
WEST UNIVERSITY OF TIMISOARA

PHYSICS DEPARTMENT

MASTER THESIS

Supervisors:
Prof. univ. dr. Vizman Daniel

Dr. Sofonea Victor CS I
Author:

Biciusca Tonino

Timisoara

2013

WEST UNIVERSITY OF TIMISOARA

PHYSICS DEPARTMENT

LATTICE BOLTZMANN MODELS
FOR MULTIPHASE SYSTEMS

Supervisors:
Prof. univ. dr. Vizman Daniel

Dr. Sofonea Victor CS I
Author:

Biciusca Tonino

Timisoara

2013

Contents

1 General theory of lattice Boltzmann 4

1.1 Boltzmann equation . 4

1.2 Chapman - Enskog method . 5

1.3 Conservation equations . 7

1.4 Discretization of the momentum space . 7

1.5 Gauss-Hermite lattice Boltzmann models . 9

1.6 Implementation of the non-ideal equation of state 13

2 Numerical algorithms for lattice Boltzmann models 14

2.1 First order upwind . 14

2.2 Flux limiter schemes . 15

2.3 Corner transport upwind . 17

2.4 Parallel computing using PETSc . 21

2.5 Parallel computing using GPUs . 24

3 Computing results 28

3.1 Minkowski functionals . 28

3.2 Simulation of phase separation in two - dimensional systems at constant tem-

perature . 33

3.2.1 Plane interface . 33

3.2.2 Dynamics of phase separation . 38

3.3 Three dimensional simulation . 40

3.4 Performance studies . 42

4 Conclusion 43

1

A Appendix 44

A.1 Hermite polynomials and Gauss-Hermite quadrature 44

2

ACKNOWLEDGEMENTS

I would like to thank to Dr. Victor Sofonea from Romanian Academy for his guidance and

support throughout this process of completing the master thesis. I appreciate his confidance in

me over the last year and for the time that he invested in assisting me. Furthermore I would like

to thank Professor dr. Daniel Vizman for introducing me to the topic as well for the support on

the way.

3

1 | General theory of lattice Boltzmann

1.1 Boltzmann equation

The kinetic theory of Boltzmann, which connects fluid dynamics to thermodynamics and sta-

tistical physics, has been a milestone in the development of theoretical physics. In order to

describe the kinetics of, e.g., an atomic gas, Boltzmann introduced, with great intuition, more

than half century before the rise of quantum mechanics, a probabilistic description for the evo-

lution of a single-particle distribution, which anticipated atomistic scattering concepts. In the

kinetic theory we are interested to the dynamics of systems containing a large numbers of par-

ticle that interact during collisions. Because it is impossible to track particles individually, and

since in practice one is more interested in the behavior of macroscopic state, we will concentrate

on the particle number distribution function f (xxx,ξξξ , t). The number of particles located in the

volume d3x around position x and which have a velocity located in the volume d3ξ around ξ at

the time t, is defined as:

f (xxx,ξξξ , t)d3xd3
ξ (1.1)

If we take into account various moments of f , we will have the three well known conservation

equation for mass, momentum and energy :

ρ(x, t) =
∫

m f (x,ξ , t)dξ (1.2)

ρ(x, t)u(x, t) =
∫

mξ f (x,ξ , t)dξ (1.3)

ρ(x, t)e(x, t) =
1
2

∫
c2 f (x,ξ , t)dc (1.4)

where m is the molecular mass, c = ξ −u(x, t) is the is the peculiar particle velocity vector and

c2 = |c|2 c .
4

In the presence of an external field F, the time evolution of f is given by the well-known Boltz-

mann equation [1],

(∂t +ξ ·∇x +
F
m
·∇ξ) f (x,ξ , t) = Ω (1.5)

where the collision operator Ω, represents the rate of change of the distribution function, due

to interparticle collision. For a system not subjected to external forces, the Boltzmann equation

becomes [2],

∂t +ξ ·∇x f = Ω (1.6)

(note that ξ and ∇ f are vectors). The Boltzmann equation represents an advection equation

with a source term Ω and is very difficult to solve.

The collision term Ω in the Boltzmann equation is usually linearized using the Bhatnagar-Gross-

Krook (BGK) approximation [3] after introducing a relaxation time τ . In this way, Equation

(1.5) becomes the Boltzmann-BGK equation:

(∂t +ξ ·∇x +
F
m
·∇ξ) f (x,ξ , t) =−1

τ
[f (x,ξ , t)− f eq(x,ξ , t)] (1.7)

where f eq is the equilibrium distribution, known as the Maxwell-Boltzmann distribution func-

tion [4] :

f eq = ρ

(
m

2πkBθ

) 3
2

exp
[
− m

2kBθ
(ξ −u(x, t))2

]
(1.8)

1.2 Chapman - Enskog method

The Chapman-Enskog method relies on the expansion of the distribution function f with respect

to the Knudsen number

Kn =
λ

L
(1.9)

5

where λ is the mean free path of particles and L is the characteristic length of the fluid system.

The Knudsen number provides a measure of the degree of deviation of the Boltzmann dis-

tribution from its local equilibrium. In this work, we restrict ourselves to small values of Kn

(typically Kn < 0.1). According to Chapman and Cowling [4], we cant expand f asymptotically

in powers of the Kundsen number Kn as follows

f =
∞

∑
i=0

Kni f (i) (1.10)

where f (0) is the Maxwell-Boltzmann equilibrium distribution function. Furthermore, the time

and spatial variations are also scaled using the power of Kn

∂t = Kn ∂
(0)
t +Kn2

∂
(1)
t + ... and ∇ = Kn ∇ (1.11)

Introduction Eq. (1.10) into Eqs. (1.2) - (1.4) and matching the terms according to various

powers of Kn gives

f (0) = f eq (1.12)

as well as a number of useful relations involving the moments of functions f (l), l > 0

∫
f (l) dD

ξ = 0 ∀l > 0 (1.13)∫
f (l)ξα dD

ξ = 0 ∀l > 0 (1.14)

δαβ

∫
f (l)ξαξβ dD

ξ = 0 ∀l > 0 (1.15)

Substitutino of Eqs.(1.10) and (1.11) into Eq. (1.7), followed by matching the corresponding

powers of Kn gives the evolution equations to zero, first and second order:

1
τ

[
f 0− f eq]= 0 (1.16)

f (1) =−τ

(
∂
(0)
t +ξ ·∇+F ·∇ξ

)
f (0) (1.17)

f (2) =−τ

[(
∂
(0)
t +ξ ·∇+F ·∇ξ

)
f (1)+∂

(1)
t f (0)

]
(1.18)

6

1.3 Conservation equations

For isothermal fluid systems where compressibility effects con be neglected, the first and sec-

ond order conservation equation for mass and momentum are obtained for (1.16 ... 1.18) after

multiplication with :

