Lattice Boltzmann model for liquid-vapour thermal flows

Sergiu Busuioc, Victor E. Ambruș and Victor Sofonea

Center for Fundamental and Advanced Technical Research, Romanian Academy Bd. Mihai Viteazul 24, R - 300223 Timişoara, Romania

ICMMES 2016, Hamburg, 22/07/2016

Motivation

- Most multi-phase flows are simulated under isothermal conditions.
- Thermal flow simulations usually employ multiple distributions or an external coupling to the temperature field obeying the Fourier law.
- Our goal is to construct a quadrature-based Lattice Boltzmann model with a single distribution function able to simulate a liquid-vapour thermal flow.

Boltzmann Equation

- Evolution equation of the one-particle distribution function $f \equiv f(\mathbf{x}, \mathbf{p})$

$$
\partial_{t} f+\frac{1}{m} \mathbf{p} \cdot \nabla f+\mathbf{F} \cdot \nabla_{\mathbf{p}} f=J[f]=-\frac{1}{\tau}\left(f-f^{e q}\right)
$$

- Hydrodynamic moments of order N give macroscopic quantities:

$$
\begin{array}{lll}
N=0: & \text { number density: } & n=\int d^{3} p f, \\
N=1: & \text { velocity: } & \mathbf{u}=\frac{1}{n m} \int d^{3} p f \mathbf{p}, \\
N=2: & \text { temperature: } & T=\frac{2}{3 n} \int d^{3} p f \frac{\xi^{2}}{2 m^{\prime}}, \quad(\xi=\mathbf{p}-m \mathbf{u}), \\
N=3: & \text { heat flux: } & \mathbf{q}=\frac{1}{2 m^{2}} \int d^{3} p f \xi^{2} \xi .
\end{array}
$$

Gauss-Hermite quadratures

- f and $f^{e q}=\frac{n}{\left(2 \pi T T^{D / 2}\right.} e^{-\frac{(p--)^{2}}{2 T}}$ are projected on the orthogonal Hermite polynomials, e.g.(2D case):

$$
\begin{aligned}
f^{e q}(\mathbf{x}, t) & =\frac{e^{-\mathbf{p}^{2} / 2}}{2 \pi} \sum_{\ell, m=0}^{\infty} \frac{1}{\ell!m!} \mathbf{a}_{(\ell, m)}^{e q}(\mathbf{x}, t) \mathcal{H}^{(\ell)}\left(p_{x}\right) \mathcal{H}^{(m)}\left(p_{y}\right) \\
\mathbf{a}_{(\ell, m)}^{e q}(\mathbf{x}, t) & =\iint f^{e q}(\mathbf{x}, \mathbf{p}, t) \mathcal{H}^{(\ell)}\left(p_{x}\right) \mathcal{H}^{(m)}\left(p_{y}\right) d p_{x} d p_{y}
\end{aligned}
$$

- The moments up to order N of f and $f^{e q}$ are recovered by replacing the integrals by quadrature sums:

$$
\int d^{2} p f(\mathbf{x}, \mathbf{p}, t) P(\mathbf{p})=\sum_{k=1}^{Q \times Q} f_{k}(\mathbf{x}, t) P\left(\mathbf{p}_{k}\right), \quad Q=N+1
$$

- After discretization, f and $f^{e q}$ are expressed as:

$$
f_{k}^{e q}(\mathbf{x}, t)=w_{k} \sum_{\ell, m=0}^{N} \frac{1}{\ell!m!} \mathbf{a}_{(\ell, m)}^{e q}(\mathbf{x}, t) \mathcal{H}^{(\ell)}\left(p_{k, x}\right) \mathcal{H}^{(m)}\left(p_{k, y}\right)
$$

X. Shan, X. Yuan, H. Chen, J. Fluid. Mech 550 (2006) 413.

Off-lattice LB models: numerical scheme

$$
\partial_{t} f_{k}+\frac{1}{m} \mathbf{p}_{k} \cdot \nabla f_{k}+\mathbf{F} \cdot \nabla_{\mathbf{p}_{k}} f_{k}=-\frac{1}{\tau}\left(f_{k}-f_{k}^{e q}\right)
$$

- Corner transport upwind*: information moves according to the direction of \mathbf{p} from all surrounding cells (i.e. including diagonally, as below).
- Stability condition(CFL condition): $\frac{\delta t}{\delta s} \max _{k, \alpha}\left\{\frac{\mid p_{k, \alpha}}{m}\right\} \leq 1$.

