Lattice Boltzmann models based on half-space quadratures and the corner

 transport upwind method
Victor E. Ambruș and Victor Sofonea

Center for Fundamental and Advanced Technical Research, Romanian Academy
Bd. Mihai Viteazul 24, R - 300223 Timişoara, Romania

DSFD 2014, Paris, 29/07/2014

Outline

- Moments of $f^{(\mathrm{eq})}$ and order of a LB model.
- Boundary conditions, the ballistic regime and importance of half-space moments.
- Numerical schemes for off-lattice velocity sets: projection and corner-transport upwind schemes.
- Half-space quadratures: Laguerre (LLB) and half-range Hermite (HHLB) based LB models.
- Numerical validation of HHLB for Couette flow: DSMC comparison at small Kn and agreement with analytic results in the ballistic regime.
- Implementation of force terms: temperature dip in Poiseuille flow at small Kn and analysis of the ballistic regime.

Boltzmann Equation

- Evolution equation of the one-particle distribution function $f \equiv f(\mathbf{x}, \mathbf{p})$

$$
\partial_{t} f+\frac{1}{m} \mathbf{p} \cdot \nabla f+\mathbf{F} \cdot \nabla_{\mathbf{p}} f=J[f], \quad J \text { describes inter-particle collisions. }
$$

- Hydrodynamic moments of order N give macroscopic quantities:

$$
\begin{array}{lll}
N=0: & \text { number density: } & n=\int d^{3} p f, \\
N=1: & \text { velocity: } & \mathbf{u}=\frac{1}{n m} \int d^{3} p f \mathbf{p}, \\
N=2: & \text { temperature: } & T=\frac{2}{3 n} \int d^{3} p f \frac{\xi^{2}}{2 m^{2}} \quad(\boldsymbol{\xi}=\mathbf{p}-m \mathbf{u}), \\
N=3: & \text { heat flux: } & \mathbf{q}=\frac{1}{2 m^{2}} \int d^{3} p f \xi^{2} \xi .
\end{array}
$$

- The Shakhov collision term is used to recover $\operatorname{Pr}=2 / 3(\tau=\mathrm{Kn} / n$ is the relaxation time):

$$
J[f]=-\frac{1}{\tau}\left[f-f^{(\mathrm{eq})}(1+\mathbb{S})\right], \quad \mathbb{S}=\frac{1-\operatorname{Pr}}{n T^{2}}\left[\frac{\xi^{2}}{(D+2) m T}-1\right] \boldsymbol{\xi} \cdot \mathbf{q},
$$

Chapman-Enskog expansion and moments of $f(\mathrm{eq})$

- For flows close to the equilibrium state, the Chapman-Enskog expansion gives f as a series in powers of Kn :

$$
\begin{aligned}
f & =f^{(0)}+K n f^{(1)}+K n^{2} f^{(2)}+\ldots, \\
\partial_{t} & =\partial_{t_{0}}+K n \partial_{t_{1}}+K n^{2} \partial_{t_{2}}+\ldots, \\
J[f] & =O\left(K^{-1}\right) .
\end{aligned}
$$

- Navier-Stokes-Fourier regime recovered at $O(\mathrm{Kn})$.
- Solving the Boltzmann equation for each power of Kn gives:

$$
f^{(0)}=f^{(\mathrm{eq})}, \quad f^{(n>0)}=P(\mathbf{p}) \times f^{(\mathrm{eq})}
$$

where $P(\mathbf{p})$ is a polynomial in \mathbf{p}.

- The recovery of the energy equation at Navier-Stokes-Fourier level requires moments of $f^{(\mathrm{eq})}$ of order $N=6$ when the Shakhov collision term is used.

