
 "Politehnica" University of Timişoara 
 Faculty of Automation and Computers 
 Departament of Computer and Software Engineering 

 2, Vasile Pârvan Bv., 300223 – Timişoara, Romania 
 Tel: +40 256 403261,  Fax: +40 256 403214 
 Web: http://www.cs.upt.ro 

 

 

 

 

 

 

 

 

 

 

 

FLUID DYNAMICS SIMULATION 

WITH LATTICE BOLTZMANN MODELS 

USING CUDA ENABLED GPGPUS 
 

Master Thesis 
 
 
 
 
 
 
 

 

Adrian HORGA 
 

Supervisors: 

Dr. Fiz. Victor SOFONEA  

Conf. Dr. Ing. Marius MINEA 

 
 
 

 

 

 

Timişoara, 
2013 



2 
 

Contents 

1 Introduction ........................................................................................................................ 3 

2 Lattice Boltzmann Theory .................................................................................................. 4 

2.1 Introduction ................................................................................................................. 4 

2.2 Lattice Boltzmann Models (LBM) .............................................................................. 4 

2.3 Single Relaxation Time Bhatnagar-Gross-Krook ....................................................... 5 

2.4 Boundary conditions ................................................................................................... 6 

2.5 Multiphase LBM ......................................................................................................... 6 

3 NVIDIA CUDA C .............................................................................................................. 8 

3.1 General Purpose Graphical Processing Units’ architecture ........................................ 8 

3.2 CUDA programming model ........................................................................................ 9 

4 State of the art ................................................................................................................... 14 

4.1 Previous work ............................................................................................................ 14 

4.2 Related work ............................................................................................................. 16 

5 Proposed solution ............................................................................................................. 19 

5.1 CUDA implementation ............................................................................................. 19 

5.2 Implementation improvements .................................................................................. 23 

5.3 CUDA-specific problems for the implementation .................................................... 24 

6 Results .............................................................................................................................. 25 

7 Conclusions and future work ............................................................................................ 30 

References ................................................................................................................................ 31 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

1 Introduction 
 

The use of graphical processing units for solving non-graphical parallel problems has 

increased in recent years due to their growing flexibility and high computing power 

compared to a CPU. The Lattice Boltzmann Models benefit from the increased computing 

power of such devices and their parallel nature. 

 

In this dissertation we present a solution for implementing a D2Q9 Finite Difference Lattice 

Boltzmann Model simulation using CUDA C toolkit from NVIDIA. We compare this to an 

existing multi-CPU implementation developed using PETSc, a scientific toolkit available for 

C and Fortran programming languages. The results are also compared to similar simulations 

using CUDA for Lattice Boltzmann Models that use the streaming and collision model. 

 

Our solution starts from the multi-CPU version and transforms the code to run for CUDA. 

We use CUDA-specific elements for the GPU implementation that on the multi-CPU are 

already managed by the library functions. So our approach provides functions that are 

implemented in standard C or CUDA-specific functions.   

 

We first present the theory behind the Lattice Boltzmann Models starting from the simpler 

streaming collision model and continue to the finite difference one. The formulas needed in 

the implementation of the model are presented. 

We continue by describing the CUDA C toolkit with the hardware model for its General 

Purpose Graphical Processing Units (GPGPUs) and the programming model for the C 

language. 

The next chapter is a view of the existing CUDA solutions for Lattice Boltzmann Models and 

their implementations. 

After this presentation, chapter 5 contains our proposed solution. We start by presenting the 

implementation and continue by discussing the CUDA changes and improvements for the 

implementation. 

In chapter 6, we present the results that can be used for scientific purposes (simulation of 

phase separation in single-component fluids), we compare the running time with the multi-

CPU version and with some of the published results from the domain. 

The last chapter sums up the dissertation by presenting conclusions and future work ideas. 
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2 Lattice Boltzmann Theory 
 

2.1 Introduction 

 

A dilute gas system can be described by a distribution function  ( )(                   
    ) where N represents the number of particles,            the position vectors and 

           the momentum of each individual particle at some instant of time [1]. Given 

the extremely large number of particles (~10
23

) existing in the system the changes in the 

system cannot be feasibly deduced by the standard equations used (6N variables). The 

interest usually falls to the lower order distribution functions (N=1, 2). 

Using Statistical Mechanics, a system can be represented statistically by an ensemble of 

many copies [1] in which  ( )(     ) gives the probability to find a particular molecule with 

a given position and momentum.  Because the experiment cannot distinguish the particles, the 

distribution functions of the remaining N-1 molecules can be left unspecified.   ( )  is the 

“single particle” distribution function and is the first order distribution function of the 

described system. 

When we know the positions and momenta at a particular time t,  ( ) at a future time t+dt can 

be determined by considering the so-called streaming process. Due to the existence of 

particles that may arrive from another point than (x,p) we also have collisions. This collisions 

change the equations of the streaming process [1].  

 

 ( )(              )       ( )(     )     ( ( )   ( ))        (1) 

 

Expanding this resulting equation (1) using the Taylor expansion we have the Boltzmann 

equation: 

 

     
( )         

( )   
  ( )

  
   ( )   ( )   (2) 

 

Where  ( )         is the number of molecules that exit the volume element dxdp of the 

phase during the time interval dt, and  ( )         is the number of particles that enter the 

same volume element during the time interval dt. The velocity is:    
 

 
. 

According to [1, 4], an approximate solution for this equation can be found using the lattice 

Boltzmann models.  

 

 

2.2 Lattice Boltzmann Models (LBM) 

 

The LBM reduce the complexity of the Boltzmann original concept. In these models we have 

discretized time steps, and only a handful of possible particle positions and momenta. The 

positions of the particles are confined to the nodes of a two-dimensional (square) or a three-

dimensional (cubic) lattice. In a 2D model, the variations of momenta are reduced to a 

handful of directions (8 in the case of D2Q9 model). The DnQm model , proposed in [3], 

consists in describing a model in “n” dimensions using “m” discretized velocities. 

In figure 1 we have the 9 depicted velocities ea, where a=0,1,..,8. The velocity e0=0 is 

assigned to the particle at rest. 
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Figure 1. Particle velocities for D2Q9 model [14] 

 

 

In the LB models the fundamental measure for length is the lattice unit (lu or   ) i.e. the 

distance that separates two adjacent nodes along the Cartesian axes. The time step (ls or   ) 
is considered to be the unit time [1]. In figure 1 the velocities for north, east, south and west 

have a velocity ea=1 (  /   ) respectively, for north-east, north-west, south-west and south-

east the velocity magnitude is ea = √  (  /   ). Even if this is the most common used scheme 

for the 2D LB model, other schemes can be used as well. 

By using equation (1) we can further incorporate the single particle distribution function with 

the property that now it is not a continuous function but a discrete one with m bins (9 in 

D2Q9 model) that represent the frequency of occurrence. Accordingly, these frequencies can 

be considered to be “direction-specific fluid densities” [1] and thus the macroscopic fluid 

density is:  

 

   ∑   
   
      (3) 

 

The macroscopic velocity “u” is the average of the microscopic velocities ea weighted by the 

directional densities fa: 

 

   
 

 
 ∑   
   
       (4) 

 

Equations (3, 4) allow us to retrieve the macroscopic quantities ( , u) from the discrete 

microscopic velocities of the LB model. 