Φ(m, mξα , mξαξβ δαβ/2) (1.19)

and integration over the velocity space. The equation for mass conservation and momentum are

obtained by multiplying eq. (1.7) with Φ = m and Φ = mvα after some algebra we have

∂tρ +∂β (ρuβ) = 0 (1.20)

∂t(ρuα)+∂β (ρuαuβ) =−∂α p+ν∂β

[
ρ∂αuβ +ρ∂β uα

]
+ρaα (1.21)

In eq. (1.21), p is the ideal gas pressure (ρ = mn)

p = nkBT = χc2
ρ (1.22)

and ν is the physical value of the kinematic viscosity of the single component fluid

ν = τχc2 = τkBT/m (1.23)

1.4 Discretization of the momentum space

For a system not too far from its equilibrium state, we may suppose

∇ξα
f (x,ξ , t)' ∇ξα

f (x,ξ , t) =− m
kBT

[ξ −u(x, t)] f eq(x,ξ , t) (1.24)

7

After introducing expression (1.14) in Eq. (1.7), we get the following form of the Boltzmann

equation:

∂t f (x,ξ , t)+ξ ·∇ f (x,ξ , t) =

1
kBT

F · [ξ −u(x, t)] f eq(x, t)− 1
τ
[f (x,ξ , t)− f eq(x,ξ , t)] (1.25)

The discretization of velocity space is the central idea of lattice Boltzmann models, where the

velocity space is restricted to a finite set (ei), i = 0,1, ...,N and the distribution functions f is re-

placed by a set of distribution functions fi(x, t) and f (x,ξ , t)dDξ for ξ = ei. After discretization

of both ξ and x, the BGK Boltzmann equation (1.25) is replaced by system of N equations

∂t fi(x, t)+ ei ·5 fi(x, t) =
1

kBT
F · [ei−u(x, t)] f eq

i (x, t)− 1
τ

[
fi(x, t)− f eq

i (x, t)
]

(1.26)

with i = 0,1, ...,N

To solve this system numerically, the coordinate space is discretized, too, and the distribution

function fi(x, t) are now defined only in the nodes (x) of a lattice L that is either a square lattice

(in 2D) or a cubic one (in 3D), with the lattice spacing δ s. The main result of the discretization

of the phase space is that integrals in this space are replaced by sums over the discrete velocity

set (ei) and expression (1.2) of the local number density becomes [5]

ρ ≡ ρ(x, t) =
N

∑
i=0

fi(x, t) (1.27)

while the local velocity (1.3) is replaced by

u≡ u(x, t) =
1

n(x, t)

N

∑
i=0

ei fi(x, t) (1.28)

8

1.5 Gauss-Hermite lattice Boltzmann models

According to Grad [1949b, 1952], the distribution function f can be projected on an orthogonal

basis formed by Hermite polynomials. This method leads to two additional sets of equations

for pressure tensor and for the energy flux and the whole system is known under the name of

Grand’s 13 - moments equations. We will not enter the details of the derivation of Grad, but

we will use his idea of projecting the distribution function f (x,ξ , t) on Hermite polynomials.

Using the Hermite basis and the associated projection method, a set of kinetic equations can

be obtained [6]. The projection of the velocity distribution function on the Hermite polynomial

basis is given by [1]

f (x,ξ , t) = w(ξ)
∞

∑
n=0

1
n!

a(n)α (xxx, t)H (n)
α (ξ) (1.29)

where w(ξξξ) is the Hermite weight function and H(n) and aaa(n) denote the Hermite polynomial

of degree n and the expansion coefficient of degree n, respectively (see the Appendix for the

definition of H(n)). According to Grad’s notation [1, 4], the subscript α is actually a multi-

index (α1,α2, ...,αn) and the Einstein sum rule is used over repeated indices.

The expansion coefficients are obtained by taking the scalar product of f with the Hermite basis

polynomials

a(n)α (x, t) =
∫

f (x,ξ , t)H (n)
α (ξ) dξ (1.30)

Using the definitions of the moments of f,

ρ =
∫

f d(ξ), ρu =
∫

ξ f dξ (1.31)

9

one gets for [1] a(n) (n = 0, ...,4)

a(0) = ρ (1.32)

a(1)α = ρ uα (1.33)

a(2)
αβ

= Pαβ +ρ(uαuβ −δαβ) (1.34)

a(3)
αβγ

= Qαβγ +uαa(2)
βγ

+uβ a(2)αγ +uγa(2)
αβ

+(1−D) ρuαuβ uγ (1.35)

a(4)
αβγδ

= Rαβγδ − (Pαβ δγδ +Pαγδβδ +Pαδ δβγ +Pβγδαδ +Pβδ δγα +Pγδ δαβ)

+ (δαβ δγδ +δαγδβδ +δαδ δβγ) (1.36)

where the quantities Q and R are defined by

P =
∫
(c
⊗

c) f dc,

Q =
∫
(c
⊗

c
⊗

c) f dc,

R =
∫
(c
⊗

c
⊗

c
⊗

c) f dc (1.37)

where c
⊗

c, c
⊗

c
⊗

c and c
⊗

c
⊗

c
⊗

c are the tensor products of c with themselves.

The thermohydrodynamic variables can be expressed in terms of the low-order Hermite expan-

sion coefficients [6]:

ρ = a(0) (1.38)

ρu = a(1) (1.39)

P = a(2)−ρ(u2−δ) (1.40)

Q = a(3)−ua(2)+(D−1)ρu(3) (1.41)

while the internal energy is

ρε =
1
2
[a(2)ii −ρ(u2−D)] (1.42)

Since the Hermite polynomials are orthogonal, the leading moments of the distribution function

f up to order N are preserved by truncating the high-order terms in its Hermite series.

f (xxx,ξ , t)∼= f N(x,ξ , t) = ω(ξ)
N

∑
n=0

1
n!

H
(n)

α (ξ)a(n)α (x, t) (1.43)

10

The approximation f N will produce the same velocity moments as the original f. This guarantees

that the fluid system can be described by a finite set of macroscopic variables (thermohydrody-

namic moments).

By applying Gauss - Hermite quadrature (see the Appendix), the expansion coefficient a(n) in

(1.43) can be expressed as a weighted sum :

a(n)α =
∫

w(ξ)r(x,ξ , t) dξ =
d

∑
i=1

wir(x,ξi, t) =
d

∑
i=1

wi

ω(ξi)
f N(x,ξ , t)H (n)

α (ξi) (1.44)

where wi and ξi are the weights and abscissae of the Gauss - Hermite quadrature of a degree ≥

2N. In case of the Gauss - Hermite quadrature the nodes are not equally spaced as in the standard

lattice Boltzmann method. This rescaling procedure will give different Hermite polynomials

and expansion coefficients.

