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Lattice Boltzmann modelling

The lattice Boltzmann method is a numerical method for solving the
Boltzmann equation.

The Boltzmann equation is useful when the Knudsen number Kn = A/l is
non-negligible (mezoscopic scale).

At Kn — 0, the Boltzmann equation reduces to the Navier-Stokes-Fourier
equations.

When Kn > 0.01, microfluidics effects become noticeable.

Lattice Boltzmann models provide a way to discretise the momentum
space over which the Boltzmann distribution function is defined.

Gauss-Laguerre quadrature methods can be used to implement diffuse
reflective boundaries.

@ Couette flow is important for testing the validity of numerical models
due to its relative simplicity and to the existence of analytic results.
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Boltzmann Equation

@ Evolution equation of the one-particle distribution function f = f(x, p)

1
of + apa&af = J[f], J describes inter-particle collisions

@ Hydrodynamic moments give macroscopic quantities:

number density: n= f dpf,
locity: S f
velocity: u= — pfp,
temperature: T = L r‘(;1379 f &2 (& = p —mu)
3nm ’ ’
heat flux: q= L r‘cl3pf E2E.
2m?
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Shakhov collision term and macroscopic equations

@ For fluids at Pr = 2/3, the Shakhov collision term must be used:

1

JIf1=- - [ f— e+ S)] , T = % is the relaxation time,
1—Pr &2
Ay (D+2)mT_1]£'q

o (9 is the Maxwell-Boltzmann distribution function:

e &
feo = @rmT)P’2 P (_m—:r) (&=p—mu)

@ Through the Chapman-Enskog expansion, the recovery of the
Navier-Stokes-Fourier equations requires moments of up to order 6 of

f(eq) .
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Boundary conditions for the distribution function

Due to the particle — wall interaction, reflected particles carry some
information that belongs to the wall.

/ / /
bounce back specular reflection diffuse reflection

diffuse reflection the distribution function of reflected particles is identical to the
Maxwellian distribution function f €D (wyan, Tovall)
microfluidics Kn = A/L is non-negligible
= velocity slip ug;p

= temperature jump Tjump
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Diffuse reflection boundary conditions

@ The diffuse reflection boundary conditions require:

f(xW/ P, t) :f(eq)(nW’ Uy, TW) (P "X < 0)/

where Y is the outwards-directed normal to the boundary.

@ The density n,, is fixed by the requirement of zero flux through the

boundary:
f Eofp-x) =~ f Epfe (p - x).
p-x>0 p-x<0

o Diffuse reflection requires the computation of integrals of {9 over half of
the momentum space.
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Application: Couette flow

e flow between parallel plates moving

along the y axis
xr=—xp =05

the x axis

XA U
Z
R
Yy
< i

Simulations done using PETSc 3.1 at:

Velocity of plates: u; = —u, = 0.42
Temperature of plates: T, = T; = 1.0

Diffuse reflection boundary conditions on

@ NANOSIM cluster - collaboration

with Prof. Daniel Vizman, West
University of Timisoara, Romania

IBM-SP6, CINECA - collaboration
with Prof. Giuseppe Gonnella,
University of Bari, Italy

MATRIX system, CASPUR -
collaboration with dr. Antonio
Lamura, IAC-CNR, Section of Bari,
Italy

BlueGene cluster - collaboration with
Prof. Daniela Petcu, West University
of Timisoara, Romania
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Cartesian and spherical coordinates: HLB and SLB

@ HLB is based on Hermite quadratures on 10775
the Cartesian axes:
1.077
- S (eq
(eq) n eq) n 1.0765 |
f dpafppt = ) fVP" .
e k=1 E 1.076 |
@ SLB recovers moments using spherical § woms |’
coordinates: ™
1.075 £ y SLB(6:8,8,15) swsraseses
A e —
. 1 - 78 SN
2 e 1.0745 £ HLB(6512,'12',1'2) o %%
f p* dp f d cos 6 f dpfeOP(p, 0, ) /e
’ - Z O( ) 1'07401 0‘05 6 o‘os 0.1
_) fk]l P(pk, le gOk)' z coordinate

kji

e HLB converges from
below, SLB from above,
but they struggle to meet.

@ HLB and SLB are great at recovering
full-space moments, but struggle with
half-space integrals.
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LLB models and half-space integrals

@ Split the momentum space into octants.

