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Boltzmann Equation

@ Evolution equation of the one-particle distribution function f = f(x, p)

1
of + apa&af = J[f], J describes inter-particle collisions

@ Hydrodynamic moments give macroscopic quantities:

number density: n= f dpf,
locity: S f
velocity: u= — pfp,
temperature: T = L r‘(;1379 f &2 (& = p —mu)
3nm ’ ’
heat flux: q= L r‘cl3pf E2E.
2m?
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Collision terms

@ Single relaxation collision term:

JIf] = —% |f —¢l, T = % is the relaxation time.

@ f is relaxing towards g

@ Shakhov collision model:

1—-Pr

g :f(eq) 1+ 62
nT?

(D + 2ymT

- 1] ¢ - q} , q is the heat flux.

@ Pr =2/3 for an ideal gas
@ The BGK model g = f©9 is recovered when Pr = 1.
o {9 is the Maxwell-Boltzmann distribution function:

f(eq) —

@rmT)Pr2 = (_ﬁ) (& =p-mu)
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Macroscopic quantities and moments of f CE)

o Chapman-Enskog expansion gives f in terms of f(%:

f=fCD + KnfD + Kn*f? + ..,

8t :&to + Kn &’tl + Kn23t2 + ...,
T

=Kn X —.
T n Kn

o From dif + EVf = —1(f - o)

FOZ g0 A1) o) é (3t0 N %V) O ete

@ The recovery of the energy equation at Navier-Stokes-Fourier level
requires moments of 9 of order 4 for BGK (¢'¥ = 9, ¢ = 0) and of
order 6 for Shakhov.
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Boundary conditions for the distribution function

Due to the particle — wall interaction, reflected particles carry some
information that belongs to the wall.

/ / /
bounce back specular reflection diffuse reflection

diffuse reflection the distribution function of reflected particles is identical to the
Maxwellian distribution function f €D (wyan, Tovall)
microfluidics Kn = A/L is non-negligible
= velocity slip ug;p

= temperature jump Tjump
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Diffuse reflection boundary conditions

The evolution eq. gives the outgoing/incoming fluxes ﬂ%(x’ t) and ?Z]?l?a(x, t):

Pkiia 6t ou
fiic, t +68) = figi(x, ) - Z | T ) = T (0 )

ot (eq)
= 2 o) = 152 0 D[+ St )]
The incoming flux on the boundary is given by:
k]ux(x t) = _f(eq)(nw/ Uz, w)Pk]za = - nka(Tw)Ekji(uw/ Tw)pkjia/

with 1, computed using half-space integrals

out
f(Xw, )p - xd°p Z:O T iia X0, 1)
px>0 Pkjia
Ny = _
ol [ ety Y FuTExi(te TPy
px<0 Pkjia <0

Ansumali and Karlin, Physical Review E 66 (2002) 026311; Meng and Zhang, Physical Review E 83 (2011) 036704
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Application: Couette flow

@ IBM-SP6, CINECA - collaboration

x A ut %

o flow between parallel plates moving

along the y axis -

——
Q@ Xy = —Xp = 0.5 Y
@ Velocity of plates: u; = —u;, = 0.42
o Temperature of plates: T, = T; = 1.0 o Uy
® Number of nodes: 1, =100, Ny =n; = 2 Simulations done using PETSc 3.1 at:
@ Lattice spacing: 0s = 1/ 100 @ NANOSIM cluster - collaboration
i _4 with Prof. Daniel Vizman, West

@ Time step: 0t =10 University of Timigoara, Romania
)

Periodic boundary conditions on the y with Prof. Giuseppe Gonnella

and z axes University of Bari, Italy

o Diffuse reflection boundary conditions on ~ @ MATRIXsystem, CASPUR -
. collaboration with dr. Antonio
the x axis Lamura, IAC-CNR, Section of Bari,

e MCD flux limiter scheme for p,d, ttaly

@ BlueGene cluster - collaboration with
Prof. Daniela Petcu, West University
of Timisoara, Romania
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Cartesian and spherical coordinates: HLB and SLB

@ The accuracy of LB models is given by the moments of f©? that they
recover.
@ The Hermite HLB(N; Q., Q,, Q) models use the Cartesian coordinates:

00 Qa
f Apa f DV pa)pit = Y D (Pai)pl
- k=1

@ The spherical SLB(N; K, L, M) models use quadratures along:
M

27
The azimuth: f dof (d)p (p,0,p) = ZMH fi(eq)Pn (p, 0, i),
0

i=1

The elevation: f d cos O f “Dp 2(p, 0, ;) = Z wh ( q)P (P, 0, i),

-1

The magnitude p: f PP dpf Pu(p, 6;, i) = Zwke”kf 'Pulpr, 0, ).