Boundary conditions for the distribution function

Due to the particle - wall interaction, reflected particles carry some information that belongs to the wall.

bounce back

specular reflection

diffuse reflection
diffuse reflection the distribution function of reflected particles is identical to the Maxwellian distribution function $f^{(\mathrm{eq})}\left(\mathbf{u}_{\text {wall }}, T_{\text {wall }}\right)$ microfluidics $\mathrm{Kn}=\lambda / L$ is non-negligible
\Rightarrow velocity slip $u_{\text {slip }}$
\Rightarrow temperature jump $T_{\text {jump }}$

Diffuse reflection and half-space moments

- The diffuse reflection boundary conditions require:

$$
f\left(\mathbf{x}_{\mathrm{w}}, \mathbf{p}, t\right)=f^{(\mathrm{eq})}\left(n_{\mathrm{w}}, \mathbf{u}_{\mathrm{w}}, T_{\mathrm{w}}\right) \quad(\mathbf{p} \cdot \chi<0)
$$

where χ is the outwards-directed normal to the boundary.

- The density n_{w} is fixed by imposing zero flux through the boundary:

$$
\int_{\mathbf{p} \cdot x>0} d^{3} p f(\mathbf{p} \cdot \chi)=-\int_{\mathbf{p} \cdot \chi<0} d^{3} p f^{(\mathrm{eq})}(\mathbf{p} \cdot \chi) .
$$

- Diffuse reflection requires the computation of integrals of $f^{(\mathrm{eq})}$ over half of the momentum space.
- Consider the ballistic limit of the Couette flow:

$$
f^{\text {ballistic }}(\mathbf{p})= \begin{cases}f^{(\mathrm{eq})}\left(n_{b}, \mathbf{u}_{b}, T_{b}\right) & p_{z}>0 \\ f^{(\mathrm{eq})}\left(n_{t}, \mathbf{u}_{t}, T_{t}\right) & p_{z}<0\end{cases}
$$

- System enclosed in diffuse-reflective boundaries require the recovery of half-space moments.

Off-lattice LB models: numerical schemes

- In the projection scheme, $\mathbf{p} \cdot \nabla=p_{x} \partial_{x}+p_{y} \partial_{y}+p_{z} \partial_{z}$.
- Only neighbours along the x, y and z axes are used.
- Corner transport upwind*: information moves according to the direction of \mathbf{p} from all surrounding cells (i.e. including diagonally, as below).
- Stability condition: $\frac{\delta t}{\delta s} \max _{k, \alpha}\left\{\left|p_{k, \alpha}\right|\right\} \leq 1$.

Images from T. Biciușcă, A. Horga, V. Sofonea, DSFD 2014 on Friday.

Half-space quadratures

- Replace integrals by quadrature sums $(s \leq N)$:

$$
\int_{\mathbf{p} \cdot \chi} d^{3} p f^{(\mathrm{eq})} P_{s}(\mathbf{p})=\sum_{i, j, k} f_{i j k}^{(\mathrm{eq})} P_{s}\left(\mathbf{p}_{i j k}\right),
$$

- Equality guaranteed if $f(\mathrm{eq})$ is expanded in terms of polynomials orthogonal on the semi-axis:

$$
f^{(\mathrm{eq})}=n g_{x} g_{y} g_{z}, \quad g_{\alpha}=\omega\left(\bar{p}_{\alpha}\right) \sum_{\ell=0}^{Q_{\alpha}-1} \mathcal{G}_{\alpha, \ell}\left(\sigma_{\alpha}\right) \phi_{\ell}\left(\bar{p}_{\alpha}\right),
$$

where $\bar{p}_{\alpha}=p_{\alpha} / p_{0, \alpha}, \sigma_{\alpha}=p_{\alpha} /\left|p_{\alpha}\right|$ and

$$
\begin{array}{lll}
\text { LLB : } & \omega\left(\bar{p}_{\alpha}\right)=e^{-\left|\bar{p}_{\alpha}\right|}, & \text { HHLB : }
\end{array} \quad \omega\left(\bar{p}_{\alpha}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\bar{p}_{\alpha}^{2} / 2}, ~ 子 \begin{array}{ll}
\phi_{\ell}\left(\bar{p}_{\alpha}\right)=L_{\ell}\left(\left|\bar{p}_{\alpha}\right|\right), & \\
& \\
& \left.\bar{p}_{\alpha} \mid\right) .
\end{array}
$$