 

2.3 Single Relaxation Time Bhatnagar-Gross-Krook 

 

The Bhatnagar-Gross-Krook (BGK) approximation [4, 5] originates from the streaming and 

collision concept and allows one to simplify the Boltzmann equation (1). According to 

statistical physics, the interparticle collisions relax the fluid system towards local equilibrium. 

The distribution function at the next time step t+    will be composed of the streaming part 

and the collision part, as seen in equation (5). 
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  (           )     (   )   
  (   )    

  
(   )

 
   (5) 

 

The streaming part is represented by   (           )     (   ) and the collision by the 
  (   )    

  
(   )

 
 term.  

 

  The equilibrium distribution function is defined as in equation (6) according to [1]: 

 

  
  ( )      ( ) [    

     

  
 
 

 
 
(     )

 

  
  

 

 
 
  

  
]  (6)  

 

where the weights are: 

 

    

{
 
 

 
 

 

 
    

 

 
            

 

  
          

   (7) 

 

and c is the basic speed on the lattice (1   /    in the simplest implementation). 

Equations (6, 7) are discussed in [1,4]. 

 

 

 

2.4 Boundary conditions 

 

The boundary conditions are necessary in order to obtain meaningful results for a simulated 

model.  

The periodic boundary condition is important when wanting to simulate an infinite domain 

occupied by a multiphase fluid. This periodic condition is one of the simplest and represents 

the system’s edges as connected to the opposite edges. 

When simulating a fluid flow in a micro channel we could use the bounceback boundary 

conditions [1] for the walls and periodic boundaries for the open ends of the channel.   

The bounceback condition implies that a node can be considered as a solid and not taken into 

consideration when applying these conditions.   

In [4] there is a survey on various boundary conditions. 

 

 

2.5 Multiphase LBM 

 

The most important aspect of the LBM is that it can simulate a single- or multicomponent 

fluids that exhibit phase separation. A component of the fluid refers to a chemical substance 

(like H2O) and a single component multiphase fluid would involve multiple phase systems 

made from a single chemical substance (e.g. liquid and vapor phases of water). A 

multicomponent fluid could contain for example water and oil. Studies for these have been 

made in [6, 7].     

The “ideal” gas law characterizes the behavior of the gases at low density and is known as the 

equation on state (EOS). The ideal gas law is: 
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         (8) 

 

where P-pressure(atm), V-volume(L), n-number of moles, R-gas constant (0,0821 

(L*atm)/(mol*K)) and T-temperature(K). 

The van der Waals EOS was developed to account for the behavior of real gases: 

 

  
   

    
  (

 

 
)    (9) 

 

where the second term represents the attractive forces between molecules and the nb term 

represents the non-negligibile volume of molecules [1]. 

For liquid-vapor systems, the use of the van der Waals EOS and of the finite difference lattice 

Boltzmann (FDLB) [9-13] provides a better solution [8] compared to the normal DnQm 

solution presented above. 

The FDLB model starts from the Boltzmann equation but as stated in [8] it has a better 

numerical stability and is more flexible when simulation multiphase fluids that produce 

different lattice speeds for different phase masses, compared to the solution presented before. 

The new discretization of the Boltzmann equation will be as follows: 

 

               
 

   
  
  (      )    

 

 
(     

  )  (10) 

 

where the constant    is equal to 1/3 as presented in [8], and the force term F is computed 

according to: 

 

   
 

 
  ( 

    )     ( 
  )   (11) 

 

where p
i
 is the ideal fluid pressure and p

w
 is the van der Waals pressure and the parameter k 

controls the surface tension.  

When discretizing equation (9), two finite difference schemes may be used [8]: the first-order 

upwind scheme and the flux limiter schemes. Even though the computer simulations show 

that the flux limiter schemes produce more accurate results, the first order upwind scheme is 

easier to be implemented. For this reason we have chosen, in our work, to implement the last 

type of scheme given the complicated manner and complexity of operations that are required 

when using flux limiter schemes. 
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3 NVIDIA CUDA C 
 

3.1 General Purpose Graphical Processing Units’ architecture 

 

 

Graphical processing units (GPU) are developed for use in problems that can be highly 

parallelizable. Image processing is one of those problems. 

The GPU could be used to solve other problems that can harness their computational power. 

Their initial usage in image rendering and processing have made them inaccessible to general 

programmers because they would have to learn image programming languages like openGL 

to solve problems that were not related to image processing. 

 

NVIDIA has introduced the Compute Unified Device Architecture (CUDA) in 2006 as a 

general purpose parallel computing platform and programming model that harness the 

parallel computing power of NVIDIA GPUs and uses them to develop programs that are 

faster than those on the CPU [5]. 

 

The CPU hides memory latency by using large caches. In contrast, the GPU tries to hide the 

memory latency by high parallelization of the algorithm (running as many threads as possible 

at once) and by high operation throughput. 

 

Figure 2. shows the architecture of a CPU and an NVIDIA GPGPU: 

 

 

 

 

Figure 2. The hardware difference between CPU and GPU [15] 

 

 

 

Given that the GPUs are more compute-intensive, the floating point operations per second 

(FLOPS) are very high compared to even the most powerful CPUs. A comparison between 

the CPU and the GPU regarding theoretical computational power (measured in GFLOPS or 
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Giga FLOPS) can be seen in Figure 3. For GPUs the use of double precision halves the 

performance compared to single precision [15]. 

 

 

Figure 3. Floating point operations per second for CPU and GPU [15] 

 

 

 

3.2 CUDA programming model 

 

The CUDA programming model was developed to be as simple as possible for people with 

knowledge of standard programming languages like C, C++ or Fortran. It introduces library 

functions for different operations needed to work with the GPU. It has a special compiler 

called “nvcc” which is used to compile the files. Files that contain code for the GPU will 

have the extension “.cu” for C/C++ files and “.cuh” for C/C++ header files. 

 

The important elements of CUDA are the blocks, threads and the memory type. Functions 

that run on the GPU (device) are started with a number of blocks and a number of threads 

allocated for each block. The maximum possible numbers of threads per block on devices 

with CUDA compute capability 2.x is 1024.  

The GPU has a number of streaming multiprocessors (SM) on which the blocks run. Multiple 

blocks can run on a single SM if there are enough resources. If not, after one block finishes 
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the run, another block is scheduled until no more blocks remain. CUDA is developed as to 

permit the run of a function with a specified number of blocks and threads on devices with a 

different number of SMs, as can be seen in Figure 4.   

 

 

 

Figure 4. Automatic scalability [15] 

 

 

Functions that execute on the GPU for multiple threads are called kernels and in CUDA C, 

these are C functions that are defined on the CPU and have the __global__ identifier. The 

return value of a kernel is of type “void”. They are started on the host (CPU) by calling the 

name of the kernel, followed by the “<<<blocks, threads>>” and then the arguments of the 

function. An example of a kernel for adding each element of two vectors and storing the 

result in a third can be as follows [15]:  

 

__global__ void VecAdd(float* A, float* B, float* C) 

{ 

int i = threadIdx.x; 

C[i] = A[i] + B[i]; 

} 
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int main() 

{ 

... 