The discretization of Eq. (1.7) and projection of f (0) on the truncated Hermite basis, gives the

expansion coefficients

a(0)0 = ρ (1.45)

a(1)0 α
= ρuα (1.46)

a(2)0 αβ
= ρuαuβ +ρ(θ −1)δαβ (1.47)

a(3)0 αβγ
= ρuαuβ uγ +ρ(θ −1)(δαβ uγ +δαγuβ +δβγuα) (1.48)

a0 αβγδ = ρuαuβ uγuδ +ρ(θ −1)2(δαβ δγδ +δαγδβδ +δαδ δβγ)

+ ρ(θ −1)(δαβ uγuδ +δαγuβ uδ +δαδ uβ uγ

+ δβγuαuδ +δβδ uαuγ +δγδ uαuβ) (1.49)

With fi defined as

fi(x, t)≡
wi

ω(ξi)
f (x,ξi, t) (1.50)

11

the discretized equilibrium distribution function, truncated to fourth order is

f (0)i = wi

4

∑
n=0

1
c2n

l n!
a(n)0 α

H
(n)

iα

= wiρ{1+
ξi ·u
c2

l
+

1
2c4

l

[
(ξi ·u)2− c2

l u2 + c2
l (θ −1)(ξ 2

i − c2
l D)
]
.

+
ξi ·u
6c6

l

[
(ξi ·u)2−3c2

l u2 +3c2
l (θ −1)(ξ 2

i − c2
l (D+2))

]
+

1
24c8

l

[
(ξi ·u)4−6c2

l u2(ξ ·u)2 +3c4
l u4

+ 6c2
l (θ −1)

(
(ξi ·u)2(ξ 2

i − c2
l (D+4))+ c2

l u2(c2
l (D+2)−ξ

2
i)
)

+ .3c4
l (θ −1)2 (

ξ
4
i −2c2

l (D+2)ξ 2
i + c4

l D(D+2)
)
} (1.51)

where H
(n)

iα are the discretized Hermite polynomials.

Observation.

All the terms proportional to θ −1 vanish for an isothermal system in which θ = 1.

12

1.6 Implementation of the non-ideal equation of state

By examining the Boltzmann-BGK equation (1.25), it’s easy to see that the third term on the

left-hand side represents the force of an non-ideal fluid. This force term should be projectes on

Hermite basis, too. Because this therm involves derivatives with respect to ξ , which cannot be

expressed directly, one can be use the espresion (1.29) to get:

∇ξ f =
∞

∑
n=0

1
n!

a(n)α ∇ξ (ωH
(n)

α) =
∞

∑
n=0

(−1)n

n!
a(n)α ∇

n+1
ξ

ω

= −ω

∞

∑
n=0

1
n!

a(n)α H n+1
α =−ω

∞

∑
n=1

1
n!

na(n−1)
α H

(n)
α (1.52)

A simplified version of Eq. (1.52) can be obtained by approximating ∇ξ f ' ∇ξ f eq:

∇ξ f ' ∇ξ f eq =
1
n

∂β

(
pi− pw)+ k∂β (∇

2n) (1.53)

Both expressions of ∇ξ f will be considered during our simulations. These cases are specified

in our code by the parameter key_tau, which takes the values 0 and 8, respectively.

From Eq. (1.53) we identify that:

pi = θn (1.54)

and

pw =
3θn
3−n

− 9
8

n2 (1.55)

The equation (1.55) represent the equation of state, where the critical point is located at θ = 1

and n = 1 and parameter k controls the surface tension.

13

2 | Numerical algorithms for lattice Boltz-

mann models

2.1 First order upwind

In two dimension, the all known D2Q9 model [] is a special case of the Hermite expansion. This

model has been widely used for simulations of two-dimensional flows. When using a scheme

based on characteristics , the forward Euler difference is used to compute the time derivative,

but there are several possibilities to compute the term ξi ·∇i(x, t). We will restrict here to the

first order upwind scheme.

First order upwind scheme applied to ξi ·∇i(x, t) :

ξi ·∇i(x, t) =
c

δ s
[fi(x, t)− fi(x−δ sξi/c, t)] (2.1)

This numerical scheme is defined on the square lattice where δ s is lattice spacing and is very

easy to extend for other lattices. Special attention should be paid when applying the updating

rule for values of f at each lattice node by denoting f (x−δ sξi/c, t) in accordance to :

fi(x, t +δ t) = fi(x, t)−
cδ t
δ s

[fi(x, t)− fi(x−δ sξi/c, t)]

+
δ t

χc2 a(x, t) · [ξi−u(x, t)] f eq
i (x, t) (2.2)

The first-order upwind scheme is a good candidate for LB models because of its stability and

when is associated to the forward time stepping rule, this scheme gives the updating rule for the

distribution functions defined in Eq. (2.2).

14

Figure 2.1: D2Q9 lattice Boltzman model, where ei = ξi.

Upwind method is use because is more stable than the space centered scheme when dealing

with large density gradients.

2.2 Flux limiter schemes

The important aspects of choosing numerical scheme in lattice Boltzmann model is to improve

the numerical accuracy. We know that the upwind scheme is preferred since this one is more

stable than the space centered scheme when dealing with large density gradients. However, the

upwind scheme exhibits numerical diffusion and viscosity [8] which may affect the simulation

results. When applying high order scheme like Lax - Wendorff [5][9] :

f n+1
i, j = f n

i, j−
cδ t
δ s

[f n
i, j+1− f n

i, j−1]+
1
2

(
cδ t
δ s

)2

[f n
i, j+1−2 f n

i, j + f n
i, j−1] (2.3)

where δ s and δ t ar space lattice and time step, even if is more accurate then centered scheme,

the wiggle phenomenon introduces unphysical oscillations of the fluid density.

Flux limiter techniques are used to improve the numerical accuracy and is a good alternative to

the Lax-Wendroff scheme, because provide a possibility to overcome these well known prob-

lems of FDLB models. Note that, for all i = 1,2, ...,N, we have c = |eeei| in the equation below:

CFL = c
δ t
δ s

(2.4)

15

1

j -1 j j +1

e

(a)

j +1

j

e
5

j - 1

(b)

Figure 2.2: Lines of characteristics in the LB lattice, for the following distribution functions: a
- f1(x, t); b - f5(x, t).

where CFL is the Courant - Friedrichs - Levy number. We rewrite the updating rule (2.6) in a

conservative form using two fluxes [5][9]

f n+1
i, j = f n

i, j−CFL[Fn
i, j+1/2−Fn

i, j−1/2] (2.5)

where

Fn
i, j+1/2 = f n

i, j +
1
2
(1−CFL)[f n

i, j+1− f n
i, j]ψ(θ n

i, j) (2.6)

and

Fn
i, j−1/2 = Fn

i,(j−1)+1/2 = f n
i, j−1 +

1
2
(1−CFL)[f n

i, j− f n
i, j−1]ψ(θ n

i, j−1) (2.7)

The flux limiter ψ(θ n
i, j) introduced in (2.9) is expressed as a function of the smoothness

θ
n
i, j =

f n
i, j− f n

i, j−1

f n
i, j+1− f n

i, j
(2.8)

In particular, the Lax - Wendroff scheme is recovered for the flux limiter ψ(θ n
i, j)= 1. The widely

used first order upwind scheme is recovered as another particular case, when ψ(θ n
i, j) = 0.

