10^{-4}$)

LLBE vs SLB: Longitudinal heat flux profile in Couette flow at Kn=0.5

LLBN vs SLB: Longitudinal heat flux profile in Couette flow at Kn=0.5

LLBE vs SLB: Longitudinal heat flux in Couette flow at Kn=0.5

LLBN vs SLB: Longitudinal heat flux in Couette flow at Kn=0.5

1

Large Kn explorations using LLBN

- Results obtained at $Q_x = 21$
- At high Kn, BGK and Shakhov behave similarly

$$(u_{walls} = \pm 0.42$$
 , $T_{walls} = 1.0$, $\delta s = 1/100$, $\delta t = 10^{-5}$)

LLB results : Couette flow at Kn=0.5

model LLB(Q, Q, Q) (of order N = Q-1) has 8 × Q³ momentum vectors model SLB(N; K, L, M) (of order N) has K × L × M momentum vectors model HLB(N; Q, Q, Q) (of order N) has Q³ momentum vectors model LLB(7,7,7) (of order N = 6) has 2744 momentum vectors model SLB(6; 22, 22, 12) (of order N = 6) has 6292 momentum vectors model HLB(6; 22, 22, 22) (of order N = 6) has 10648 momentum vectors

Conclusion

- High order Lattice Boltzmann (LB) models derived by Gauss quadrature are appropriate for the investigation of micro-scale fluid flow
- LB models are able to capture microfluidic phenomena : velocity slip, temperature jump, thermal creep (transpiration), heat fluxes
- Good agreement between LB and DSMC results for Couette flow are observed up to Kn=0.5 when using the Shakhov collision term
- LB profiles (temperature, velocity, etc.) are smoother than DSMC profiles
- HLB and SLB models are not appropriate for the implementation of diffuse reflection boundary conditions because the quadratures are considered over the whole space
- LLB models are appropriate to implement the diffuse reflection boundary conditions
- Promising applications of Lattice Boltzmann models: investigation of micro-scale flow and heat transport problems in fluid systems with single or multiple components, with or without phase separation, optimization of micro-scale technological processes