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Abstract

The purpose of the paper is the using of a Lattice Boltzmann Model (LBM) for solving the kinetic equation describing the interaction
of solid inertial particles with a turbulent flows. The method has been successfully used for particles transported by a homogeneous
isotropic turbulent flow field. In the present paper the LBM is used for the prediction of the particle deposition in vertical channel. In
such a configuration, according to the Stokes number, the particle agitation may vary strongly with respect to the wall distance through
the boundary layer that can be a problem for the LBM. However, the comparison of experimental data with the LBM results show
that the deposition rate of particle is well predicted for large Stokes number (inertia dominated regime) and also for moderate Stokes
number (impaction-diffusion regime).
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1. Introduction

Solid inertial particles suspended in turbulent flows are found
in many practical applications as sediment transport or ripple mo-
tion, coal combustion, particulate radioactive contamination, pol-
lutant deposition, drug inhalation by medicine aerosols.

Figure 1: Particle deposition measured in several experiments
and gathered by Sippola & Nazaroll [20] .

As shown by Figure 1, the particle deposition in turbulent
channel flow can be split in three regimes [7]:

• τ∗

p << 1: the diffusion regime where the particles be-
have like tracers and the deposition rate is controlled by
the Brownian motion.

• τ∗

p >> 40: the inertial regime, also called ballistic regime,

where the particles do not interact with the turbulence, and
achieve a free flight-like march down to the wall,

• 1 < τ∗

p < 40: the intermediate regime, also called
diffusion-impaction regime, corresponding to a partial in-
teraction of the particles with the turbulence.

where τ∗

p = τpu∗2/νf is the Stokes number with νf/u
∗2 the

characteristic wall-turbulence time scale defined on the basis of a
wall friction velocity u∗. Finally τp is the particle relaxation time

τp =
ρpd

2
p

18ρfνf
. (1)

In parallel to experiments, Direct Numerical Simulation
(DNS) or Large Eddy Simulation (LES) coupled with Dis-
crete Particle Simulation (DPS) have been carried out for un-
derstanding the local mechanisms involved in particle deposi-
tion [12, 24, 11]. These numerical simulations have supported
the development of modelling approaches for predicting the de-
position rate of solid particles transported by a turbulent flow
[21, 2, 25, 17].

In 2009, Aguinaga et al. [1] have proposed an original ap-
proach for modelling the dynamic behaviour of solid particles in-
teracting with a turbulent flow. The approach, briefly described in
the following section, is based on a statistical description of the
particle motion by using a Probability Density Function (PDF).
The originality of the approach lie in the closure of the gas-
particle interaction term. Indeed that term is separated in two
contributions: one for the mean gas-particle interaction and an-
other one for the fluctuating gas-particle interaction. By making
an analogy with the BGKmodel for rarefied gases, the fluctuating
contribution is written as an return-to-equilibrium term. Under
these closed form, the PDF transport equation can be solve and
Aguinaga et al. [1] have shown that this can numerically unstable
when the particle Stokes number becomes small. Diounou et al.
[5] and later Fede et al. [6] have proposed to use a Lattice Boltz-
mann Model (LBM). They showed that LBM is able to predict
the correct particle deposition in case where the turbulent flow is
homogeneous and isotropic.

In the present study the same modelling approach and the
same Lattice Boltzmann Model is used but in the case of a ver-
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tical turbulent channel flow. In such a configuration, the turbu-
lent properties (fluid agitation and dissipation) vary strongly from
the top to the bottom of the turbulent boundary layer. Then the
gas-particle interaction vary as well and the ability of the LBM
approach may be questionable because the LBM have been de-
veloped for equilibrium flows. These issues are discussed in the
present paper.