@ Recover integrals of {9 over each octant separately:

dpaf(eq)(Pa) P(pa) = dp, [f(eq)(Pa)P(Pa) +f(eq)(_Pa)P(_pa)] '
_ 0

(6 9)

@ The integration domain [0, o) is good for Gauss-Laguerre quadrature
methods:

00 Qa
f dl?a e_p“P(Pa) — Z ka(Poc,k)°
0 k=1

@ The quadrature points p, i are the Q, roots of the Laguerre polynomial

LQaZ
Lo, (Ipaxl) = 0.
@ The quadrature weights wy are determined by quadrature rules:
|p0¢,k|
Wok = >
(Qu + 12| Lo, +1(Ipa)]
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Expansion of {9

@ Factorise @ on each coordinate axis:

feU =ng: 8y g,

where
1

2mT % [_ omT

@ Write g, in terms of the Laguerre polynomials:

a = ga(pa} Uy, T) =

N
Sa =€ Y Gor(tta, T)Le(Ipal)
=0

@ The series is truncated at order N for N’th order accuracy due to
orthogonality properties of the Laguerre polynomials.
@ The coefficients can be calculated:

1 no (1) (€) (mTy2 2
Qa,5=§; s! (s)(m?)

(1 + erfl,)Ps(C,) + ﬁe{iz’;(cw ,

where P,(C,) and P;(C,) are polynomials of order s in C, = u, Vm/2T.
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Discretisation of the momentum space

@ The Gauss-Laguerre quadrature gives:

00 2Qq
f dpaf(pa)Pn(pa) — Z elpa'k|wa,kf(pa,k)Pn(poc,k)-
- k=1

@ The 2Q, momenta and corresponding weights are given by:

kK'throotof Lo, k< Q,, [Pl
Pak = _ k>Q 7 Wy k = 5
Pak-Q, a (Qu + 1)? [LQa+1(|pa,k|)]

e Defining ¢, = wy e P*le, (v, 1), the moments of f are replaced by:
& &8a, : Sa\Pa, p y

2Q, 2Qy 20,
[@prpi@ = Y Y, Y faPuoi  fix = nguiguigis

i=1 j=1 k=1

@ The Gauss quadrature rules require Q, > N = 8(N + 1)° momentum
vectors required for N’th order accuracy.
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LLBN vs SLB:

Numeric results for Couette flow at Kn=0.5

Temperature profile Transversal heat flux
1.048 — . . . . 0.06 —— . . . .
ey SLB(6;22,22,16) —
1.046 - LLBN(5,5,5) e
0.04 S LLBN(6,6,6) -
I ™ LLBN(7,7,7) =
o 1.044 002 | (7,7,7)
g 1042} _
) (o3 0
S 104 SLB(6;22,22,16) —
o) SLB(6;21,22,13) ——— 002 |
1.038 ¢ LLBN(5,5,5) -
LLBN(20’20’20) ...............
1.036 -0.04 ¢
1.034 L— ' ' ' ' -0.06 — ' ' ' '
04 -0.2 0 02 04 04 -02 0 02 04
X coordinate X coordinate

Q =7 (N = 6) needed to recover the NSF equations in the Shakhov model.
(Ugants = +0.42 , Toans = 1.0, 55 =1/100 , 6t =10~ , Kn = 0.5)
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Large Kn: ballistic regime

If Kn is large, the collision term goes to 0 and f is determined by boundary
conditions:

fballistiC(p) — f(eq)(nb/ Uy, Tb) pz > 0
f(eq)(ntl Uy, Tt) pz < O

The moments are:

VT — VT, 8T Tb muz,
Uy =—Uy t b/ qz = —Nn t (\/— \/_) >
VT + T, " (VT - VT
Amu> —5 2mu?,
T =~T:Ty,|1+ @ ), = 2nu, N 1Ty | = ]
T ) e
N I Uy qz Ty
1 | 2.910987 | -0.218165 | -6.305084 | 1.414574
2 | 3.205209 | -0.218187 | -11.40061 | 3.700024
3 | 3.205209 | -0.218187 | -11.02230 | 3.477877
20 | 3.205209 | -0.218187 | -11.02229 | 3.477872
Analytic 3.205209 | -0.218187 | -11.02227 | 3.477866
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Conclusion

@ The Laguerre (LLB) models exhibit good convergence at non-negligible
Kn.

@ The LLB models recover the ballistic regime very well, even at large
temperature differences, where HLB/SLB fail.

@ The LLB models are more efficient than HLB/SLB at large enough Kn.

e The LLB models exactly recover half-space fluxes of ¥ required for the
implementation of diffuse reflection boundary conditions.

@ This work is supported by a grant of the Romanian National Authority
for Scientific Research, CNCS-UEFISCD], project number
PN-II-ID-PCE-2011-3-0516.
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