Lattice Boltzmann models based on half-space quadratures and the corner transport upwind method

Victor E. Ambruș and Victor Sofonea

Center for Fundamental and Advanced Technical Research, Romanian Academy Bd. Mihai Viteazul 24, R – 300223 Timişoara, Romania

DSFD 2014, Paris, 29/07/2014

- Moments of $f^{(eq)}$ and order of a LB model.
- Boundary conditions, the ballistic regime and importance of half-space moments.
- Numerical schemes for off-lattice velocity sets: projection and corner-transport upwind schemes.
- Half-space quadratures: Laguerre (LLB) and half-range Hermite (HHLB) based LB models.
- Numerical validation of HHLB for Couette flow: DSMC comparison at small Kn and agreement with analytic results in the ballistic regime.
- Implementation of force terms: temperature dip in Poiseuille flow at small Kn and analysis of the ballistic regime.

Boltzmann Equation

• Evolution equation of the one-particle distribution function $f \equiv f(\mathbf{x}, \mathbf{p})$

$$\partial_t f + \frac{1}{m} \mathbf{p} \cdot \nabla f + \mathbf{F} \cdot \nabla_{\mathbf{p}} f = J[f], \qquad J \text{ describes inter-particle collisions.}$$

• Hydrodynamic moments of order *N* give macroscopic quantities:

$$N = 0: \text{ number density:} \quad n = \int d^3 p f,$$

$$N = 1: \text{ velocity:} \qquad \mathbf{u} = \frac{1}{nm} \int d^3 p f \mathbf{p},$$

$$N = 2: \text{ temperature:} \qquad T = \frac{2}{3n} \int d^3 p f \frac{\xi^2}{2m}, \qquad (\xi = \mathbf{p} - m\mathbf{u}),$$

$$N = 3: \text{ heat flux:} \qquad \mathbf{q} = \frac{1}{2m^2} \int d^3 p f \xi^2 \xi.$$

• The Shakhov collision term is used to recover Pr = 2/3 ($\tau = Kn/n$ is the relaxation time):

$$J[f] = -\frac{1}{\tau} \left[f - f^{(\text{eq})}(1 + \mathbb{S}) \right], \qquad \mathbb{S} = \frac{1 - \Pr}{nT^2} \left[\frac{\xi^2}{(D+2)mT} - 1 \right] \xi \cdot \mathbf{q},$$

Chapman-Enskog expansion and moments of $f^{(eq)}$

• For flows close to the equilibrium state, the Chapman-Enskog expansion gives *f* as a series in powers of Kn:

$$f = f^{(0)} + \operatorname{Kn} f^{(1)} + \operatorname{Kn}^2 f^{(2)} + \dots,$$

$$\partial_t = \partial_{t_0} + \operatorname{Kn} \partial_{t_1} + \operatorname{Kn}^2 \partial_{t_2} + \dots,$$

$$I[f] = O(\operatorname{Kn}^{-1}).$$

- Navier-Stokes-Fourier regime recovered at *O*(Kn).
- Solving the Boltzmann equation for each power of Kn gives:

$$f^{(0)} = f^{(eq)}, \qquad f^{(n>0)} = P(\mathbf{p}) \times f^{(eq)},$$

where $P(\mathbf{p})$ is a polynomial in \mathbf{p} .

• The recovery of the energy equation at Navier-Stokes-Fourier level requires moments of $f^{(eq)}$ of order N = 6 when the Shakhov collision term is used.

Boundary conditions for the distribution function

Due to the particle – wall interaction, reflected particles carry some information that belongs to the wall.

bounce back

specular reflection

diffuse reflection

diffuse reflection the distribution function of *reflected* particles is identical to the Maxwellian distribution function $f^{(eq)}(\mathbf{u}_{wall}, T_{wall})$ microfluidics $Kn = \lambda/L$ is non-negligible \Rightarrow velocity slip u_{slip} \Rightarrow temperature jump T_{jump}

 \rightarrow temperature jump T_{jur}

Diffuse reflection and half-space moments

• The diffuse reflection boundary conditions require:

$$f(\mathbf{x}_{\mathrm{w}},\mathbf{p},t) = f^{(\mathrm{eq})}(n_{\mathrm{w}},\mathbf{u}_{\mathrm{w}},T_{\mathrm{w}}) \qquad (\mathbf{p}\cdot\chi<0),$$

where χ is the outwards-directed normal to the boundary.

