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Overview

Lattice Boltzmann method (LBM) was introduced by McNamara and
Zanetti in 1988, to overcome the disadvantages of the lattice gas
cellular automata. This method established itself as a powerful tool
for simulation of a wide range of physical phenomena and one of its
main applications is in the field of computational fluid dynamics.
Computational fluid dynamics is the science of modeling various
phenomena related to fluid mechanics.

LBM represents the statistical description of equlibrium distribution
function on the computational grid named lattice. These description
mimic the fluid flow and yield excellent results for many difficult
problems.
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First order corner transport upwind. a. Transverse

propagation affecting the fluxes  𝐹𝑖+1/2,𝑗 and

 𝐺𝑖,𝑗+1/2 . b. Transverse propagation affecting the

fluxes  𝐹𝑖−1/2,𝑗 and  𝐺𝑖,𝑗−1/2.
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First order upwind can be interpreted as wave 

propagation method (shown in Fig. 2.4. a) and we 

have:

𝐹𝑖−1/2,𝑗 = 𝑢 𝑄𝑖−1,𝑗

𝐺𝑖,𝑗−1/2 = 𝑣 𝑄𝑖,𝑗−1
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IBM Blue Gene / P 

System

• PETSc (Portable, Extensible Toolkit for Scientific

Computation) is a suite of open source software

libraries for parallel solution of linear and nonlinear

equations.

CPU

• CUDA (Computing Unified Device Architecture) is

an extension to the C programming language, that

allows GPU code to be written in regular C.

GPU
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Simulation of phase separation in two – dimensional systems at constant 

temperature

a. Equilibrium density profiles. b. Equilibrium velocity profiles. In both 

cases, it is key_enabla = 2, k𝑒𝑦_𝑡𝑎𝑢 = 0 and T = 0.80.

a. b.
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results

Simulation of phase separation in two – dimensional systems at constant 

temperature

a. Equilibrium density profiles. b. Equilibrium velocity profiles. In both 

cases, it is key_enabla = 4, k𝑒𝑦_𝑡𝑎𝑢 = 0 and T = 0.80.

a. b.
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Dynamics of phase separation on a 2D lattice with 512 x 512 nodes

0 iter. 5000 iter. 10000 iter.

40000 iter. 75000 iter. 300000 iter.
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Minkowski functionals 

(area, perimeter and Euler 

characteristic) at T = 0.80.
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Dynamics of phase separation on a 3D lattice with 128 x 128 x 128 nodes

150000 iterations  250000 iterations 

Liquid drops separated at temperature T = 0.85. 
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Performance studies

Typical dependence of the total run time vs. The number of

cores used on the IBM Blue Gene / P system, when running the

2D lattice Boltzmann code for liquid – vapour system.



Conclusion

Lattice Boltzmann models are based on the physics at the mesoscopic scale 
and provide an alternative to current computational fluid dynamics 
methods.

LBM with Hermite polynomials can be used to study the dynamics of 
van der Waals fluids and phase separation of a isothermal system at 
various values of the temperature.

Density profiles are not affected by the particular numerical scheme 
and interfaces are smooth. The interface width can be controlled by 
the surface tension

The Minkowski functionals are appropriate for the description of 
morphology when we want to describe the domains that are formed during 
phase separation.
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