- The expansion coefficients can be calculated as:

$$
\mathcal{G}_{\alpha, \ell}=\sigma_{\alpha} \int_{0}^{\sigma_{\alpha} \infty} d p_{\alpha} g_{\alpha} \phi\left(\bar{p}_{\alpha}\right) .
$$

Discretisation of momentum space

The velocity set is determined by the Q_{α} roots x_{k} of $\phi_{Q_{\alpha}}(x)$:

$$
p_{\alpha, k}= \begin{cases}x_{k} p_{0, \alpha} & 1 \leq k \leq Q_{\alpha} \\ -x_{k} p_{0, \alpha} & Q_{\alpha}<k \leq 2 Q_{\alpha} .\end{cases}
$$

Ratio r of greatest to lowest root:
Ratio of $r_{\text {LLB }}$ to $r_{\text {HHLB }}$

The roots of the half-range Hermite polynomials (HHLB) are twice more compact than for the Laguerre polynomials (LLB).

Half-range Hermite polynomials

- ... satisfy the orthogonality relation ${ }^{*}: \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-x^{2} / 2} \mathfrak{h}_{\ell}(x) \mathfrak{h}_{\ell^{\prime}} d x=\delta_{\ell \ell^{\prime}}$.
- First two polynomials can be determined using Gram-Schmidt (G-S):

$$
\mathfrak{h}_{0}=\sqrt{2}, \quad \mathfrak{h}_{1}=\frac{2-x \sqrt{2 \pi}}{\sqrt{\pi-2}}
$$

- G-S impractical at large ℓ. Alternatively, recursion can be used:

$$
\begin{gathered}
\mathfrak{h}_{\ell+1}(x)=\left(a_{\ell} x+b_{\ell}\right) \mathfrak{h}_{\ell}(x)+c_{\ell} \mathfrak{h}_{\ell-1}(x), \\
a_{\ell}=A_{\ell+1} / A_{\ell}, \quad b_{\ell}=-a_{\ell} \frac{\mathfrak{h}_{\ell}(0)^{2}}{\sqrt{2 \pi}}, \quad c_{\ell}=-\frac{a_{\ell}}{a_{\ell-1}},
\end{gathered}
$$

where A_{ℓ} is the coefficient of the leading order term in \mathfrak{h}_{ℓ}.

- The unknown $A_{\ell+1}$ (hence, a_{ℓ}) can be found using:

$$
a_{\ell}=-\left[2 \ell+1-\frac{\mathfrak{h}_{\ell}^{2}(0)}{2 \pi}-\frac{1}{a_{\ell-1}^{2}}\right]^{-1 / 2}
$$

- Recursion method more accurate than G-S but still unstable: it starts breaking down at $\ell=15$.
* G.P. Ghiroldi, L. Gibelli, Journal of Computational Physics 258568 (2014)

Application: Couette flow*

- Flow between parallel plates moving along the y axis
- $x_{t}=-x_{b}=0.5$
- Velocity of plates: $u_{t}=-u_{b}=0.42$
- Temperature of plates: $T_{b}=T_{t}=1.0$
- Diffuse reflection on x axis
- Ballistic regime ${ }^{\dagger}(\mathrm{Kn} \rightarrow \infty)$ solution:

$$
\begin{gathered}
f_{\text {ballistic }}(\mathbf{p})= \begin{cases}f^{(\mathrm{eq})}\left(\mathbf{p} ; n_{b}, \mathbf{u}_{b}, T_{b}\right) & p_{x}>0 \\
f^{(\mathrm{eq})}\left(\mathbf{p} ; n_{t}, \mathbf{u}_{t}, T_{t}\right) & p_{x}<0\end{cases} \\
n_{b}=n \frac{2 \sqrt{T_{t}}}{\sqrt{T_{t}}+\sqrt{T_{b}}}, \quad n_{t}=n \frac{2 \sqrt{T_{b}}}{\sqrt{T_{t}}+\sqrt{T_{b}}} .
\end{gathered}
$$

Simulations done using PETSc 3.1 on BlueGene cluster - collaboration with Prof. Daniela Petcu, West University of Timișoara, Romania.