16

2.3 Corner transport upwind

The flux limiter scheme described above can be viewed in a more geometric way that facilitates

the extension to two space dimensions. Corner transport upwind (CTU) method was develop by

P. Colella [10] for studying effects of diagonal flow.

We first consider the scalar advection equation

qt +uqx + vqy = 0 (2.9)

with u and v constant. We will generally assume that u > 0 and v > 0, and this case will

sometimes be assumed when we wish to be specific, but most of the formulas will be presented

in a manner that applies for flow in any direction. A quite general class of methods can be

derived by the following sequence [10] [11] [12] of steps:

1. View the cell averages at time tn as defining a piecewise constant function q̃n(x,y, tn).

2. Solve the advection equation exactly with this data over a time step of length 4t, giving

q̃n(xxx,yyy, tn+1) = q̃n(xxx−uuu4 t,yyy− vvv4 t, tn).

3. Average this shifted function over the grid cells to obtain the new cell average and we

assume a uniform grid with equal spacing h in both directions [11].

Qn+1
i, j =

1
h2

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

q̃n(xxx−uuu4 t,yyy− vvv4 t, tn)dxdy (2.10)

Qn+1
i, j =

1
h2

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

q̃n(xxx−uuu4 t,yyy− vvv4 t, tn)dxdy

=
1
h2

∫ xi+1/2−uuu4t

xi−1/2−uuu4t

∫ y j+1/2−vvv4t

y j−1/2−vvv4t
q̃n(xxx,yyy, tn)dxdy (2.11)

The new cell average Qn+1
i, j is given by the cell average of q̃n(xxx,yyy, tn) over the shaded rea region

shown in Fig. 2.3. Because q̃n(xxx,vvv, tn) is constant in each grid cell, this reduces the problem to

a simple convex combination of four cell values:

17

Figure 2.3: The corner transport upwind method is obtained by shifting the piecewise constant
data by distance (uuu4 t,vvv4 t) and averaging back on the grid.

Qn+1
i, j =

1
h2 [(4x−u4 t)(4y− v4 t)Qn

i, j +(4x−u4 t)(v4 t)Qn
i, j−1

+ (4y− v4 t)(u4 t)Qn
i−1, j +(u4 t)(v4 t)Qn

i−1, j−1] (2.12)

Equation (2.15) can be rearranged to yield

Qn+1
i, j = Qi, j−

u4 t
h

(Qi, j−Qi−1, j)−
v4 t

h
(Qi, j−Qi, j−1)

+
1
2
(4t)2

{u
h

[v
h
(Qi, j−Qi, j−1)−

v
h
(Qi−1, j−Qi−1, j−1)

]
+

v
h

[u
h
(Qi, j−Qi−1, j)−

u
h
(Qi, j−1−Qi−1, j−1)

]}
(2.13)

This method (2.16) is called corner-transport upwind (CTU) method (following Colella [10]),

because define a proper transport across the corner from cell Ci−1, j−1 to Ci, j and is still only

first-order accurate. For a conservative finite volume method in flux-differencing form, we will

have [12]

Qn+1
i, j = Qi, j−

4t
h
[Fi+1/2, j−Fi−1/2, j +Gi, j+1/2−Gi, j−1/2] (2.14)

where4t is the time step and Fi−1/2, j represents theflux at the edge of the cell Ci j and Gi, j−1/2

is the flux at its bottom.

18

The simplest upwind method (the "donor-cell" method presented in the first line of Eq. 2.16)

can be interpreted as wave propagation method (shown in Fig. 2.4. a) and we have

Fi−1/2, j = u Qi−1, j

Gi, j−1/2 = v Qi, j−1 (2.15)

(a) (b)

Figure 2.4: Wave propagation interpretation with fluxes: a - first order upwind; b - first order
corner transport upwind.

Waves propagate independently into the cell for the x and y directions, carrying jumps (Qi, j−

Qi−1, j) and (Qi, j−Qi, j−1), at speeds given by the velocities u and v. Propagating each of these

waves at the proper speed (u,v) oblique to the grid (Fig. 2.4 b) it can be easily implemented as

two-step procedure. First the wave propagated normal to interface, giving a provisional value

for the flux, and then the triangular pice of the wave that moves into an adjacent cell is used

to update the flux between cell. If the area of this triangle is Area = 1
2(4t)2uv then the cell

average is modified by 1
2
4t2

h2 uv4Q, where4Q is the jump cross the wave.

Because one cell average is increased by this amount while the other is decreased by this same

amount, this transfer can be obtain by modifying the flux Gi, j+1/2 by 1
2
4t
h uv4Q. Now the wave

propagation from each interface affects two different fluxes and this is most easily implemented

by initializing all Fi−1/2, j and Gi, j−1/2 to zero and then looping over the cell interface , updating

the appropriate fluxes.

19

(a) (b)

Figure 2.5: a. Transverse propagation affecting the fluxes F̃i+1/2, j and G̃i, j+1/2 b. Transverse
propagation affecting the fluxes F̃i−1/2, j and G̃i, j−1/2.

The wave propagation from interface between cells Ci−1, j and Ci, j affects the fluxes Fi−1/2, j and

Gi, j+1/2 and similarly the wave from the interface between Ci, j−1 and Ci, j update the Gi, j−1/2

and Fi+1/2, j by [11]

F̃i−1/2, j = −1
2
4t
h

uv(Qi−1, j−Qi−1, j−1)

F̃i+1/2, j = −1
2
4t
h

uv(Qi, j−Qi, j−1)

G̃i, j−1/2 = −1
2
4t
h

uv(Qi, j−1−Qi−1, j−1)

G̃i, j+1/2 = −1
2
4t
h

uv(Qi, j−Qi−1, j) (2.16)

The first order upwind method is widely used because it is more stable than the original version

called "donor-cell" upwind, because modified method requires

4t
h

max(|u|, |v|)≤ 1 (2.17)

whereas the original method requires

4t
h
(|u|, |v|)≤ 1 (2.18)

20

The second order Corner Transport Upwind scheme is more elaborated and has better stability

properties than the two-dimensional Lax-Wendroff scheme [7].