// Kernel invocation with N threads and 1 block 

VecAdd<<<1, N>>>(A, B, C); 

... 

} 

 

 

Each thread on a block has an unique identifier for the directions x,y,z which specify the 

position of that thread. The example above calls only the identifier for the x direction because 

we start a block than has threads only in one dimension. To have threads distributed on 

multiple axes in the block we would have to define the number N as follows: 

 

 dim3 N(threadsx, threadsy, threadsz) 

 

with the specification that also the product of the three values must not be higher than the 

value of threads per block allowed by the device’s compute capability (1024 for capability 

2.x). 

 

Functions that run only on the device and can be called only from code running on the device 

have the __device__ function identifier: 

 

//example of a device function that computes the global thread index considering 

//multiple blocks are started 

 __device__ int getIndex(){ 

  return blockIdx.x * blockDim.x + threadIdx.x;  

 } 

 

  

  

Each block will run independently of other blocks, there are only synchronization functions 

available between threads that run on the same block. 

 

The properties of the SMs on the GPUs are that they can run hundreds of threads 

concurrently. To achieve this they use a specific architecture name SIMT (Single-Instruction 

Multiple-Threads) [15] with no branch prediction or speculative execution. This means that 

branching in kernels can lead to an important downgrade in performance. 

Each SM creates, schedules and runs threads in groups of 32 (called a warp). The instructions 

are issued in order to a warp. Even though each thread in a warp has its own instruction 

address stack and variable values, a warp will receive a single instruction at one time, so if 

there is any divergent branching in a warp, those instructions for each divergent warp will be 

issued in a serial order to each thread.  

 

 

Memory types 

 

The threads can have access to multiple types of memory. Some of it is on-chip, for each 

streaming multiprocessor, but some is global (visible for all threads). 
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The global memory is visible on all the SMs and can be accessed by all threads from all the 

blocks. This has the lowest bandwidth, and has increased latency (300 cycles). 

A special type of global memory is the constant memory (64 kb), this is specified by using 

the __constant__ variable qualifier: __constant__ int speed[16]; . This type of memory has 

an increased bandwidth (10 times faster than global) if the threads from a half-warp (16 

threads) access the same element of the memory on one instruction call [15]. 

 

Memory transfers from GPU to CPU and back are done via global memory. Constant 

memory should be statically defined. The global memory is allocated, copied and destroyed 

on the CPU using the following functions: 

 cudaMalloc() – allocating a device pointer  

    cudaMemcpy() – copying to/from device memory 

 cudaFree() – free the allocated pointer 

For constant memory we use cudaMemcpyToSymbol()/cudaMemcpyFromSymbol(). 

 

An example for allocating, copying (to device and back) and freeing the memory can be 

added to the example above for the vector addition. 

 

__constant__ float speed[16]; 

__global__ void VecAdd(float* A, float* B, float* C) 

{ 

int i = threadIdx.x; 

C[i] = A[i] + B[i] + speed[i % 16]; 

} 

 

int main() 

{ 

 float hspeed[16];  

 //device pointers 

 float *A, *B, *C;  

  

//host pointers 

 float *HA, *HB, *HC; 

 

//allocate host pointers 

HA = (float*)malloc(N * sizeof(float)); 

… 

 

//allocate device pointers 

cudaMalloc((void**)&A, N * sizeof(float)); 

... 

 

 

//copy the two host vectors HA, HB to A and B  

cudaMemcpy(A, HA, N * sizeof(float), cudaMemcpyHostToDevice); 

cudaMemcpy(B, HB, N * sizeof(float), cudaMemcpyHostToDevice); 

 

//copy to constant memory 

cudaMemcpyToSymbol(speed , &hspeed, 16 * sizeof(double), 0,        

cudaMemcpyHostToDevice ); 
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// Only device pointers can be sent as kernel parameters 

VecAdd<<<1, N>>>(A, B, C); 

... 

 

//copy only the result back 

cudaMemcpy(C, HC, N * sizeof(float), cudaMemcpyDeviceToHost): 

 

//free host pointers 

free(HA); 

… 

 

//free device pointers 

cudaFree(A); 

… 

} 

 

In [15] it is stated that the difference between global memory and on-chip memory is that on-

chip memory is not visible to threads from another block. The advantage of local memory is 

that it is very fast compared to global memory but it is in limited resources. 

 

The two important memory types that we are discussing are the shared memory (declared by 

__shared__ and visible to each thread in a block) and local memory which is represented by 

the automatic variables defined in the kernel function. 

The shared memory is at least one order of magnitude faster than global memory but is a 

limited resource (64 kb per SM). Synchronization between threads when using shared 

memory in order to avoid race conditions is done by the call of __syncthreads() which waits 

for all the threads in the block to reach this point, and then continue. 

 

Each SM has a limited number of registers to use for local memory. If these are all used, then 

the rest of the variables will be stored in global memory (register spilling) and therefore 

reduces the speed capability (27 cycles) of this type of memory. So a well-managed memory 

can avoid the spilling and make us of the speed of local memory. 

 

Memory coalescing is an aspect than need to be taken into consideration when working with 

global memory. This is related to global memory access patterns. Each thread in a warp must 

access a memory location within the same 128 bytes as the rest in order for the call to access 

the memory to be issued in a single transaction. Each misaligned call will increase the 

number of transactions needed for a warp to read/write the global memory.  
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4 State of the art 
 

4.1 Previous work 

 

The use of CUDA for developing flow solvers for Lattice Boltzmann Models has increased in 

recent years. Some of the most important work has been done for the streaming and collision 

models for LBM. 

 

One of the most cited work in this domain has been that of Jonas Tolke. One relevant article 

is [16] in which Tolke studies the different approaches for two LBM types of methods: 

multiple relaxation and BGK for a D2Q9 implementation. In this article he presents a 

memory access pattern for improving bandwidth. In this article, he uses the solid wall 

boundary conditions with a simple bounce back rule. This allows him to obtain, with the use 

of single precision, a performance of over 500 MLUPS (million lattice updates per second) 

for all of the implementations on a GeForce 8800 Ultra (410 GFLOPS).  

 

Tolke et al. [20] present a D3Q13 implementation in which they use periodic boundary 

conditions. They conclude that the use of ghost nodes around the domain layer can reduce the 

divergent branching statements in the CUDA code and improves performance.  

In this article the authors also discuss the difference between the use of single and double 

precision. They believe that, even though the single precision use is less stable, this could be 

avoided by the careful implementation of the collision operator. 

 

 

 Based on the work of Tolke et al. [20], J. Habich [21] expands the implementation to a 

D3Q19 model. He developed, based on Tolke’s article, the shared memory implementation 

for the new model. He discusses the periodic boundary conditions for the model, and 

references [20] the “ghost” nodes idea for divergent branch reduction. He presents the no-slip 

wall (solid wall) boundary condition which, as for Tolke’s solutions, is simpler and proves to 

add to the performance of the algorithm. 