- Half-order moments required to capture the discontinuous character of f.
* V. E. Ambrus, V. Sofonea, Phys. Rev. E 89, 041301(R) (2014)
${ }^{\dagger}$ I. A. Graur and A. P. Polikarpov, Heat Mass Transf. 46, 237 (2009) 237

Half-space vs full-space:
 Temperature profile for Couette flow at $\mathrm{Kn}=0.5$

Temperature at the centre of the channel Temperature across the channel

Temperature profile across the channel in Couette flow: comparison between full-space (HLB and SLB) and half-space (LLB and HHLB) models.

$$
\left(u_{\text {walls }}= \pm 0.42, T_{\text {walls }}=1.0, \delta s=10^{-2}, \delta t=10^{-4}, K n=0.5\right)
$$

Comparison with DSMC

Velocities required for 1% accuracy:

Kn	LLB	HHLB
0.1	2744	512
0.5	2744	512
1.0	4096	1000

- DSMC (for $\mathrm{Kn}=0.1$ and 0.5) vs. LLB (lines) and HHLB (points) at $\mathrm{Kn}=0.1,0.5$ and 1.0.
- Discrepancy in temperature profile due to incompatibility between the Shakhov model and the hard-sphere molecules used for DSMC.

Large Kn: ballistic regime

- In the ballistic regime, all moments are constant.
$\mathrm{LLB}^{*} / \mathrm{HHLB}$ results at $T_{b}=1.0, T_{t}=10.0$ and $u_{w}=0.42$:

Model	Velocities	T	u_{y}	q_{x}	q_{y}
LLB(2,2,2)	64	2.910987	-0.218165	-6.305084	1.414574
HHLB(2,2,2)	64	1.943523	-0.216613	-2.807558	0.977046
LLB(3,3,3)	216	3.205209	-0.218187	-11.40061	3.700024
HHLB(3,3,3)	216	3.205236	-0.218184	-10.45152	2.787300
LLB(4,4,4)	512	3.205209	$\mathbf{- 0 . 2 1 8 1 8 7}$	$\mathbf{- 1 1 . 0 2 2 3 0}$	3.477877
HHLB(4,4,4)	512	3.205209	$\mathbf{- 0 . 2 1 8 1 8 7}$	$\mathbf{- 1 1 . 0 2 2 3 0}$	$\mathbf{3 . 4 7 7 8 7 1}$
Analytic		3.205209	-0.218187	$\mathbf{- 1 1 . 0 2 2 2 7}$	3.477866

- Half-range models exactly recover the ballistic regime with 512 velocities.
- LB models based on full-space quadrature break down at large T differences as $\mathrm{Kn} \rightarrow \infty$.

[^0]
Force term in LLB

- In the Boltzmann equation, the force term involves $\mathbf{F} \cdot \nabla_{\mathbf{p}} f$.
- After discretisation, $\nabla_{\mathbf{p}} f$ has to be replaced with a suitable expansion.
- The EQ (equilibrium) method:

$$
\nabla_{\mathbf{p}} f \simeq \nabla_{\mathbf{p}} f^{(\mathrm{eq})}=\frac{\mathbf{p}-m \mathbf{u}}{m T} f^{(\mathrm{eq})}
$$

which works if the fluid is not far from equilibrium (small Kn).