2.4 Parallel computing using PETSc

The Portable, Extensible Toolkit for Scientific computation (PETSc) is a suie of open source

software libraries for parallel solution of linear and nonlinear equations. PETSc uses the Mes-

sage Passing Interface (MPI) for all of its parallelism and consists of a variety of libraries (simi-

lar to classes in C++) where each library manipulates a particular family of objects (for example

vectors) and the operations one would like top perform on the objects.

The development of PETSc was started in 1995 by Bill Gropp, Lois Curfman McInnes, and

Barry Smith at Argonne National Laboratory and is used for scalable (parallel) solution of

scientific applications modeled by partial differential equations (PDE) and is one of the most

widely used parallel numerical software.

Linear algebraic systems arise when solving the continuum partial differential equation models

using the finite element, finite volume, finite difference [13]. The main focus of PETSc is to

solving linear systems arising from PDE-based models. Some of the PETSc modules deal with

[14]:

• Index sets (IS), including permutations, for indexing into vectors, renumbering, etc.

• Vectors (Vec) are one of the simplest PETSc objects and are used to store discrete PDE

solutions, right-hand sides for linear systems, etc.

• Matrices (Mat) where is possible to choose a variety of matrix implementations because

no single matrix format is appropriate for all problems.

• Managing interactions between mesh data structures and vectors and matrices (DM).

• Over fifteen Krylov subspace methods (KSP).

• Dozens of pre conditioners, including multi grid, block solvers, and sparse direct solvers

(PC).

• Nonlinear solvers (SNES).

• Time-steppers for solving time-dependent (nonlinear) PDEs, including support for differ-

ential algebraic equations (TS).
21

The use of PETSc is very easy when parallelism is achieved by domain decomposition. The do-

main where the PDE is defined is divided among the processes, and each process manages the

unknowns and matrix elements associated with that domain. PETSc use MPI model for parallel

programming and employ its routines as needed within an application code. The user does not

need to manage the detailing with parallel objects such as vectors, matrices, and solvers.

The libraries enable easy customization and extension of both algorithms and implementations.

PETSc follows the distributed-memory single program multiple data (SPMD) model of mes-

sage passing interface, with the flexibility of having different types of computation running on

different processes. The PETSc infrastructure create a foundation for building large-scale appli-

cations and is useful to consider the interrelationship among different pieces of this collection

of libraries as shown in Fig. 2.6 and in Fig. 2.7 is shown several of the individual parts in more

detail.

Figure 2.6: Flow control for PETSc applications [14]

These figures [14] illustrate the library’s hierarchical organization, which enables users to em-

ploy the level of abstraction that is most appropriate for a particular problem.

22

Figure 2.7: Numerical libraries of PETSc [14]

PETSc is written in C language using object-oriented programming techniques of data encap-

sulation, polymorphism, and inheritance. There are six main classes [?] like Vec vector class

for managing the system solutions, the Mat matrix class for managing the sparse matrices, the

KSP Krylov solver class for managing the iterative accelerators, the PC preconditioned class,

the SNES nonlinear solver class, and the TS ordinary differential equations (ODE) integrator

class. A wide variety of simulations have been written by using PETSc and these include fluid

flow for aircraft, automobile design, blood flow simulation, porous media flow, etc.

An important role in PETSc are distributed arrays (DMDAs), which are used in conjunction

with vectors. Logically regular rectangular grids are used by DMDAs when communication

of nonlocal data is needed before certain local computations can occur. This DMDAs are not

intended for parallelizing unstructured grid problems.

A typical situation that we can encounter, when solving PDEs equations in parallel, is to evaluate

a local function f (x), where each process requires its local portion of the vector x as well as its

host points (the bordering portions of the vector that are owned by neighboring processes).

23

2.5 Parallel computing using GPUs

Parallel computing use the capability of a computer to execute operations concurrently and has

been used to simplify the programming of certain applications which react to or simulate the

parallelism of the natural world. At the same time, parallelism complicates programming when

the objective is to take advantage of the existence of multiple hardware components to improve

performance. Graphics processing units (GPUs) are devices that we find in most modern PCs,

because they provide a number of basic operations to the CPU (central processing unit), such as

rendering an image in memory and then displaying onto a screen. A GPU belongs to the archi-

tecture category of single-input multiple-data (SIMD) processors, which basically means that

many processors do the same computations for different data in parallel and the GPU hardware

consists of a number of key blocks:

• Memory (global, constant, shared)

• Streaming multiprocessors (SMs)

• Streaming processors (SPs)

In our days graphics processing units (GPUs) are very powerful and highly parallel. GPUs

contain hundreds of processor cores that may run thousands of threads concurrently. For this

reason, the intensive computing applications run much faster than on a CPU.

In 2007, NVIDIA saw an opportunity to bring GPUs into the mainstream by adding an easy-to-

use programming interface, which is a parallel programming library named CUDA (Computing

Unified Device Architecture). CUDA is an extension to the C language [15] that allows GPU

code to be written in regular C (in fig. 2.8 we present a compilation process with CUDA using

NVCC compiler). With this extensions is possible to use the GPU specific features that include

new API calls, and some new type qualifiers that apply to functions and variables. In CUDA we

find some specific functions, called kernels that can be invoked by the CPU. The GPU has its

own internal scheduler that will then allocate the kernels to whatever GPU hardware is present.

It is executed N number of times in parallel on GPU by using N number of threads, and also

CUDA provides shared memory and synchronization among threads. The threads are organized

by defining a grid and making a division of the grid in thread block or just blocks (Fig. 2.9).

24

Figure 2.8: Compilation process in CUDA [15]

Because each block consists of a batch of threads, it can be a 1D, 2D or 3D object where

the maximal number of threads which is allowed depends on the graphic card capability [15].

Figure 2.9: A multidimensional example of CUDA grid organization [18]

A block must execute from start to completion and may be run on one of N SMs (symmetrical

multiprocessors). Blocks are allocated from the grid of blocks to any SM that has free slots.

Blocks threads are grouped into warps that consists of typically of 32 threads with consecutive

thread indices.
25

Since all these threads execute the same code, CUDA programming is an instance of the well-

known SPMD (single program, multiple data) [15] parallel programming style which is not the

same as SIMD, because in an SPMD system, the parallel processing units execute the same

program on multiple parts of data. Typically when a host code launches a kernel, the CUDA

runtime system generates a grid of threads that are organized in a two-level hierarchy. Further-

more the grid is organized into an array of thread blocks, and all blocks of a grid are the same

size, where each block contain up to 1024 threads. The number of threads in each thread block

is specified by the host code when a kernel is launched. The kernel can be launched with dif-

ferent numbers of threads at different parts of the host code and for a given grid of threads, the

number of threads in a block is available in the blockDim variable. Is simply to view that each

Figure 2.10: All threads in a grid execute the same code [15]

thread in block has a unique threadIdx value, for example, the first thread in block 0 has value 0

in its threadIdx variable, the second thread has value 1, etc. This allows each thread to combine

its threadIdx and blockIdx values to create a unique global index for itself with the entire grid

(example in Fig. 2.10 of a global index). This model of programming compels the programmer

to organize threads and their data into hierarchical and multidimensional organizations.