2. Modelling approach

The modelling approach is based on a statistical description
of the particulate phase transported by a turbulent fluid flow. The
dispersed phase is described by the particle Probability Density
Function fp(x, t; cp) defined such that fp(x, t; cp)dcpdx is the
mean probable number of particles at the time t with a centre of
mass located in the volume [x,x+ dx], with a translation veloc-
ity up in [cp, cp + dcp]. From the PDF the mean density number
of particles writes

np =

∫

fpdcp , (2)

the mean particle velocity,

Up,i =
1
np

∫

cp,ifpdcp , (3)

and the particle kinetic stress,

〈u′

p,iu
′

p,j〉 =
1
np

∫

[cp,i − Up,i]× [cp,j − Up,j ]fpdcp . (4)

The single particle velocity PDF obeys to the following
Boltzmann-like kinetic equation:

∂fp
∂t

+
∂
∂xi

[cp,ifp] +
∂

∂cp,i

[〈

dup,i

dt
|cp

〉

fp

]

=

(

∂fp
∂t

)

col

(5)

where 〈.|cp〉 is the ensemble average conditioned by the particle
velocity and i is a summation index. In Eq. (5), the third term
on the left-hand-side represents the forces acting on the particles,
including the turbulent particle-fluid coupling, and the term on
the right-hand-side is the modification of the PDF by the inter-
particle collisions. In the present study the particulate phase is
very dilute such that this term can be safely neglected. Assum-
ing a large particle-to-fluid density ratio, the forces acting on the
particles are reduced to the gravity and the drag. In such a frame-
work, the particle acceleration reads

dup

dt
= −

up − uf@p

τp
+ g (6)

where uf@p is the fluid velocity at the particle position, g the
gravity and τp the particle relaxation time.

In the following the PDF transport equation is simplified to
the case of a particle-turbulence interaction in a wall boundary
layer flow then it can be assumed that ∂/∂y ≈ ∂/∂z ≈ 0. Also
as τp has a given value independent of the instantaneous particle
velocity, the kinetic equation governing the wall-normal particle
velocity PDF is obtained by integration of Eq. (5) on the velocity
components in y− and z−directions. Using Eq. (6) in the third
term of Eq. (5) and neglecting gravity, the Boltzmann equation
becomes

∂fp
∂t

+
∂
∂x

[cpfp] +
∂
∂cp

[

−
1
τp

(cp − 〈uf@p|cp〉)fp

]

= 0 (7)

where cp is the particle velocity component expectation in the
x-direction normal to the wall.

The literature dedicated to the modelling of the particle-
turbulence coupling in the kinetic equation is abundant [4, 26,
15, 16, 18]. As explained in introduction, the closure is done by
the approach proposed by Aguinaga et al. (2009) [1] where the
fluid-particle interaction term is split in two contributions: first,
the fluid-particle interaction through the mean gas and particle
velocities; second, the coupling of the particle fluctuating motion
with the fluid turbulence. The last contribution is modelled as a
return-to-equilibrium term in a similar manner to the effect the
inter-particle interactions in the BGK model [3]. The return-to-
equilibrium term requires an equilibrium PDF, f∗, and a given
time-scale, τ∗. As shown by Aguinaga et al. (2009) [1], for be-
ing consistent with the standard moment equation the time-scale,
τ∗, is the particle response time τp. The fluid-particle interaction
is then written as
∂
∂cp

[

−
1
τp

(cp − 〈uf@p|cp〉)fp

]

= −

[

Up − Uf@p

τp

]

∂fp
∂cp

+ 2
fp − f∗

τp
. (8)

The equilibrium PDF, f∗, is chosen in order to model particles
in equilibrium with the gas turbulence according to the Tchen &
Hinze theory [22, 8]:
〈

u′

pu
′

p

〉

=
〈

u′

f@pu
′

p

〉

=
〈

u′

f@pu
′

f@p

〉 1
1 + St

(9)

with the Stokes number St = τp/τ t
f@p where τ t

f@p is the fluid
Lagrangian integral time scale seen by the particles. As shown
later, the modelling of the such a timescale in turbulent boundary
layer is crucial for the particle dispersion. The equilibrium PDF
is modelled by a Gaussian distribution [9]

f∗(x, t; cp) =
np

(

2π
〈

u′

f@pu
′
p

〉)1/2
exp



−
(cp − Up)2

2
〈

u′

f@pu
′
p

〉



 .