0

X.Shan, X.-E.Yuan and H.Chen, ]J. Fluid Mech. (2006), 550, 413441
V.E.Ambrus and V.Sofonea, Phys.Rev.E (2012), 86, 016708
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Performance of HLB and SLLB models

Convergence of the temperature value in the center of the channel
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@ HLB and SLB do not recover exactly half-space integrals.

e High order quadratures are needed to get accurate results for Kn > 0.1.

@ Large velocity sets increase computational costs = poor numerical
stability.
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Exact recovery of half-space integrals

@ Strategy: use an integration method which explicitly deals with
half-moments

@ Solution: split the 3D momentum space into octants:

fd3pg(p) = j(: dpxﬁ dpybf(; sz [g(+,+,+)+g(+,+,—)+...],
g(+’ T _) = g(Px/ _Py/ _pz), etc.

@ The integration domain [0, c0) is amenable to the Gauss-Laguerre
quadrature method (2Q, > n):

0o Qa
f dp()é e_papn(pa) — Z wa,kpn(pa,k)
0 k=1

e Now integrals over octants are exactly recovered, giving an accurate
implementation of diffuse reflection boundary conditions

V. E. Ambrus and V. Sofonea, paper in preparation
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Construction of LLB: expansion of f(¢%

@ The distribution function is split into f* = f(£|p,|):

0 QOL
f ADa f(PIPu(Pe) = ), Wk [ (Paj)Pupap) +F~ (Pai)Pul=pas)]
- k=1

@ The equilibrium distribution function in LLB models is factorized as:

1 (Poc _ mucx)z
(eq) f— . f— —_—
f ngxSySz  Sa(PasUa,T) 7T &P [ T ]

® g, can be expanded with respect to the Laguerre polynomials:

Qa—1
ga =¢ P Z Got(tta, T)Le(lpal),
(1 + erfCa)Ps(Ca) + 2 p; (Ca)]

Gat =3 Z( DS()( ) N

where P,(C,) and P(C,) are polynomials of order s in C, = 1y /57.
E. P. Gross, E. A. Jackson and S. Ziering, Annals of Physics, 1, 141-167 (1957)
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Discretisation of the momentum space

@ The Gauss-Laguerre quadrature gives:

00 Qa
f dpaf(pa)Pn(Pa) — Z epa'kwa,k[f(pa,k)Pn(Pa,k) +f(_pa,k)Pn(_Pa,k)]
*° k=1
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Discretisation of the momentum space

@ The Gauss-Laguerre quadrature gives:

(O8) ZQ(X
f dpaf(pa)Pn(Pa) — Z elpa'klwa,kf(Pa,k)Pn(Pa,k)
- k=1

@ The velocity set and quadrature weights are given by:

k’th root of Lg, k < Qa, |Pa,k|
Pak = _ k>Q ’ Wy k = 5
Pak-Q. o (Qq + 1)2 I:LQa+1(|Pa,k|)]
@ Defining g,k = walke‘"?afk' 2a(Pak), the moments of f are replaced by:
ZQx ZQy ZQZ
f d’pf Pu(p) — Z Z Zfijkpn(Pijk), fijk = 118,88z k-
i=1 j=1 k=1

e The Gauss quadrature rules require Q, > N = 8(N + 1)°> momentum
vectors required for N’th order accuracy.
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LLBN vs SLB:

Numeric results for Couette flow at Kn=0.5

Temperature profile Transversal heat flux
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Q =7 (N = 6) needed to recover the NSF equations in the Shakhov model.

(Uwants = +0.42 , Toas = 1.0, 6s =1/100 , 6t =10~ , Kn = 0.5)
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Large Kn explorations using LLBN

Temperature in the centre of the
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@ At high Kn, BGK and Shakhov behave similarly

@ The balistic regime is accurately captured, even for temperature
differences of order Tyight — Tet ~ 10.

(tgans = £0.42 , Topas = 1.0 , 6s = 1/100 , 6t = 1072, QO =21)
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Conclusion

o The Laguerre (LLB) models exactly recover half-space moments of f©%,
which are crucial for the implementation of diffuse reflection boundary
conditions.

@ The LLB models in Couette flow are stable at large Kn (up to 10°) and
accurately capture the Balistic regime.

@ The LLB models are stable in systems with large temperature differences
(differences up to 10 tested).
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