High-performance GPU applications require fast memory transfer and for that we have to take

in to account that GPU has different layers of memory. The main memory is the global memory

which have the biggest capacity but the poor performance is due to the fact that tends to have

long access latencies (hundreds of clock cycles) and finite access bandwidth. CUDA supports

several types of memory that can be used by programmers to achieve high execution speed in

their kernels (Fig. 2.11) show these CUDA device memories.

26

Figure 2.11: CUDA device memory model [18]

The constant memory support short-latency, high-bandwidth, read-only access by the device

when all threads simultaneously access the same location. Variables that reside in registers and

shared memory (on-chip memories) can be accessed at very high speed in a highly parallel

manner. Registers are allocated to individual threads where each thread can only access its own

registers and shared memory is allocated to thread blocks where all the threads in a block can

access variables in this memory locations. By declaring a CUDA variable in one of the CUDA

memory types (__device__ , __ global__ and __ host__), the programmer dictates the visibility

and access speed of the variables.

27

3 | Computing results

3.1 Minkowski functionals

Because we want to describe the morphology of the domains that are formed during phase

separation in 2D and 3D, it is important to find a method for the characterization of these struc-

tures. Integral geometry can supply a method to find this morphological measures, known as

Minkowski functionals. They provide the characteristic length scale L of patterns and also allow

one to study the scaling behavior of the content, shape, and connectivity of spatial structures.

The Minkowski functionals are well known and used very often in digital picture analysis and

integral geometry [17] when dealing with the morphology of black and white discretized im-

ages. In two dimensions, Minkowski functionals are related to familiar geometric quantities:

the area, the boundary length and the connectivity number. The four functionals for three di-

mensional structures are the volume, surface, integral mean curvature and connectivity of the

spatial pattern. To understand the morphological characterization, to refer a picture element

case and, for conveniece, we will use the term pixel to refer at pictures elements.

First, we define a 2D lattice used for Boltzmann simulations, filled with black pixels on a white

background. Now let us to assume that the pixels are squares and that the linear size of each

square has been normalized to one (Fig. 3.1). In order to get detailed information about each

density level, we introduce a threshold [16] density 0 ≤ ρth ≤ ρmax. Each black pixel or grey

level may be associated with the local density ρ(x) in every corresponding node.

The Minkowski functionals, that describe the morphological content of the 2D pattern are the

area A, the perimeter U and the Euler characteristic χ . For understanding the Euler characteris-

tic in two dimensional case, we have to consider that two black pixels are connected if and only

if they are nearest neighbors or next-nearest neighbors of each other or can be connected by a

chain of black pixels that are nearest and/or next-nearest neighbors.

28

Figure 3.1: A black and white digital image consists of a square lattice [17]. For this example:
number of squares ns = 8, number of edges ne = 24 and number of vertices nv = 16.

Two steps are required to compute the values of the Minkowski functionals. First, let us to

decompose each black pixel into 4 vertices, 4 edges and the interior of the pixel (Fig. 3.1).

After that we count the total number of squares ns, edges ne and vertices nv, and for computing

the functionals [17] from

A = ns (3.1)

U = −4ns +2ne (3.2)

χ = ns−ne +nv (3.3)

In case of a three dimensional cubic lattice filled with black and white pixels, the four Minkowski

functionals are the volume V, the surface area S, the mean breadth B, and the Euler characteris-

tic. To exemplify χ in 3D, we have to consider that number of regions of connected black pixels

plus the number of completely enclosed regions of white pixels minus the number of tunnels,

i.e. regions of white pixels piercing regions of connected black pixels. Now let’s consider that

each black pixel as the union of 6 faces, 8 vertices, 12 edges and the interior of the cube, it can

be shown [17] that

V = nc (3.4)

S = −6nc +2n f (3.5)

2B = 3nc−2n f +ne (3.6)

χ = −nc +n f −ne +nv (3.7)

29

where nc and n f are the number of cubes and faces, respectively.

The Minkowski functionals implemented with PETSc are computed for a two dimensional lat-

tice, with a function called "minko2d" :

#undef __FUNC__

#define __FUNC__ "minko2d"

PetscErrorCode minko2d(void)

{

PetscInt ix, iy;

char filename[128];

FILE *xhandle;

DMDAVecGetArrayDOF(da, gf, &agf);

for(iy=ystart; iy < yend; iy++)

{

for(ix=xstart; ix < xend; ix++)

{

if(agf[iy][ix][kn] > rth)

{

agf[iy][ix][kmpix] = one;

}

else

{

agf[iy][ix][kmpix] = zero;

}

}

}

DMDAVecRestoreArrayDOF(da, gf, &agf);

DMGlobalToLocalBegin(da,gf,INSERT_VALUES,lf);

DMGlobalToLocalEnd(da,gf,INSERT_VALUES,lf);

DMDAVecGetArrayDOF(da,gf,&agf);
30

DMDAVecGetArrayDOF(da,lf,&alf);

rbpix = 0;

redge = 0;

rvertice = 0;

for(iy=ystart; iy < yend; iy++)

{

for(ix=xstart; ix < xend; ix++)

{

if(alf[iy][ix][kmpix])

{

rbpix++;

}

if(alf[iy][ix][kmpix] == one || alf[iy][ix+1][kmpix] == one)

{

redge++;

}

if(alf[iy][ix][kmpix] == one || alf[iy+1][ix][kmpix] == one)

{

redge++;

}

if(alf[iy][ix][kmpix] == one || alf[iy][ix+1][kmpix] == one ||

alf[iy+1][ix][kmpix] == one || alf[iy+1][ix+1][kmpix] == one)

{

rvertice++;

}

}

}

DMDAVecRestoreArrayDOF(da,gf,&agf);

DMDAVecRestoreArrayDOF(da,lf,&alf);

31

VecSetValue(mfbpix,rstart,rbpix,INSERT_VALUES);

VecSetValue(mfedge,rstart,redge,INSERT_VALUES);

VecSetValue(mfvertice,rstart,rvertice,INSERT_VALUES);

VecSum(mfbpix, &rbpix);

VecSum(mfedge, &redge);

VecSum(mfvertice, &rvertice);

return 0;

}

In this function VecSetValue(Vec v,int row,PetscScalar value, InsertMode mode) has the role to

set a single entry i.e. value into a vector v , where row set location of the entry. For computing

the sum of all the components of a vector, we use VecSum(Vec v,PetscScalar *sum), where v is

vector and sum is the result of this summation.