• The density n_w is fixed by imposing zero flux through the boundary:

$$\int_{\mathbf{p}\cdot\chi>0} d^3p f\left(\mathbf{p}\cdot\chi\right) = -\int_{\mathbf{p}\cdot\chi<0} d^3p f^{(\text{eq})}\left(\mathbf{p}\cdot\chi\right).$$

- Diffuse reflection requires the computation of integrals of *f*^(eq) over half of the momentum space.
- Consider the ballistic limit of the Couette flow:

$$f^{\text{ballistic}}(\mathbf{p}) = \begin{cases} f^{(\text{eq})}(n_b, \mathbf{u}_b, T_b) & p_z > 0\\ f^{(\text{eq})}(n_t, \mathbf{u}_t, T_t) & p_z < 0 \end{cases}.$$

• System enclosed in diffuse-reflective boundaries require the recovery of half-space moments.

Off-lattice LB models: numerical schemes

- In the projection scheme, $\mathbf{p} \cdot \nabla = p_x \partial_x + p_y \partial_y + p_z \partial_z$.
- Only neighbours along the *x*, *y* and *z* axes are used.
- Corner transport upwind*: information moves according to the direction of p from all surrounding cells (i.e. including diagonally, as below).
- Stability condition: $\frac{\delta t}{\delta s} \max_{k,\alpha} \{ |p_{k,\alpha}| \} \le 1$.

Images from T. Biciușcă, A. Horga, V. Sofonea, DSFD 2014 on Friday.

* R. J. Leveque, SIAM J. Numer. Anal. 33 (2), 627 (1996)

Half-space quadratures

• Replace integrals by quadrature sums ($s \le N$):

$$\int_{\mathbf{p}\cdot\chi} d^3p f^{(\text{eq})} P_s(\mathbf{p}) = \sum_{i,j,k} f^{(\text{eq})}_{ijk} P_s(\mathbf{p}_{ijk}),$$

 Equality guaranteed if *f*^(eq) is expanded in terms of polynomials orthogonal on the semi-axis:

$$f^{(\text{eq})} = ng_x g_y g_z, \qquad g_\alpha = \omega(\overline{p}_\alpha) \sum_{\ell=0}^{Q_\alpha - 1} \mathcal{G}_{\alpha,\ell}(\sigma_\alpha) \phi_\ell(\overline{p}_\alpha),$$

where $\overline{p}_{\alpha} = p_{\alpha}/p_{0,\alpha}$, $\sigma_{\alpha} = p_{\alpha}/|p_{\alpha}|$ and

- LLB: $\omega(\overline{p}_{\alpha}) = e^{-|\overline{p}_{\alpha}|},$ HHLB: $\omega(\overline{p}_{\alpha}) = \frac{1}{\sqrt{2\pi}} e^{-\overline{p}_{\alpha}^{2}/2},$ $\phi_{\ell}(\overline{p}_{\alpha}) = L_{\ell}(|\overline{p}_{\alpha}|),$ $\phi_{\ell}(\overline{p}_{\alpha}) = \mathfrak{h}_{\ell}(|\overline{p}_{\alpha}|).$
- The expansion coefficients can be calculated as:

$$\mathcal{G}_{\alpha,\ell} = \sigma_{\alpha} \int_{0}^{\sigma_{\alpha}\infty} dp_{\alpha} g_{\alpha} \phi(\overline{p}_{\alpha}).$$

Discretisation of momentum space

The velocity set is determined by the Q_{α} roots x_k of $\phi_{Q_{\alpha}}(x)$:

$$p_{\alpha,k} = \begin{cases} x_k p_{0,\alpha} & 1 \le k \le Q_\alpha, \\ -x_k p_{0,\alpha} & Q_\alpha < k \le 2Q_\alpha. \end{cases}$$

Ratio *r* of greatest to lowest root:

Ratio of r_{LLB} to r_{HHLB}

The roots of the half-range Hermite polynomials (HHLB) are twice more compact than for the Laguerre polynomials (LLB).

Half-range Hermite polynomials

- ... satisfy the orthogonality relation*: $\frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-x^2/2} \mathfrak{h}_{\ell}(x) \mathfrak{h}_{\ell'} dx = \delta_{\ell\ell'}$.
- First two polynomials can be determined using Gram-Schmidt (G-S):

$$\mathfrak{h}_0 = \sqrt{2}, \qquad \mathfrak{h}_1 = \frac{2 - x\sqrt{2\pi}}{\sqrt{\pi - 2}}.$$

• G-S impractical at large ℓ . Alternatively, recursion can be used:

$$\mathfrak{h}_{\ell+1}(x) = (a_{\ell}x + b_{\ell})\mathfrak{h}_{\ell}(x) + c_{\ell}\mathfrak{h}_{\ell-1}(x),$$
$$a_{\ell} = A_{\ell+1}/A_{\ell}, \qquad b_{\ell} = -a_{\ell}\frac{\mathfrak{h}_{\ell}(0)^2}{\sqrt{2\pi}}, \qquad c_{\ell} = -\frac{a_{\ell}}{a_{\ell-1}},$$

where A_{ℓ} is the coefficient of the leading order term in \mathfrak{h}_{ℓ} .