 Also, he discusses the improvement of accessing memory by using a structure of arrays 

(SoA). This is opposite to using an array of structures (AoS). For a given matrix, a SoA 

means that the probability distribution functions (PDF) for each velocity are stored in a 

continuous matrix. The structure will contain a list of m matrices for each probability. On the 

opposite side, an array of structures will store for each node a structure with all the elements 

for a node. Given the way CUDA warps access memory, the SoA approach is needed.  

We can see in the Table 1. the difference between the two: 

 

 

Structure of Arrays (SoA) Array of Structures (AoS) 

struct domain{ 

double **pdf[m] 

… 

}Domain; 

 

Domain layout;  

struct domain_node{ 

double pdf[m] 

… 

}Domain; 

 

Domain **layout; 

Table 1. Difference between Structure of Arrays and Array of Structures 
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J.E. McClure et al. [17] present a solution for a single phase single relaxation BGK model 

and a multiple relaxation time model (MRT). They implemented a D3Q19 model and tested 

both solutions using single precision and the streaming collision model. 

They have tested both implementations using a NVIDIA Quadro FX 5600 GPU with 345 

GFLOPS in single precision. The results have shown that the GPU implementations were 

faster than a solution than ran on a 3.0 GHz Intel Clovertown CPU. 

The results showed that the BGK model is faster than the MRT model because it does not use 

as much memory and has less complex terms to be computed. 

 

 

L. Biferale et al. [18] present the solution for a D2Q37 LBM using a streaming collision 

approach. This solution is done using double precision arithmetic on Tesla C2050 that has 

515 GFLOPS in double precision.  

Their multi-CPU implementation is done using an AoS on a 3.3 GHz six-core Westmere 

CPU platform. The algorithm is composed of three steps : stream(), bc() and collide(). The 

“stream” step gathers the distribution functions that are used on the next steps. This has 

irregular memory access patterns.  

The “bc” step adjusts the values of the top and bottom nodes corresponding to the used 

boundary condition. They use the periodic boundary conditions for the left and right edges. 

They use the elements from a 3 lattice distance, so this is done in the bc step by allocating 

additional storage for the appropriate edges. This is the same as the ghost nodes approach 

presented in the above articles. 

The “collide” step computes the data according to the equations used. This step is the most 

compute intensive regarding floating point operations as this will calculate data for the next 

iteration. 

The GPU solution uses the SoA approach. The algorithm for the GPU has 4 steps: comm, 

move, bc, collide. As presented in [18] the 4 steps do the following: 

  

 

step 1: 

exchanges the Y frames through a cudaMemCopy operation; 

step 2: 

executes the stream kernel for the three topmost and lowermost rows of the 

grid; 

step 3: 

adjusts the boundary conditions for the cells located at the top and bottom 

rows of the grid. It then runs collide for the same cells; 

step 4: 

executes a kernel that jointly computes stream and collide for the bulk cells of 

the lattice. 

 

 

In the results they state that using the shared memory as L1-cache gives a 15% improvement. 

They have achieved 33% kernel occupancy and showed that a single GPU approach is 2x 

better than the optimized multi-CPU version but only delivers 30% of the peak performance 

allowed by the device. The optimized multi-CPU code however reaches 45% of the peak 

performance.  

Even though the GPU code is faster than the GPU, an optimized multi-CPU code has a higher 

performance regarding peak performance.  The problem is that the multi-CPU approach was 
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very hard to optimize in order to reach the presented results because of the fact that the use of 

the C programming language does not have a natural tendency toward the parallel 

development of programs. 

 

 

The solutions that exist tend to go towards the development of CUDA implementations that 

use simpler equations and boundary conditions that would not affect the improvements that 

could be done. The use of single precision improves the performance of the algorithms, but 

impacts the accuracy and stability of the results. 

 

The streaming collision LBM is mainly used to develop simulations using CUDA. This is 

much simpler compared to the finite difference LBM which uses more complex equations. 

From the results of the articles, when using periodic boundary conditions, the use of ghost 

nodes seems to improve the performance of the CUDA implementations by reducing the 

divergent branching statements and improving memory coalescing by allowing the neighbors 

to be accessed on continuous memory addresses. 

 

We will compare the results from articles [16], [17] and [18] with our solution in the results 

chapter and we will analyze the reasons for the different performance results.  

We have chosen these articles because of the different approaches they employ: different 

dimensions (2D, 3D), different number of velocities (9, 19, 37), different precisions (single, 

double), multiple memory use approaches (shared memory, cache). 

 

4.2 Related work 

 

In this part of the chapter we present an overview of the existing solution from which we 

developed our CUDA implementation. The existing solution [14] was developed in PETSc 

[19] which is a library for the C programming language that is used for developing of multi-

CPU solutions. 

 

The solution is for a D2Q9 finite difference LBM . 

 

The multi-CPU algorithm uses specific PETSc library functions in order to represent a 

general matrix layout for the fluid. It then partitions the matrix across the X and Y axis 

(direction can be specified) for the specified number of cores that it is going to run on. 

The matrix here is represented as an array of structures, using a three dimensional matrix 

(double ***global) in which the third dimension represents the values for each term we want 

to compute (probability distribution functions, temperature, pressure, force). 

 

The matrix is tiles with “ghost” nodes from the start, but these are done by the PETSc 

function when creating a two dimensional array that will be distributed over multiple 

processors. The function is DACreate2d, and the management of this global array created is 

managed through specific PETSc functions. 

For a simpler decomposition of the matrix over multiple processors, the implementation is 

done over only one axis (the vertical one – Y). In the PETSc case the axis are inverted 

compared to the representation of a matrix in C which goes a[x][y] not a[y][x] like in PETSc. 
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For each processor there will be a local matrix that is represented only by the elements that 

will be computed by it. This local matrix is created by calling the two consecutive PETSc 

functions: 

 

 DAGlobalToLocalBegin(…); 

   DAGlobalToLocalEnd(…); 

 

 

These functions create the  local matrix for the processor with the specified ghost nodes (on 

all sides) from the global matrix. 

 

The pseudo code for the algorithm is presented in Algorithm 1. 

 

The specific code for initializing the PETSc environment and several time counters are not 

presented for the simplicity of the algorithm. We only present and discuss the elements that 

are relevant in the transition to the CUDA implementation. 

 

 

 

Algorithm 1 – PETSc version 

 

1. initialize_global_matrix(); 

2. profile(); 

3. i=0; 

4. while (i < cycles){ 

5.  j=0; 

6.  while (j < iterations){  

7.   compute_local_quantities(); 

8.   lb_time_step(); 

9.   j++; 

10.  } 

11.  profile(); 

12.  j++; 

13. } 

 

14. free_memory(); 

 

 

 

The first line contains the function for generating the data for the 9 probability distribution 

functions and creating the global matrix that is visible to all processors. 

 

The “profile()” function calculates certain values from the global matrix and writes data used 

in graphical representation of the results. 

 

At each iteration step the algorithm profiles the result from the global matrix (line 11). 

The simulation of the fluid will run for a total number of “cycles * iterations”. 
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In the “compute_local_quantities()” function at line 7 the data is loaded in each processors’ 

local matrix with the ghost nodes already existing in each local matrix. The needed data will 

be computed here using the loaded elements from the local matrix. All the computations will 

be done locally for each processor. 