32

3.2 Simulation of phase separation in two - dimensional sys-

tems at constant temperature

3.2.1 Plane interface

The phase separation process was first investigated in the case of plane interfaces. For this pur-

pose, we used a two-dimensional lattice with 512x4 nodes. The simulation parameters were

δ s = 1/128, etc, κ = 10−4. Figure (3.2) shows the evolution of the density profiles at tem-

perature T= 0.80, as recovered with e∇ = 2 and τ = 10−3. One can see the formation of high

density domains at the early stage of the separation process. These domains coalesce thereafter

to reduce the interface energy.

 0

 0.5

 1

 1.5

 2

-0.4 -0.2 0 0.2 0.4

ρ

x

Figure 3.2: Denisty profiles for e∇ = 2,τ = 0 at different iterations.

Figures (3.3) and (3.4) show the density and velocity profiles after 10 millions iterations at vari-

ous temperatures. Both versions of the corner transport upwind scheme (first and second order)

were used. One can easily see that the amplitude of the spurious velocity is drastically reduced

when using the second order scheme.

In figures (3.5) and (3.6) we plot the density profiles obtained by LB simulation after 10 mil-

lions iterations, for various values of the temperatures. These profiles agree very well to the

corresponding values of the liquid and vapour density, as derived by the Maxwell construction.

33

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x coordinate

T = 0.80

T = 0.85

T = 0.90

T = 0.95

(a)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

u

x

T = 0.80

T = 0.85

T = 0.90

T = 0.95

(b)

Figure 3.3: a. Equilibrium density profiles. b. Equilibrium velocity profiles. In both cases, it is
e∇ = 2,τ = 0 and T = 0.80.

34

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x coordinate

T = 0.85

T = 0.90

T = 0.95

(a)

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

u

x

T = 0.85

T = 0.90

T = 0.95

(b)

Figure 3.4: a. Equilibrium density profiles. b. Equilibrium velocity profiles. In both cases, it is
e∇ = 4,τ = 0 and T = 0.80.

35

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x

T = 0.80

rho = 1.932703

rho = 0.2396669

(a)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x

T = 0.85

rho = 1.807141

rho = 0.3197300

(b)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x

T = 0.90

rho = 1.657271

rho = 0.4257417

(c)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x

T = 0.95

rho = 1.461727

rho = 0.5790150

(d)

Figure 3.5: Comparison of the phase diagram at e∇ = 2 with theoretic values for liquid and
vapors.

36

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x

T = 0.85

rho = 1.807141

rho = 0.3197300

(a)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x

T = 0.90

rho = 1.657271

rho = 0.4257417

(b)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

ρ

x

T = 0.95

rho = 1.461727

rho = 0.5790150

(c)

Figure 3.6: Comparison of the phase diagram at e∇ = 4 with theoretic values for liquid and
vapors.

37

3.2.2 Dynamics of phase separation

The evolution of the phase separation on a 2D lattice with 1024x1024 nodes is presented in Fig.

(3.7). After separation, the liquid domains coalesce under the action of the surface tension force

and form circular drops, as seen after 300.000 iterations.

(a) 0 (b) 5000 (c) 10000

(d) 15000 (e) 40000 (f) 75000

(g) 150000 (h) 300000 (i) 500000

Figure 3.7: Evolution of liquid - vapour phase separation at temperature T = 0.80, e∇ = 2 and
τ = 0 on a 2D lattice with 512 x 512 nodes: blue phase = vapour and red phase = liquid.

38

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 100000 200000 300000 400000 500000

A

x

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100000 200000 300000 400000 500000

P

x

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 0 100000 200000 300000 400000 500000

χ

x

(c)

Figure 3.8: Minkowski functionals at T = 0.80 where a. area, b. perimeter, c. Euler character-
istic

39

In Fig.(3.8) we present the evolution of the Minkowski functionals, as calculated during the

simulation shown in Figure (3.7). The total area A of the domains grows very fast and becomes

quite constant, while the total perimeter and the Euler characteristics evolve in a similar manner:

after passing through a maximum, these quantities decrease slowly when the domains start to

coalesce. This process is driven by the surface tension that minimizes the liquid-vapor interface.

3.3 Three dimensional simulation

In this thesis, we also used the Lattice Boltzmann method to perform 3D simulations. For this

purpose, we used the D3Q27 model, which has 26 non-vanishing velocities and exhibits better

numerical stability. Figures (3.9, 3.10, 3.11) show the liquid drops separated at temperature

T = 0.85 on a 3D lattice with 128 x 128 x 128 nodes. The dimensionless critical temperature

is Tc = 1.00. As a result of the coalescence process, only two liquid drops are observed after

215000 iterations (figure 3.12), and form of these drops is quite spherical because of the surface

tension.

0.4

0.8

1.2

1.6

rho

0.292

1.85

Figure 3.9: 150000 iterations

40

0.4

0.8

1.2

1.6

rho

0.292

1.85

Figure 3.10: 180000 iterations

0.4

0.8

1.2

1.6

rho

0.292

1.85

Figure 3.11: 215000 iterations

41

3.4 Performance studies

The typical dependence of the total run time in case of the lattice Boltzmann model (D2Q9)

used on the IBM Blue Gene / P system is presented in Fig. (3.12). Increasing number of cores

help us to reduce the total run time. We also build a GPU code for the lattice Boltzmann model

(D2Q9) that has a better performance and power consumption in comparison with traditional

CPUs. For a typical simulation performed on the GPU with 256 cores for 100.000 iterations,

total run time was approximately 10 minutes and on the IBM Blue Gene / P system for the same

amount of iteration but with only 128 cores, total run time was 3.5 hours.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 4 8 16 32 64 128

R
u
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of cores

Figure 3.12: Typical dependence of the total run time vs. the number of cores used on the IBM
Blue Gene / P system, when running the 2D lattice Boltzmann code for liquid - vapour systems.

42

4 | Conclusion

In this thesis, we provide a theoretical framework of lattice Boltzmann method using the Her-

mite expansion approach, where fluid flows can be systematically approximated by constructing

high-order lattice Boltzmann models. These models are based on the physics at the mesoscopic

scale and provide an alternative to current computational fluid dynamics methods. Due to their

local nature, LB models are suitable for parallel computing.

LBM with Hermite polynomials can be used to study the dynamics of van der Waals fluids and

phase separation of a isothermal system at various values of the temperature. The numerical

scheme presented in chapter two, are used to reduce numerical errors (the spurious velocities in

the interface region). Density profiles are not affected by the particular numerical scheme and

interfaces are smooth. The interface width can be controlled by the surface tension. These re-

sults suggest that numerical schemes have to be carefully chosen when dealing with multiphase

systems.