- The SC (Shan-Chen) method ${ }^{\dagger}$:

$$
\begin{aligned}
f & =w(\mathbf{p}) \sum_{\ell, m, n} \mathcal{F}_{\ell m n} \phi_{\ell}\left(p_{x}\right) \phi_{m}\left(p_{y}\right) \phi_{n}\left(p_{z}\right), \\
\nabla_{p_{a}} f & =w(\mathbf{p}) \sum_{\ell, m, n} \mathcal{F}_{\ell m n}^{(\alpha)} \phi_{\ell}\left(p_{x}\right) \phi_{m}\left(p_{y}\right) \phi_{n}\left(p_{z}\right),
\end{aligned}
$$

- The coefficients $\mathcal{F}_{\ell m n}^{(\alpha)}$ for $\nabla_{p_{\Delta}} f$ can be calculated using $\mathcal{F}_{\ell m n}$.
V. E. Ambrus, V. Sofonea, Interfacial Phenomena and heat transfer, with editors.
${ }^{+}$N. S. Martys, X. Shan, H. Chen, Phys. Rev. E 58, 6855 (1998).
X. W. Shan, X. F. Yuan, H. D. Chen, J. Fluid. Mech. 550, 413 (2006).

Application: Poiseuille flow

- Flow between parallel stationary plates driven by $\mathbf{a}=\left(0, a_{y}, 0\right)$, with $a_{y}=0.1$.
- $x_{t}=-x_{b}=0.5$
- Temperature of plates: $T_{b}=T_{t}=1.0$
- Diffuse reflection on the x axis
- Micro-fluidics effects: temperature jump, velocity slip, temperature dip.
- SC required for the temperature dip.
- Analytical results* in the ballistic regime show that
- T is parabolic using SC: $T=T_{0}+x^{2} \delta T$

- T is flat using EQ.

Simulations done using PETSc 3.4 at BlueGene cluster - collaboration with Prof. Daniela Petcu, West University of Timișoara, Romania.

* V. E. Ambruș, V. Sofonea, Interfacial Phenomena and heat transfer, with editors.

EQ vs SC: Poiseuille flow

Good agreement between EQ and SC at small Kn for T and q_{y} and throughout the Kn range for u_{y} and q_{x}. EQ does not recover the temperature dip.

EQ vs SC: dip in Poiseuille flow temperature profile

Temperature dip at $\mathrm{Kn}>0.1$ requires SC .

Temperature profile across the channel in Poiseuille flow: comparison between EQ (points) and SC (lines) models.

$$
\left(a_{y}=0.1, T_{\text {walls }}=1.0, \delta s=10^{-2}, \delta t=10^{-5}\right)
$$

EQ vs SC: Ballistic regime

Temperature in the ballistic regime.

EQ method:

SC method:

The SC profile is parabolic, in agreement with *. Analytic results confirm that the SC profile is parabolic ${ }^{\dagger}$, while the EQ profile is constant.

* J. Meng, L. Wu, J. M. Reese, Y. Zhang, J. Comp. Phys. 251 (2013) 383.
${ }^{+}$V. E. Ambruș, V. Sofonea, Interfacial Phenomena and heat transfer, with editors.

Conclusion

- Corner-transport upwind correctly takes into account propagation of information from neighbouring nodes.
- Half-space moments are crucial for the implementation of diffuse reflection.
- Half-range Hermite polynomials (HHLB) must be generated numerically (no analytic formula). The procedure is not stable for orders > 15.
- HHLB recovers Couette using Shakhov ($\mathrm{Pr}=2 / 3$) for $\mathrm{Kn} \leq 0.5$ with 512 velocities - 5 times less than LLB!
- EQ method ($\nabla_{\mathbf{p}} f \sim \nabla_{\mathbf{p}}{ }^{f(\mathrm{eq})}$) cannot recover dip in temperature profile in Poiseuille flow, but SC can.
- Agreement of EQ and SC in Poiseuille flow in the ballistic regime with analytic results. EQ cannot recover the parabolic profile of T recovered by SC at large Kn.
- This work is supported through grants from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, having project numbers PN-II-ID-PCE-2011-3-0516 and PN-II-ID-JRP-2011-2-0060.

[^0]: * V. E. Ambrus, V. Sofonea, Phys. Rev. E 89, 041301(R) (2014)