 

After each processor has computed the necessary data, it will move to the second function, 

where “lb_time_step()”, for the next step of the simulated time, in the global matrix the 

algorithm computes the new values for the probability distribution functions based on the 

corresponding values from the local matrix. So, for example, element aGlobal[i][j][k] will be 

computed using the value existing in the element aLocal[i][j][k]. So basically the local matrix 

works as an auxiliary matrix for the global one. 
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5 Proposed solution 
 

 

Our goal is to develop a CUDA implementation using the same formulas like in the PETSc 

version, transform them for CUDA and measure the speed-up achieved compared to the 

multi-CPU implementation. 

 

In the next parts of the chapter we will present the changes done for transforming the 

algorithm to the CUDA version, we will specify different improvements that we have done to 

the CUDA solution and in the last part we will present the problems that occurred and some 

observations for the implementation. 

 

5.1 CUDA implementation 

 

 

In order to transform the CPU based implementation to a GPU based one, we must consider 

the changes that need to be done. 

 

The first problem that occurs is that on the CPU the memory is visible for all the processors. 

On the GPU however we must consider that there are two types of memory: one for the host 

(CPU) and one for the device (GPU). The memory transfers are managed by the CPU.  

So, we must allocate the same matrix memory for the GPU as we allocate for the CPU. 

 

The distribution of the computation for the matrix elements was done on the multi-CPU by 

splitting the global matrix by the number of processors. For each processor is allocated a 

continuous part of the global matrix. The processor computes the values of the matrix by 

using local matrices (that are also auxiliaries for the second part of the algorithm). This was 

done by using an AoS (array of structures). 

On the GPU we have blocks but we cannot assign a part of the matrix for each block we run 

because this will result in noncoalescent memory access patterns by different blocks. We 

therefore use the SoA (structure of arrays) approach and assign each node of the matrix a 

thread that calculates the needed data. This is possible because of the way the SMs are 

structured on the GPUs by allowing millions of threads to be started. 

Because we do not have local matrices as for the multi-CPU version to use as auxiliaries, we 

will allocate a single global auxiliary matrix that is visible from all the threads.  

 

Following the results from Tolke et al. [20] we will also use ghost nodes. The difference 

between the ghost nodes created for each local matrix in PETSc, we only create the ghost 

nodes for the global auxiliary matrix. This will reduce the memory usage and also the need to 

create redundant ghost nodes for each local matrix. 

 

The two functions that compute the data in the two steps presented in chapter 4.2 will now 

run on the GPU as kernels. The pseudocode of the algorithm in CUDA is presented in 

Algorithm 2. As with the PETSc presudocode, we kept this at a high level implementation for 

simplicity of understanding. The compute_local_quantities() function has been renamed to 

periodic_boundary() because it does no longer compute local data.  
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Algorithm 1. Pseudocode for the high level implementation 

 

1. generate_data(); 

2. copy_to_device(); 

3. i = 0; 

4.  while(i < cycles) 

5.  { 

6.  j = 0; 

7.  while(j < iterations) 

8.  { 

9.   periodic_boundary<<< >>>(…) 

10.   lb_time_step<<< >>>(…);  

11.    j++; 

12.  } 

13.      copy_to_host(); 

14.  profile(); 

15.  i++; 

16.  } 

17. free_device_memory(); 

18. free_host_memory(); 

 

 

 

The “generate_data()” function creates the global matrix on the CPU and generates the data 

for it and for the additional arrays(some of which are have constant values) that will be used 

during the simulation. 

We consider here that the function also allocates a global matrix for the GPU with the same 

dimensions as for the CPU (dimx * dimy) and another auxiliary matrix that is tilled with the 

ghost nodes and slightly larger ( dimlx * dimly = (dimx + 2 *ghostx) * (dimy + 2 * ghosty) ). 

All other arrays and variables that are used have allocated memory also on the GPU. Because 

we use a two lattice distance stencil (17 node stencil), we need ghostx=ghosty=2. We also 

multiply them by two in the calculation of the auxiliary matrix’s dimensions because we have 

ghost nodes on all sides: north, south, east and west. 

We call the two GPU matrices dgf_one (global matrix) and dgf_two (auxiliary matrix). It is 

important to note that the maximum dimension of dgf_one can be defined 

dgf_one[dimy][dimx], because we use the Y axis as primary axis . 

 

The “copy_to_device()” function will copy all the necessary data from the CPU to the GPU 

memory. The auxiliary matrix on the GPU has no associated memory on the CPU so at this 

step it is only created on the GPU. 

 

The “periodic_boundary()” kernel is started with a certain number of blocks and threads per 

block and will compute the values that are necessary and store them in the auxiliary matrix. 

The values are computed by using the data from the global matrix on the GPU. 

At this step each thread that is on the edge will copy the corresponding value to the 

appropriate elements on the ghost nodes.  

An example is as follows in Table 2. for the auxiliary matrix with 16 elements (from the 

global matrix) and with two tiles of ghost nodes on each part: 
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10 11 8 9 10 11 8 9 

14 15 12 13 14 15 12 13 

2 3 0 1 2 3 0 1 

6 7 4 5 6 7 4 5 

10 11 8 9 10 11 8 9 

14 15 12 13 14 15 12 13 

2 3 0 1 2 3 0 1 

6 7 4 5 6 7 4 5 

Table 2. Example of creating an auxiliary matrix with 16 elements and 2 lattice distance 

ghost nodes 

 

 

We can see in the example how the auxiliary method ghost nodes are created, with the 

highlighted example that the node zero (green) must be copied to the south ghost node, east 

ghost node and southeast ghost node. 

 

The “lbm_time_step()” kernel will compute the new values for the global matrix by using the 

ones from the auxiliary one that were calculated in the previous kernel. 

These are similar to the formulas that are used in the PETSc version in the function with the 

same name. The difference now is that each thread computes a node from the matrix 

compared to a specified number in the multi-CPU implementation. 

An example for this difference is the use of “for” statements in the multi-CPU version,  that 

are used to compare the associated global matrix nodes to the local matrix nodes: 

The PETSc version would use: 

 

 for (y=localystart, localyend) 

  for(x=localxstart, localxend) 

   for(element=0, elements) 

global[y][x][element] = compute( 

local[getLocalY(y)][getLocalX(x)][element] 

);   

The GPU version would be: 

 

for(element=0, elements) 

global[getThreadY][getThreadY][element] = compute( 

 local[getThreadY][getThreadY][element] 

);  

  

We specify that this only an example and that there are certain improvements that were set 

for the GPU implementation in order to simplify and increase performance. But these are 

presented in the chapter 5.2 . 

 

Another important element at this step is the use of a 17 node stencil. This means that a node 

will need to use data from 16 neighbors when computing the data for the global matrix, 

therefore a 2 lattice distance. This is the reason for using two tile ghost nodes on each side. 