(10)

The mean fluid velocity seen by the particles, Uf@p, has two
contributions: i) the mean fluid velocity Uf and ii) a drift ve-
locity Udrift representing the correlation between the local in-
stantaneous particle distribution and the turbulent fluid velocity.
Then the mean fluid velocity seen by the particles is written as
Uf@p = Uf + Udrift and, following Simonin et al. [19], the
drift velocity in homogeneous turbulence reads,

Udrift = −τ t
f@p

〈

u′

f@pu
′

p

〉 1
np

∂np

∂x
. (11)

Finally the Boltzmann-like transport equation (7) with the SAB
model for the fluid-particle interaction writes

∂fp
∂t

+cp
∂fp
∂x

−

[

Up − (Uf + Udrift)
τp

]

∂fp
∂cp

+
2
τp

[fp − f∗] = 0 .

(12)

3. Lattice Boltzmann Model (LBM)

The Lattice Boltzmann model used to solve the Eq. (12) is
described by Fede et al. [6]. Basically, an approximate form of
Eq. (12) is used in which the distribution function fp appearing
in the force term is replaced by a Hermite polynomial expansion
of kernel f0

p , where

f0
p =

np
√

2π
〈

u′
pu′

p

〉

exp

[

−
(cp − Up)

2

2
〈

u′
pu′

p

〉

]

(13)
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is the local equilibrium distribution function. Then Boltzmann
equation projected onto Hermite polynomial basis reads

∂fp
∂t

+ cp
∂fp
∂x

−

[

Up − (Uf + Udrift)

τp

]

∂
∂cp

(

QNhf
0
p

)

(14)

+
2
τp

[fp − f∗] = 0

where QNh is a polynomial function of cp of order Nh (the Her-
mite expansion order) that depends on all moments of the distri-
bution function of order lower or equal to Nh and f∗ is now the
its projection onto the Hermite polynomial basis. Then procedure
allows to replace the partial derivative ∂fp/∂cp by an explicit
function of the moments,transforming the question of choosing a
set of discrete velocities into a quadrature choice.

The second step is the quadrature choice itself. Equation 14
involves the following integral quantities appearing in f0

p and f∗,
and all the moments of the vector appearing inQNh . This means
that the question is only the evaluation of velocity moments of
increasing orders. Here, a Gauss-Hermite quadrature of orderNq

is used. Altogether, Nq values fp,α of the distribution function
(α = 1, 2, ...Nq ), at discrete velocities čp,α, are considered in
their coupled temporal evolutions according to

∂fp,α
∂t

+ čp,α
∂fp,α
∂x

(15)

−

[

Up − (Uf + Udrift)
τp

] [

∂
∂cp

(

QNhf
0
p

)

]

cp=čp,α

+
2
τp

[fp,α − f∗

α] = 0

where Up,QNh and f
∗

α are the approximations of the correspond-
ing terms in Eq. (14) in which all the momentsMm are replaced
by their evaluation as

∑Nq

α=1 ωαfp,αč
m
p,α where ω1, ω2, ..., ωNq

are the Nq quadrature weights. α is a free index.

4. Numerical simulation overview

The configuration is an established vertical turbulent channel
flow obtained thanks to the DNS of Moser et al. [13]. The deposi-
tion rate will be compared to the one obtained by Liu & Agarwal
[10].

4.1. Geometry, mesh and boundary conditions

H

cp

fp(x, t; cp)

Wall

x

Figure 2: Computational domain.

