Single bubble cavitation in quiescent and sheared liquids

${ }^{1}$ Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania
${ }^{2}$ Department of Physics, West University of Timişoara, Bd. Vasile Pârvan 4, 300223 Timişoara, Romania
${ }^{3}$ Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, Italy
${ }^{4}$ Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126 Bari, Italy

(Dated: October 8, 2015)

Abstract

The bubble cavitation problem in quiescent and sheared liquids is investigated using a third-order isothermal lattice Boltzmann (LB) model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state. The LB model has 16 off-lattice velocities and is based on the Gauss-Hermite quadrature method. The evolution equations for the distribution functions in this model are solved using the corner transport upwind numerical scheme on large square lattices (up to 4096×4096 nodes). In a quiescent liquid, the computer simulation results are in good agreement to the $2 D$ Rayleigh-Plesset equation. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number $C a$ is found at small $C a$ but with a different factor than in equilibrium liquids. A non-linear regime is observed for $C a \gtrsim 0.3$.

PACS numbers: 47.11.-j, 47.55.dd, 68.03.-g

[^0]
[^0]: * biciusca.tonino@gmail.com
 \dagger sofonea@gmail.com
 \ddagger gonnella@ba.infn.it
 \S Corresponding author, a.lamura@ba.iac.cnr.it