In the next example we show the neighbors that are used for a node. The node is notes with 0 

and highlighted with red and the unused nodes with X . L. Biferale et al. [18] use 3 lattice 
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distance which, as shown in the results, greatly impacts performance. The example of 

neighbors is presented in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Neighbors for a 17 stencil approach 

 

 

The “copy_to_host()” function copies the results from the GPU global matrix to the CPU 

global matrix. These will be used to compute statistics by the “profile()” function at line 14.  

 

We have the two “while” statements at lines 4 and 7 because the first one determines how 

many profiles we want to make in the simulation and the second one determines how many 

steps we want to take between each profiling session. 

 

The last steps will clean the device memory (line 17) and the  global memory (line 18). 

 

The two kernels have the following definitions: 

 

__global__ void periodic_boundary(double *dgf_one, double *dgf_two,  

double *cspeed_x, double *cspeed_y) 

 

__global__ void lb_time_step(double *dgf_one, double *dgf_two,   

double *cspeed_x,  double *cspeed_y, double *cweight) 

 

All of the function’s parameters are allocated on the host using the “cudaMalloc()” function. 

The pointers can be passed on the host as well but cannot be used to read the values, because 

the data is on the device. We explain the reason for using a one dimensional array for the 

global matrix and the auxiliary one in chapter 5.2. The other arrays are simply one 

dimensional with the size of the number of velocities used (9 in our case). 

The two kernels are called using the following code: 

 

periodic_boundary<<<blocks, threads>>>(dgf_one, dgf_two, cspeed_x, cspeed_y); 

 

lb_time_step<<<blocks, threads>>>(dgf_one, dgf_two, cspeed_x, cspeed_y, cweight); 

 

 

 

 

14 X 10 X 13 

X 6 2 5 X 

11 3 0 1 9 

X 7 4 8 X 

15 X 12 X 16 
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5.2 Implementation improvements 

 

In this chapter we explain the improvements we used for the CUDA implementation. 

Some are based on the indications from [15], some are from the published solutions presented 

before. Not all the presented improvements could be used in our solution because of the 

specific problem and equations we used for the LBM. 

We discuss these in this chapter along with the explanation of why we could or could no use 

them. 

 

As specified before, the use of single precision computations on the GPU is twice as fast as 

the use of double precision. Even though we wanted a very fast implementation, because we 

wanted similar results to the PETSc version, we had to use the double precision. 

 

The ghost nodes approach was presented in chapter “4.1 Previous work” as well as in chapter 

“5.1 CUDA implementation” . This improves the solution because it reduces the divergent 

branching that results from the use of periodic boundary conditions on edge nodes. This also 

improves the memory access patterns because each thread in a warp will access a continuous 

memory location. If we would not use the ghost nodes, the threads for the edge nodes would 

have had to access the memory from the other side of the matrix.  

 

Because the global memory access for an element is around 300 cycles compared to 27-30 

cycles on registers we load the memory we use more than once in registers and reuse them. 

For example if we have:  

 dgf_two[ lindex ]  = dgf_one[ index ] + dgf_one[ index  - 1]; 

 dgf_two[ lindex + 1]  = dgf_one[ index ] + dgf_one[ index  - 2]; 

 

we improve the speed by storing dgf_one[ index ] in a register: 

 double reg = dgf_one[ index ]; 

 dgf_two[ lindex ]  = reg + dgf_one[ index  - 1]; 

 dgf_two[ lindex + 1]  = reg + dgf_one[ index  - 2]; 

 

Another idea for improving the run time is by storing and computing the intermediate values 

in registers and only after that storing them in the respective global memory. 

This is done because there are complex formulas that compute, use and store different 

elements from a node (pressure, density, temperature etc.). 

The problem with the use of many registers is that each SM has only a limited amount of 

them and has a limited number of registers per kernel (64 in compute capability 2.x) which 

will result in register spilling to global memory (the excess registers will be stored in global 

memory) which will negate the improvement effects specified before. 

A solution for this is to reduce the number of register usage. The fewer registers we use per 

kernel, the more warps could run at the same time on the GPU (increased occupancy). 

We do this by reusing certain registers. This unfortunately results in a code that is optimized 

but is very hard to understand and reuse in further more complex solutions. 

We also recalculate the position indexes for the two matrices (gpos – for the global matrix, 

lpos – for the auxiliary matrix) whenever they are used. 

 

In order to improve memory coalescing when calling global memory elements, we use the 

SoA (structure of arrays) to store the matrix, but we do this in a one dimensional array where 

all the matrices (matrix for each element of the node ) are stored in a continuous manner. This 

results in having two arrays corresponding to the global and auxiliary matrix (*dgf_one and 
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*dgf_two) for which we have to compute the two indices (gpos and lpos) in order to 

determine which node corresponds to the thread that is running. The two position indexes are 

calculated based on the global thread index for each node. 

The problem here is that having a 17 node stencil, not all the memory calls can be coalescent. 

This is true mostly for the calls to the north and south neighbors (ne, nw, se,sw calls are also 

noncoalescent calls). But this is to be expected, as other published results stated. 

 

Even though we specified that each thread could compute a node, this is not a good approach, 

because of the availability of registers, the number of possible threads that can run on a GPU 

(sustained by the SMs). So, in order to further reuse the registers and increase the occupancy 

we reuse the created threads to compute other nodes when finishing with a certain one. This 

allows us to create a limited amount of threads and blocks and reuse them. This is preferable 

to creating threads for all the nodes of the matrix (1024 * 1024).  

 

Using shared memory as proposed by Tolke [16] is not viable in our implementation because 

of the use of the 17 node stencil and the large number of nodes that need to be computed. The 

shared memory is a limited resource for each SM (64 kb) which is too few to load all the 

needed elements for computing purposes. This would reduce the occupancy on the GPU to a 

point that only a few threads (maybe 32) could run and use the shared memory for each SM. 

This would not be a viable solution. 

 

Another improvement we have used is that of the constant memory. Because we have arrays 

or coefficients that are not modified during the kernel’s run, we store them in constant 

memory. Even though this is also limited to 64kb per SM, it is sufficient to store all the arrays 

and coefficients we use in the formulas. 

 

We have developed one version (V1) with the improvements specified above, and a second 

one (V2) in which we reuse the registers in an even more aggressive manner and recalculate 

indexes and certain sums. In the Results chapter there is a running time comparison between 

the two versions.  

   

5.3 CUDA-specific problems for the implementation 

 

The implementation of the CUDA starting from the PETSc version has shown a few specific 

problems that a developer must take into consideration when implementing such a program. 

One of the problems is the different approach to store the data which in a typical CPU 

program is done using AoS (array of structures). In contrast, the GPU solution needs to have 

the SoA (structure of arrays) approach in order to provide the indicated coalescent memory 

access patterns. 

 

Regarding the coalescent memory access pattern, the LBMs have the problem that using 

neighbors from distant lattices will impact the performance by addressing sparse elements 

and not continuous ones. 

 

A typical CUDA problem is that new versions introduce new ways to access and modify the 

memory, to run threads in a warp etc. This results in new ways to improve the solution when 

switching to another version of CUDA. Even between GPUs the different architectures 

(Fermi, Kepler etc.) provide different amounts of memory available. 
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6 Results 
 

Profiling results 

 

In order to have a similar results regarding precision compared to the PETSc[14] version, we 

must first study if the multiphase fluid we simulate shows a separation after a certain number 

of iterations. We initialize the fluid in order to have only minor density variations and set the 

velocities values and the other parameters. Depending of the starting parameters the fluid 

would show a phase separation after a few number of iterations (a few thousand) or a large 

number of iterations (hundreds of thousands). 