• The unknown $A_{\ell+1}$ (hence, a_{ℓ}) can be found using:

$$a_{\ell} = -\left[2\ell + 1 - \frac{\mathfrak{h}_{\ell}^2(0)}{2\pi} - \frac{1}{a_{\ell-1}^2}\right]^{-1/2},$$

• Recursion method more accurate than G-S but still unstable: it starts breaking down at $\ell = 15$.

Application: Couette flow*

- Flow between parallel plates moving along the *y* axis
- $x_t = -x_b = 0.5$
- Velocity of plates: $u_t = -u_b = 0.42$
- Temperature of plates: $T_b = T_t = 1.0$
- Diffuse reflection on *x* axis
- Ballistic regime[†] (Kn $\rightarrow \infty$) solution:

$$f_{\text{ballistic}}(\mathbf{p}) = \begin{cases} f^{(\text{eq})}(\mathbf{p}; n_b, \mathbf{u}_b, T_b) & p_x > 0\\ f^{(\text{eq})}(\mathbf{p}; n_t, \mathbf{u}_t, T_t) & p_x < 0 \end{cases}$$
$$n_b = n \frac{2\sqrt{T_t}}{\sqrt{T_t} + \sqrt{T_b}}, \qquad n_t = n \frac{2\sqrt{T_b}}{\sqrt{T_t} + \sqrt{T_b}}.$$

Simulations done using PETSc 3.1 on BlueGene cluster - collaboration with Prof. Daniela Petcu, West University of Timișoara, Romania.

• Half-order moments required to capture the discontinuous character of *f*.

* V. E. Ambruș, V. Sofonea, Phys. Rev. E 89, 041301(R) (2014)

⁺ I. A. Graur and A. P. Polikarpov, Heat Mass Transf. 46, 237 (2009) 237 V. E. Ambruş and V. Sofonea (Romanian Academy) Half-space quadratures LB models DSFD 20

Half-space vs full-space: Temperature profile for Couette flow at Kn=0.5

Temperature at the centre of the channel

Temperature across the channel

Temperature profile across the channel in Couette flow: comparison between full-space (HLB and SLB) and half-space (LLB and HHLB) models.

(
$$u_{walls} = \pm 0.42$$
, $T_{walls} = 1.0$, $\delta s = 10^{-2}$, $\delta t = 10^{-4}$, $Kn = 0.5$)

Comparison with DSMC

Velocities required for 1% accuracy:

Kn	LLB	HHLB
0.1	2744	512
0.5	2744	512
1.0	4096	1000

- DSMC (for Kn = 0.1 and 0.5) vs. LLB (lines) and HHLB (points) at Kn = 0.1, 0.5 and 1.0.
- Discrepancy in temperature profile due to incompatibility between the Shakhov model and the hard-sphere molecules used for DSMC.

Large Kn: ballistic regime

• In the ballistic regime, all moments are constant.

LLB*/HHLB results at $T_b = 1.0$, $T_t = 10.0$ and $u_w = 0.42$:

Model	Velocities	Т	u _y	q_x	q_y
LLB(2, 2, 2)	64	2.910987	-0.218165	-6.305084	1.414574
HHLB(2, 2, 2)	64	1.943523	-0.216613	-2.807558	0.977046
LLB(3, 3, 3)	216	3.205209	-0.218187	-11.40061	3.700024
HHLB(3,3,3)	216	3.205236	-0.218184	-10.45152	2.787300
LLB (4, 4, 4)	512	3.205209	-0.218187	-11.02230	3.477877
HHLB (4, 4, 4)	512	3.205209	-0.218187	-11.02230	3.477871
Analytic		3.205209	-0.218187	-11.02227	3.477866

- Half-range models exactly recover the ballistic regime with 512 velocities.
- LB models based on full-space quadrature break down at large T differences as Kn $\rightarrow \infty$.

