LATTICE BOLTZMANN METHOD FOR MODELLING BIOPRINTED TISSUES

Y fiscoti

PN-II-ID-PCE-2011-3-0516

Artur Cristea ${ }^{1}$, Adrian Neagu ${ }^{2,3}$
 ${ }^{1}$ Romanian Academy-Timisoara Division
 ${ }^{2}$ Victor Babes University of Medicine and Pharmacy Timisoara
 ${ }^{3}$ University of Missouri, Columbia, MO, USA

Differential Adhesion Hypothesis (DAH) ${ }^{1}$: cells seek partners to interact with

Tissue fusion is essential in developmental biology and tissue engineering

In vitro, aggregates of Chinese Hamster Ovary (CHO) cells fuse².
Lattice Boltzmann (LB) simulations of droplet fusion ${ }^{4}$: the contact area describes the rate of fusion

Cell cylinder printing ${ }^{5}$ vs. LB simulations ${ }^{6}$

LB simulation time step corresponds to about 5.184 seconds in experiments.

How does a printing defect evolve? ${ }^{6}$

Lattice Boltzmann model with flux limiters for two species ${ }^{3}$

$$
\begin{aligned}
& f_{i, j}^{\sigma, n+1}=f_{i, j}^{\sigma, n}-C F L^{\sigma}\left[F_{i, j+1 / 2}^{\sigma, n}-F_{i, j-1 / 2}^{\sigma, n}\right]- \\
& \longrightarrow-\frac{1}{\tau^{\sigma}}\left[f_{i}^{\sigma}-f_{i}^{\sigma, e q}\right]+\frac{\mathbf{F}^{\sigma}(\mathbf{r}, t)}{m^{\sigma} \chi\left(c^{\sigma}\right)^{2}} \cdot\left[\mathbf{e}_{i}^{\sigma}-\mathbf{u}(\mathbf{r}, t)\right] f_{i}^{\sigma, e q} \\
& \text { Force term }
\end{aligned}
$$

BGK collision term

$$
\begin{aligned}
& \mathbf{F}^{\sigma}=-\sum_{\lambda} \omega^{\sigma \lambda} \nabla X^{\lambda}+\text { surfacetensionterms } \quad X^{\sigma}(\mathbf{r}, t)=\frac{n^{\sigma}}{n^{0}+n^{1}} \\
& F_{i, j+1 / 2}^{\sigma, n}=f_{i, j}^{\sigma, n}+\frac{1}{2}\left(1-C F L^{\sigma}\right)\left[f_{i, j+1}^{\sigma, n}-f_{i, j}^{\sigma, n}\right] \psi\left(\theta_{i, j}^{\sigma, n}\right) \quad \text { Flux limiliters terms } \\
& F_{i, j-1 / 2}^{\sigma, n}=F_{i,(j-1)+1 / 2}^{\sigma, n}=f_{i, j-1}^{\sigma, n}+\frac{1}{2}\left(1-C F L^{\sigma}\right)\left[f_{i, j}^{\sigma, n}-f_{i, j-1}^{\sigma, n}\right] \psi\left(\theta_{i, j-1}^{\sigma, n}\right)
\end{aligned}
$$

The time constant of fusion is proportional to the relaxation time and should be set in relation with the known values of viscosity and surface tension ${ }^{4}$

$$
\begin{aligned}
& t_{f} \propto \frac{\eta}{\gamma} R_{0} \\
& \forall \\
& \frac{\eta}{\gamma}=\frac{\eta_{0}}{\gamma_{0}}(1+b \tau) \\
& \\
& \Downarrow \\
& \tau^{\prime}=\frac{\frac{\eta^{\prime}}{\gamma^{\prime}}}{\frac{\eta}{\gamma}} \tau+\frac{1}{b}\left(\frac{\frac{\eta^{\prime}}{\gamma^{\prime}}}{\frac{\eta}{\gamma}}-1\right)
\end{aligned}
$$

Post-printing evolution of a rectangular stack of cell cylinders leads to a perfusable tissue ${ }^{6}$

Perspectives
\triangleleft Build simulation programs for predicting the shape evolution of heterotypic bioprinted tissue constructs in 3D.
\triangleleft Account for viscoelastic behavior.
\diamond Take into account cell division and cell death.

References

1.Foty et al. 1996. Development 122:1611; Forgacs G, Newman S A. Biological Physics of the Developing Embryo, Cambridge University Press, New York, 2005
2.Jakab K et al. 2008. Dev Dyn. 237:2438.
3.Cristea A, Sofonea V, 2004. CEJP 2:382; Cristea A, 2006. IJMPC 17:1191
4.Cristea A, Neagu A, Sofonea V, 2011. Biorheology 48:185
5.Norotte C et al. 2009. Biomaterials 30:5910
6.Cristea A, Neagu A, - submitted