The Minkowski functionals are appropriate for the description of morphology when we want to

describe the domains that are formed during phase separation. All the images presented here

were obtained by processing the data in a very powerful visualization software, namely Par-

aview.

In order to approach the new computing technologies, we developed and tested a GPU imple-

mentation of our LBM code. Our first results revealed that the GPU code runs approximatively

10 times faster than the code running on the CPU-based Blue Gene P system. This encouraging

result strongly support the development of GPU-based simulations to reduce the computational

costs.

43

A | Appendix

A.1 Hermite polynomials and Gauss-Hermite quadrature

In a D dimensional space using Rodrigues’ formula, we can define the nth-order Hermite poly-

nomial:

H (n)(ξ) =
(−1)n

ω(ξ)
∇

n
ω(ξ) (A.1)

and the definition of the weight function ω(ξ) associated with the Hermite polynomials is

ω(ξ) =
1

(2π)D/2 exp(−ξ
2/2) (A.2)

where ξ 2 = ξ ·ξ . The first few polynomials are :

H (0)(ξ) = 1 (A.3)

H
(1)

α (ξ) = ξα (A.4)

H
(2)

α1α2(ξ) = ξα1ξα2−δα1α2 (A.5)

H
(3)

α1α2α3(ξ) = ξα1ξα2ξα3−ξα1δα2α3−ξα2δα1α3−ξα3δα1α2 (A.6)

H
(4)

α1α2α3α4(ξ) = ξα1ξα2ξα3ξα4− (ξα1ξα2δα3α4 +ξα1ξα3δα2α4 +ξα1ξα4δα2α3

+ ξα2ξα3δα1α4 +ξα2ξα4δα1α3 +ξα3ξα4δα1α2)

+ (δα1α2δα3α4 +δα1α3δα2α4 +δα1α4δα2α3) (A.7)

The recurrence relation of Hermite polynomials is :

ξα0H
(n)

α1...αn = H
(n+1)

α0...αn +
n

∑
i=1

δα0αiH
(n−1)

α1...αi−1,αi+1,...αn (A.8)

44

The Hermite polynomials form a set of orthonormal basis of the Hilbert space of function f (ξ),

with a scalar product defined by:

∫
ω(ξ)H

(m)
α (ξ)H

(n)
β

(ξ) dξ = δmnδ
n
αβ

(A.9)

If a function is square integrable we can expand in terms of the Hermite polynomials, in our

case f (ξ) is :

f (ξ) =
∞

∑
n=0

a(n)α H
(n)

α (ξ) (A.10)

By multiplying (A.10) with ω(ξ)H
(n)

β
(ξ) and integrating, we obtain:

∫
ω(ξ) f (ξ)H (n)

β
(ξ) dξ = a(n)α δ

n
αβ

= n!a(n)
β

(A.11)

The last equality holds because there are n! distinct permutations of the multi-index (i1, i2, ..., in)

and a(n)i is symmetric. It is more convenient to use the expression

f (ξ) = ω(ξ)
∞

∑
n=0

1
n!

a(n)H (n)(ξ) (A.12)

with the expansion coefficients given by

a(n) =
∫

f (ξ)H (n)(ξ) dξ (A.13)

Applying Gaussian quadrature [6] to a given function f (ξ), we will obtain the best estimate of

the integral
∫ b

a ω(ξ) f (ξ) by choosing the optimal set of abscissae ξa, a = 1, ...,n, like that:

∫ b

a
ω(ξ) f (ξ) dξ ∼=

n

∑
a=1

wa f (ξa) (A.14)

where ω(ξ) is an arbitrary weighting function and wa a set of constant weights.

A theorem of numerical analysis on Gaussian quadrature state that the optimal abscissae of the

n-point of quadrature are precisely the roots of nth corresponding orthogonal polynomial, and

the weights are given by:

45

wa =
(pn−1, pn−1)

pn−1(ξa)p′n(ξa)
(A.15)

where p
′
n = d pn/dξ . The Gaussian - Hermite rule integrates exactly to a polynomial of degree

2n−1. Taking the derivative [6] of (A 1), we obtain

dH (n)

dξ
= ξH (n)−H (n+1) = nH (n−1) (A.16)

With the help of (A 8) and using (A 9), the corresponding weights are

wa =
n!

[nH (n−1)(ξa)]2
(A.17)

46

Bibliography

[1] Orestis P. Malaspinas, Lattice Boltzmann Method for the Simulation of Viscoelastic Fluid

Flows , These No 4505 , Suisse (2009).

[2] A. A. Mohamad, Lattice Boltzmann Method , Springer (2011).

[3] P.L. Bhatnagar, E.P. Gross and M. Krook, A model for collision processes in gases I: small

amplitude processes in charged and neutral one-component system , Physical Review Vol.

94, (1954), pp. 511-525.

[4] Michel O. Deville, Thomas B. Gatski, Mathematical Modeling for Complex Fluids and

Flows , Springer (2012).

[5] D. Vizman, V. Sofonea, A. Cristea, Advanced numerical methods and applications , Ed.

EUROBIT (2008).

[6] X. Shan, Xue-Feng Yuan, H. Chen, Kinetic theory representation of hydrodynamics: a way

beyond the Navier-Stokes equation , Journal of Fluid Mechanics (2006) , vol. 550, pp.

413-441.

[7] V. Sofonea, A. Lamura, G. Gonnella and A. Cristea, Finite-difference lattice Boltzmann

model with flux limiter for liquid-vapor systems , Physical Review E 70, (2004).

[8] V. Sofonea, R. F. Sekerka, Viscosity of finite fifference fattice Boltzmann models , Journal

of Computational Physics 184 (2003) 422.

[9] A. Cristea, V. Sofonea, Two component lattice Boltzmann model with flux limiters , Cen-

tral European Science Journals of Physics, (2004).

[10] P. Colella, Multidimensional Upwind Methods dor Hyperbolic Conservation Laws , Jour-

nal of Computational Physics 87, (1990).

47

[11] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems , Cambridge University,

(2002).

[12] R. J. Leveque, , Society for Industrial and Applied Mathematics Vol. 33, No. 2, (1996),

pp. 627 - 665.

[13] D. Padua, Encyclopedia of Parallel Computing , Springer (2011).

[14] PETSc Manual, http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf

[15] D. B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors, Second Edition

, Nvidia (2012)

[16] V. Sofonea and K. R. Mecke, Morphological characterization of spinodal decomposition

kinetics , The European Physical Journal B 8, pp. 99-112, (1999).

[17] K. Michielsen, H. De Raedt, Integral - Geometry Morphological Image Analysis , Physics

Reports 347, pp. 461 - 538, (2001).

[18] J. Sanders, E. Kandrot, Cuda by Example , Nvidia (2011).

48