* V. E. Ambruș, V. Sofonea, Phys. Rev. E **89**, 041301(R) (2014)

Force term in LLB

- In the Boltzmann equation, the force term involves $\mathbf{F} \cdot \nabla_{\mathbf{p}} f$.
- After discretisation, $\nabla_{\mathbf{p}} f$ has to be replaced with a suitable expansion.
- The EQ (equilibrium) method:

$$\nabla_{\mathbf{p}} f \simeq \nabla_{\mathbf{p}} f^{(\mathrm{eq})} = \frac{\mathbf{p} - m\mathbf{u}}{mT} f^{(\mathrm{eq})},$$

which works if the fluid is not far from equilibrium (small Kn).

• The SC (Shan-Chen) method[†]:

$$f = w(\mathbf{p}) \sum_{\ell,m,n} \mathcal{F}_{\ell m n} \phi_{\ell}(p_x) \phi_m(p_y) \phi_n(p_z),$$
$$\nabla_{p_{\alpha}} f = w(\mathbf{p}) \sum_{\ell,m,n} \mathcal{F}_{\ell m n}^{(\alpha)} \phi_{\ell}(p_x) \phi_m(p_y) \phi_n(p_z),$$

• The coefficients $\mathcal{F}_{\ell mn}^{(\alpha)}$ for $\nabla_{p_{\alpha}} f$ can be calculated using $\mathcal{F}_{\ell mn}$.

V. E. Ambruș, V. Sofonea, Interfacial Phenomena and heat transfer, with editors.

⁺ N. S. Martys, X. Shan, H. Chen, Phys. Rev. E 58, 6855 (1998).

X. W. Shan, X. F. Yuan, H. D. Chen, J. Fluid. Mech. 550, 413 (2006).

Application: Poiseuille flow

- Flow between parallel stationary plates driven by $\mathbf{a} = (0, a_y, 0)$, with $a_y = 0.1$.
- $x_t = -x_b = 0.5$
- Temperature of plates: $T_b = T_t = 1.0$
- Diffuse reflection on the *x* axis
- Micro-fluidics effects: temperature jump, velocity slip, temperature dip.
- SC required for the temperature dip.
- Analytical results* in the ballistic regime show that
 - *T* is parabolic using SC: $T = T_0 + x^2 \delta T$
 - *T* is flat using EQ.

Simulations done using PETSc 3.4 at BlueGene cluster - collaboration with Prof. Daniela Petcu, West University of Timișoara, Romania.

* V. E. Ambruș, V. Sofonea, Interfacial Phenomena and heat transfer, with editors.

EQ vs SC: Poiseuille flow

Good agreement between EQ and SC at small Kn for *T* and q_y and throughout the Kn range for u_y and q_x . EQ does not recover the temperature dip.

EQ vs SC: dip in Poiseuille flow temperature profile

Temperature dip at Kn > 0.1 requires SC.

1% accuracy achieved by:

Kn	Vel (LLB)	Vel (HHLB)
≤ 0.1	2744	512
0.25	2744	2744
0.5	2744	4096
1.0	4096	4096
∞	2744	2744

Temperature profile across the channel in Poiseuille flow: comparison between EQ (points) and SC (lines) models.

$$(a_y=0.1$$
 , $T_{walls}=1.0$, $\delta s=10^{-2}$, $\delta t=10^{-5})$

EQ vs SC: Ballistic regime

Temperature in the ballistic regime.

EQ method:

SC method:

The SC profile is parabolic, in agreement with *. Analytic results confirm that the SC profile is parabolic[†], while the EQ profile is constant.

* J. Meng, L. Wu, J. M. Reese, Y. Zhang, J. Comp. Phys. **251** (2013) 383.

⁺ V. E. Ambruș, V. Sofonea, Interfacial Phenomena and heat transfer, with editors.

Conclusion

- Corner-transport upwind correctly takes into account propagation of information from neighbouring nodes.
- Half-space moments are crucial for the implementation of diffuse reflection.
- Half-range Hermite polynomials (HHLB) must be generated numerically (no analytic formula). The procedure is not stable for orders > 15.
- HHLB recovers Couette using Shakhov (Pr = 2/3) for Kn ≤ 0.5 with 512 velocities 5 times less than LLB!
- EQ method ($\nabla_{\mathbf{p}} f \sim \nabla_{\mathbf{p}} f^{(eq)}$) cannot recover dip in temperature profile in Poiseuille flow, but SC can.
- Agreement of EQ and SC in Poiseuille flow in the ballistic regime with analytic results. EQ cannot recover the parabolic profile of *T* recovered by SC at large Kn.
- This work is supported through grants from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, having project numbers PN-II-ID-PCE-2011-3-0516 and PN-II-ID-JRP-2011-2-0060.