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@ Most multi-phase flows are simulated under isothermal conditions.

@ Thermal flow simulations usually employ multiple distributions or an
external coupling to the temperature field obeying the Fourier law.

@ Our goal is to construct a quadrature-based Lattice Boltzmann model
with a single distribution function able to simulate a liquid-vapour
thermal flow.
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Boltzmann Equation

@ Evolution equation of the one-particle distribution function f = f(x, p)

1 1
of + P Vf +F-Vof =Jlfl = ——(f = f)

@ Hydrodynamic moments of order N give macroscopic quantities:

N =0: numberdensity: n = f Fpf,
1

N =1: wvelocity: u=- pfp,

2 52
N =2: temperature: T = 3 d3l9f (& =p—mu),
N =3: heat flux: q= 21 > dBPf & &.
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Gauss-Hermite quadratures

2

(p—w)~

o fand f* = 7—xpre” 7 are projected on the orthogonal Hermite
polynomials, e.g.(2D case):
e e_pz/z - 1 m
I = S— Y Zoai  HHOPIH™ p,)
¢,m=0

a0 = [ [ £, HOGH i,

@ The moments up to order N of f and f*7 are recovered by replacing the
integrals by quadrature sums:

QxQ
fdzpf(x/ P/ t) P(p) = Z fk(xr t)P(Pk)r Q =N+1
k=1

@ After discretization, f and f* are expressed as:
N

£l 008 = wi ), ey 6 HHO i) H ™ (py)

{,m=0

X. Shan, X. Yuan, H. Chen, J. Fluid. Mech 550 (2006) 413.
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Off-lattice LB models: numerical scheme

1 1 e
&tfk + apk : ka + F - Vp/fk = _;(fk —fkq)

@ Corner transport upwind*: information moves according to the direction
of p from all surrounding cells (i.e. including diagonally, as below).

@ Stability condition(CFL condition): %maxk,a{lp 7’;;“'} <1.

(i.i-1) (i-1,j-1) (i,j-1)
[ ]

Images from T. Biciuscd, A. Horga, V. Sofonea, COMPTES RENDUS MECANIQUE 343 (10-11) 580-588 (2015)

*R.J. Leveque, STAM ]J. Numer. Anal. 33 (2), 627 (1996)
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Diffuse reflection boundary conditions

Reflected particles carry some information that belongs to the wall.

/
diffuse reflection

@ The diffuse reflection boundary conditions require:

f(xW/ P/ ) :f(eq)(nw/ Uy, Tw) (p - x <0),

where ) is the outwards-directed normal to the boundary.
@ The density n,, is fixed by imposing zero flux through the boundary:

f cpf(p-x) =~ f d*pfe9 (p - x).
p-x>0

p-x<0
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Force term F - V¢ f

@ To get the van der Waals equation of state and the surface tension, one sets

1 i w I _ w - =
B= V@ =p)+RVAp), pr=pl pr=g0 = gp

with p. =1, T, = 1. We used a 25-point stencil to evaluate V(Ap) and
V(' —p%).

@ The components of the vector V¢ f are calculated using the recurrence
relation of the Hermite polynomials H(*D (&) = HO(&) — ¢HED(&):

;Tfy ik Z £lm! ace,m) (X, t)[ yxﬂ(fﬂ (Px)ﬂ (Py)+5yy7{ (Px)q{ M (Py)]
o =1 (t+1) (m) (m+1)
Opry et Pt O (6, 0|0y H D ) HO (i) + 0, HO (prx) HO™ Doy )|
QxQ
agm(x,t) = ka(x, HH (i) H™ (pry)
k=1
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Application

Phase separation between parallel plates.
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Figure : Initial setup.
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Application

Phase separation between parallel plates.
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Figure : Initial setup.
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Application

Heat pump.
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Figure : Initial setup.
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Conclusion

Lattice Boltzmann (LB) simulations provide a convenient tool for the
investigation of interface phenomena in liquid-vapour systems.

The single distribution function of order N = 5 is able to tackle
liquid-vapour thermal flow.

Temperature fluctuations due to spurious currents are below 1% in the
stationary state.

The simulations were performed using CUDA C programming library on
a desktop computer with an NVIDIA Tesla K40 Graphics Processing Unit
(2880 Cores, 12 GB memory).

This work is supported by a grant from the Romanian National Authority
for Scientific Research, CNCS-UEFISCDI, project number
PN-II-ID-PCE-2011-3-0516.
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