 

Having the initial parameters as follows: 

 delta_time  = 0.0001 

 tau   = 1.000e-03 

 rho_zero  = 1.000e+00 

 kappa   = 0.0001 

 RTzero  = 1.0 

 RRTzero  = 0.9 

 temperature  = 0.9  

 

we profile the results of a simulation for a 256x256 matrix for iterations 0, 5000, 10000, 

15000 and 20000 and write them in an image file in order to see the results. 

 

 

 

 

 

Figure 6. Liquid(black) - vapor(white) phase separation within a 256x256 matrix 

 

 

As we can see from the results in the initial state there are only small density variations. As 

the time (i.e., the number ofiterations) increases, these variations intensify start to increase 

and is shows phase separation. The sum of all probability distribution functions, performed 

over the nodes of the lattice gives total number of particles in the system. This quantity is 

quite well conserved during our simulations (up to the 6th digit of the sum, after 5000 

simulations) 

 

Performance results and analysis 

 

We have tested the two versions of the algorithm using two different devices: a laptop GPU – 

NVIDIA GTX460M (168 GLOPS double precision) and a powerful scientific GPU – 

NVIDIA Tesla M2090 (665 GFLOPS double precision). 
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iterations 

20000 

iterations 
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As we can see, the M2090 has 4 times more computing power. CUDA allows scalability 

when increasing the resources (more Streaming Multiprocessors with more computing 

power) but a poorly implemented parallel algorithm will not make use of this performance 

increase. 

The result of running a simulation for a 256x256 matrix shown in Figure 7 shows us that the 

performance ratio (4:1) is maintained when using the more powerful device. 

 

 

 

Figure 7. Runtime for V1 and V2 on GTX460 and Tesla M2090 

 

 

We also must compare the running time results with the PETSc version in order to see the 

performance increase when compared to a multi-CPU implementation. 

 

We have used 16 cores of the BlueGene
1
 for testing the running time for a 256x256 matrix. 

The results can be seen in Table 3. 

 

 

 

                                                 
1
 Supercomputer at “West” University in Timișoara, http://hpc.uvt.ro/infrastructure/bluegenep/ 

http://hpc.uvt.ro/infrastructure/bluegenep/


27 
 

 

 

 

 

256x256 Time (s) 

Iterations PETSc –  

16 cores 

CUDA 

 v1 – GTX460 

CUDA v2 – 

GTX460 

CUDA v1 

– Tesla 

M2090 

CUDA v2 – 

Tesla M2090 

5000 199.092 15.653 14.461 4.47 3.789 

10000 397.398 31.249 28.869 8.944 7.574 

20000 793.755 62.419 57.659 17.878 15.145 

30000 1189.43 93.592 86.453 26.81 22.718 

50000 1982.489 156.039 144.06 44.722 37.861 

Table 3. Results for a 256x256 matrix 

  

For a 512x512 we have increased the number of cores used on the BlueGene by 8 times, 

giving 128 cores. The running time results can be seen in Table 4. 

 

 

 

 

 

512x512 Time (sec) 

Iterations PETSc –  

128 cores 

CUDA v1 – 

GTX460 

CUDA v2 – 

GTX460 

CUDA v1 – 

Tesla M2090 

CUDA v2 – 

Tesla M2090 

5000 203.573 68.065 58.323 17.795 15.664 

10000 417.739 136.2 116.662 35.579 31.319 

20000 828.849 272.329 233.188 71.134 62.618 

30000 1249.349 408.333 349.978 106.701 93.911 

50000 2062.281 680.45 583.007 177.849 156.516 

Table 4. Results for a 512x512 matrix 

 

 

As we can see from the two tables, the CUDA versions are faster than the multi-CPU 

versions. Even with 128 cores, the PETSc version is 13 times slower than the version that 

runs on the Tesla GPU. Even the laptop GPU performs 4 times faster than the multi-CPU 

implementation. 

Even more, increasing the number of cores by 8x has only improved performance by 4x. This 

is mainly due to the fact that the cores need to communicate between the two steps in order to 

have the updated results. This is very time consuming. The CUDA version does not need to 

communicate the results between threads as it uses a global memory in which every thread 

can see the updated values after the synchronization (between the two kernels).  
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The second version (V2) is at least 8-10% faster than the first version (V1) but due to the 

aggressive reuse of registers the code has lost much of its meaning, in the sense that it is very 

hard to debug or even use other more complex functions in place of those already existing. 

This is important to consider as there are many other functions that could be used to compute 

the term for each lattice, and we must choose whether the 10% speed improvement is worth 

to be compared against the capability of easily extending the algorithm's solutions in the 

future 

 

Comparison to published results 

 

Our results must be compared to those presented in the State of the art chapter in order to see 

the impact that using finite difference Lattice Boltzmann Models has on the performance of 

the algorithm.  

 

We have chosen three published results that we want to compare with: J. Tolke [16], J. E. 

McClure et al. [17], L. Biferale et al. [18].  

 

In each of the published results, the performance of the algorithms is compared in million 

lattice updates per second (MLUPS). This metric is calculated by determining how may 

lattice nodes are updated (e.g. 256x256) during the entire simulation run (e.g. 20000 

iterations) and dividing the result by the running time. 

 

In Table 5 we have the comparison of our result with the other 3. Given the fact that each 

solution was run on a different device we have placed the computing performance in 

GFLOPS of device in single or double precision depending on the one used in the solution. 

We have also calculated the ration of GFLOPS needed to compute the MLUPS for each 

implementation.  

 

 

 Device name Device 

theoretical 

GFLOPS 

Precision LBM 

DnQm 

MLUPS 

achieved 

MLUPS / 

GFLOPS 

Our solution Tesla M2090 665 Double 

precision 

D2Q9 – 

FDLBM 

84 0.126 

J. Tolke GeForce 8800 

Ultra 

 

410 Single 

precision 

D2Q9 – 

SCLBM 

568 1.385 

J. E. McClure 

et al. 

Quadro FX 

5600 

345 Single 

precision 

D3Q19 – 

SCLBM 

250 0.724 

L. Biferale et 

al. 

Tesla C2050 515 Double 

precision 

D2Q37 - 

SCLBM 

20 0.038 

Table 5. Performance comparison to published work 
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Compared to J. Tolke’s results, we have an order of magnitude less performance than his 

results. We can see that a similar model (D2Q9) that uses a finite difference LBM approach 

(FDLBM) can severely impact performance compared to a simpler streaming collision LBM 

(SCLBM) implementation. 

 

Our results show 6x times less performance compared to the results from J.E. McClure et al. 

Being a three dimensional solution, this is half as fast as the solution from J. Tolke. This 

could be an indicative for a future three dimensional solution of FDLBM, that the 

performance should decrease by half. 