Images from T. Biciușcă, A. Horga, V. Sofonea, COMPTES RENDUS MECANIQUE 343 (10-11) 580-588 (2015)

* R. J. Leveque, SIAM J. Numer. Anal. 33 (2), 627 (1996)

Diffuse reflection boundary conditions

Reflected particles carry some information that belongs to the wall.

- The diffuse reflection boundary conditions require:

$$
f\left(\mathbf{x}_{\mathrm{w}}, \mathbf{p}, t\right)=f^{(\mathrm{eq})}\left(n_{\mathrm{w}}, \mathbf{u}_{\mathrm{w}}, T_{\mathrm{w}}\right) \quad(\mathbf{p} \cdot \chi<0),
$$

where χ is the outwards-directed normal to the boundary.

- The density n_{w} is fixed by imposing zero flux through the boundary:

$$
\int_{\mathbf{p} \cdot \chi>0} d^{2} p f(\mathbf{p} \cdot \chi)=-\int_{\mathbf{p} \cdot \chi<0} d^{2} p f^{(\mathrm{eq})}(\mathbf{p} \cdot \chi) .
$$

Force term $\mathbf{F} \cdot \nabla_{\xi} f$

- To get the van der Waals equation of state and the surface tension, one sets

$$
\mathbf{F}=\frac{1}{\rho} \nabla\left(p^{i}-p^{w}\right)+k \nabla(\Delta \rho), \quad p^{i}=\rho T \quad p^{w}=\frac{3 \rho T}{3-\rho}-\frac{9}{8} \rho^{2}
$$

with $\rho_{c}=1, T_{c}=1$. We used a 25-point stencil to evaluate $\nabla(\Delta \rho)$ and $\nabla\left(p^{i}-p^{w}\right)$.

- The components of the vector $\nabla_{\xi} f$ are calculated using the recurrence relation of the Hermite polynomials $\mathcal{H}^{(\ell+1)}(\xi)=\mathcal{H}^{(\ell)}(\xi)-\ell \mathcal{H}^{(\ell-1)}(\xi)$:

$$
\begin{aligned}
& \frac{\partial f}{\partial p_{\gamma}}=-\frac{e^{-\mathbf{p}^{2} / 2}}{2 \pi} \sum_{\ell, m=0}^{\infty} \frac{1}{\ell!m!} \boldsymbol{a}_{(\ell, m)}(\boldsymbol{x}, t)\left[\delta_{\gamma x} \mathcal{H}^{(\ell+1)}\left(p_{x}\right) \mathcal{H}^{(m)}\left(p_{y}\right)+\delta_{\gamma y} \mathcal{H}^{(\ell)}\left(p_{x}\right) \mathcal{H}^{(m+1)}\left(p_{y}\right)\right] \\
& \frac{\partial f_{k}}{\partial p_{k, \gamma}}=-w_{k} \sum_{\ell, m=0}^{N} \frac{1}{\ell!m!} \boldsymbol{a}_{(\ell, m)}(x, t)\left[\delta_{\gamma x} \mathcal{H}^{(\ell+1)}\left(p_{k, x}\right) \mathcal{H}^{(m)}\left(p_{k, y}\right)+\delta_{\gamma y} \mathcal{H}^{(\ell)}\left(p_{k, x}\right) \mathcal{H}^{(m+1)}\left(p_{k, y}\right)\right] \\
& \boldsymbol{a}_{(\ell, m)}(\boldsymbol{x}, t)=\sum_{k=1}^{Q \times Q} f_{k}(\boldsymbol{x}, t) \mathcal{H}^{(\ell)}\left(p_{k, x}\right) \mathcal{H}^{(m)}\left(p_{k, y}\right)
\end{aligned}
$$

Application

Phase separation between parallel plates.

Figure : Initial setup.

Application

Phase separation between parallel plates.

Figure : Initial setup.

Density profile

Temperature

Application

Heat pump.

Figure : Initial setup.

Conclusion

- Lattice Boltzmann (LB) simulations provide a convenient tool for the investigation of interface phenomena in liquid-vapour systems.
- The single distribution function of order $N=5$ is able to tackle liquid-vapour thermal flow.
- Temperature fluctuations due to spurious currents are below 1% in the stationary state.
- The simulations were performed using CUDA C programming library on a desktop computer with an NVIDIA Tesla K40 Graphics Processing Unit (2880 Cores, 12 GB memory).
- This work is supported by a grant from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0516.