 

Compared to our solution, the last result from L. Biferale et al. for a two dimensional solution 

with 4 times as many probability distribution functions to compute shows we achieved 4 

times more performance. This also uses double precision as our solution compared to the 

single precision solutions presented before. 

This result shows that the use of double precision, even it increases accuracy of the 

simulation, proves to impact the performance in a drastic manner   

 

The performance decrease in our solution implies that new memory access patterns should be 

studied compared to those already used. The FDLBM solution greatly affects the 

performance by adding more complex terms that need to be calculated compared to the 

SCLBM solutions. 

 

Another important factor for these types of models is the number of velocities used. 

Increasing the number increases the model’s accuracy, but as shown by the results of L. 

Biferale et al. this greatly diminishes the performance of the algorithm and also increases the 

memory needed to store the results. This means that only small matrices can be simulated, 

because the memory is needed for computing each node’s terms. Taken this into 

consideration, if we want to expand our solution to a variable number of velocities, we would 

have to take into consideration the limitations of a single-GPU implementation (like limited 

memory) and consider a scalable multi-GPU approach.  
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7 Conclusions and future work 
 

 

Conclusions 

 

We have developed a solution for simulating fluids using the finite difference Lattice 

Boltzmann Models. These types of models are more complex than those used in other 

published implementations of CUDA LBM. We have proven that a GPU implementation can 

compare and be faster than a multi-CPU implementation of the same algorithm using fewer 

resources and at a lower cost. 

Even though our solution is not as fast as other published solutions, the usage of double 

precision, complex formulas and higher accuracy provide the reasons that other 

implementations are faster. 

Furthermore, our implementation has proven that the algorithm has been correctly 

parallelized and the usage of a more powerful GPU will preserve the ratio when increasing 

the GFLOPS of the device used. 

 

The use of ghost nodes has proven to increase the memory coalescing when we uses periodic 

boundary conditions are used. 

The continuous improvements and different approaches that come with each CUDA version 

and each compute capability of new devices affects the choices for developing a program 

using CUDA. The results we have achieved have shown us that a portable code may not be 

optimized for different versions. On the other hand, an optimized code is portable for newer 

versions but may not be optimized because newer versions could change the way the 

algorithms must optimized regarding memory accessing patterns, register availability or new 

types of memory. 

 

Future work 

 

The next steps in improving the current algorithm would be to research different memory 

access patterns that would reduce the latency even more. 

Another important step in the future would be to develop a scalable multi-GPU 

implementation. This is crucial in allowing us to work with matrices of greater dimensions as 

the single-GPU solutions are limited by the resources of the used devices. The scalable multi-

GPU implementation would be very useful for the developing of a three dimensional model 

which requires an even larger amount of memory than the two dimensional models.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

References 
 

[1] M. C. Sukop, D.T. Thorne Jr, “Lattice Boltzmann Modeling An Introduction for 

Geoscientists and Engineers”, Springer-Verlang Berlin Heidelberg, 2006 

[2] S. Harris, “An introduction to the theory of the Boltzmann equation”, Holt, Rienhart and 

Winston, Inc., New York, 1971 

[3] Y.H. Qian, S. Succi, S.A. Orszag, “Recent advances in lattice Boltzmann computing”, 

Ann Rev Comp Phys 30:195-242, 1992 

[4] S. Succi, “The Lattice Boltzmann Equation for Fluid Dynamics and Beyond”, Oxford 

University Press, ISBN 0-19-850398-9, 2001 

[5] P.L. Bhatnagar, E.P. Gross, M. Krook (1954), “A Model for Collision Processes in Gases. 

I. Small Amplitude Processes in Charged and Neutral One-Component Systems”, Physical 

Review 94 (3): 511–525. Bibcode 1954PhRv...94..511B. DOI:10.1103/PhysRev.94.511. 

[6] J.J. Buckles, R.D. Hazlett, S. Chen, K.G. Eggert, D.W. Grunau, W.E. Soll, “Toward 

improved prediction of reservoir flow performance”, Los Alamos Science 22:112-121, 1994 

[7] K. Langaas, P. Papazacos, “Numerical investigations of the steady state relative 

permeability of a simplified porous medium”, Transport in Porous Media 45:241-266, 2001 

[8] V. Sofonea, A. Lamura, G. Gonnela, A. Cristea, “Finite-difference lattice Boltzmann 

model with flux limiters for liquid-vapor systems”, DOI: 10.1103/PhysRevE.70.046702, 

2004 

[9] N. Cao, S. Chen, S. Jin, and D. Martinez, “Physical symmetry and lattice symmetry in the 

lattice Boltzmann method”, Phys. Rev. E 55,R21, 1997 

[10] R. Mei and W. Shyy, “On the finite difference-based lattice Boltzmann method in 

curvilinear coordinates”, J. Comput. Phys. 143, 426, 1998 

[11] T. Seta, K. Kono, D. Martinez, and S. Chen, “"Lattice Boltzmann Scheme for 

Simulating Two-Phase Flows”, JSME Int. J., Ser.,B 43, 305, 2000 

[12] T. H. Lee and C. L. Lin, “A characteristic Galerkin method for discrete Boltzmann 

equation”, J. Comput. Phys. 171, 336, 2001 

[13] V. Sofonea and R. F. Sekerka, “Viscosity of finite difference Lattice Boltzmann 

models”, J. Comput. Phys. 184, 422, 2003 

[14] V. Sofonea, R. F. Sekerka, “Boundary conditions for the upwind finite difference Lattice 

Boltzmann model: Evidence of slip velocity in micro-channel flow”, Journal of 

Computational Physics 207, 639–659, 2005  

[15] NVIDIA. NVIDIA CUDA C Programming Guide, v. 5.0, 2012 



32 
 

[16] J. Tolke. “Implementation of a Lattice Boltzmann kernel using the Compute Unified 

Device Architecture developed by NVIDIA”. Comput. Vis. Sci., 13(1):29–39, 2009.  

 

[17] J. E. McClure, J. F. Prins, C. T. Miller, “Comparison of CPU and GPU 9 

Implementations of the Lattice Boltzmann Method”, XVIII International Conference on 

Water Resources, CMWR 2010, Barcelona  

 

[18] L. Biferale, F. Mantovani, M. Pivanti, F. Pozzati, M. Sbragaglia, A. Scagliarini, S. F. 

Schifanoc, F. Toschi, R. Tripiccione, “An optimized D2Q37 Lattice Boltzmann code on GP-

GPUs”, http://dx.doi.org/10.1016/j.compfluid.2012.06.003 

 

[19] PETSc documentation, www.mcs.anl.gov/petsc/documentation 

 

[20] J. Tolke and M. Krafczyk, “Towards three-dimensional teraop CFD computing on a 

desktop pc using graphics hardware”, In Proceedings of International Conference for 

Mesoscopic Methods in Engineering and Science ICMMES07, Munich, 2007 

 

[21] Johannes Habich, “Performance Evaluation of Numeric Compute Kernels on nVIDIA 

GPUs”, Master’s thesis, Friedrich-Alexander-Universitat Erlangen-Nurnberg, 2008 

  

 

http://dx.doi.org/10.1016/j.compfluid.2012.06.003
http://www.mcs.anl.gov/petsc/documentation