As explained previously, the problem is one-dimensional in
space and one-dimensional in velocity (wall-normal component).
The size of the computational domain, shown by Figure 2, is de-
noted H (the half-width of the channel is located at x = H and
the wall at x = 0). As the flow is heterogeneous, a non uniform
mesh having 200 cells is used. The mesh is refined close to the
wall.

At the top of the domain, the PDF entering in the domain,
namely for cp < 0, is imposed as

f(x = H, t; cp < 0) =
np

(

2π
〈

u′

f@pu
′
p

〉)1/2
(16)

× exp



−
c2p

2
〈

u′

f@pu
′
p

〉



 .

At the wall, a full absorption wall condition is imposed meaning
that no particle are going back to the flow. This condition reads

f(x = 0, t; cp > 0) = 0 . (17)

4.2. Fluid flow

In the present study, the fluid flow is imposed through its mo-
ments (in terms of mean velocity, mean Reynolds stress, and dis-
sipation). Then in order to avoid of using a model for the pre-
diction of the turbulent flow the profiles that Moser et al. [13]
obtained by DNS have been used.
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Figure 3: Wall-normal fluid agitation measured by Moser et al.
[13] in DNS.

Figure 3 shows the wall-normal Reynolds stress component
with respect to the wall distance. As expected in the near wall re-
gion 〈u′

fu
′

f 〉 decreases quickly up to reach zero at the wall. The
Reynolds number

Reτ =
H u∗

νf
(18)

based on frictional velocity, u∗, and the half-width of the channel
is 180 and the dimensionless particle diameters dp∗ = dpu∗/νf
vary between 3.10−2 and 2.9. The Reynolds numbers of the Liu
& Agarwal [10] experiment is 309 and 1308 and the dimension-
less particle diameters dp∗ vary between 7.10−2 and 1 for the
first Reynolds number and between 0.28 and 4.2 for the second.

The modelling approach has two input parameters: the gas-
particle velocity covariance 〈u′

f@pu
′

p〉 and the integral timescale
of the fluid turbulence seen by the particles τ t

f@p. The gas-
particle covariance is computed by assuming the local equilib-
rium (Tchen-Hinze theory)[23]. Following this, the gas-particle
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covariance is given in terms of the wall-normal Reynolds stress
as

〈u′

f@pu
′

p〉 = 〈u′

f@pu
′

f@p〉
τ t
f@p

τ t
f@p + τp

(19)

with 〈u′

f@pu
′

f@p〉 ≈ 〈u′

fu
′

f 〉. In a first approximation the fluid
integral timescale seen by the particles is assumed to be equal to
the one of the fluid τ t

f@p ≈ τ t
f .
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Figure 4: Lagrangian fluid integral time scale predicted by the
standard model (+) and by the Oesterlé & Zaichik Model (×)
[14].

In the framework of the RANS approach, the Lagrangian
fluid integral time scale is commonly computed from the fluid
agitation and dissipation as

τ t
f =

1
2
k
ε
. (20)

Oesterlé & Zaichik [14] proposed to estimate the Lagrangian
fluid integral timescale by

τ t
f = −

〈u′

fv
′

f 〉

〈u′

fu
′

f 〉
∂Vf

∂x

(21)

where the gradient ∂Vf/∂x is given by the DNS data and the
shear stress 〈u′

fv
′

f 〉 as well. Figure 4 shows the Lagrangian
timescale given by Eq. (20) & (21) with respect to the wall-
normal distance. In the near-wall region the standard model pre-
dicts that Lagrangian integral timescale tends to zero whereas the
”eddy-viscosity” model proposed by Oesterlé & Zaichik [14] pre-
dicts that the timescale goes to infinity.
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Figure 5: Wall-normal fluid-particle covariance predicted when
using the standard model (triangles) and the Oesterlé & Zaichik
[14] model (squares). Empty symbols: τ∗

p = 10 and black-filled
symbols τ∗

p = 100.

The gas-particle covariance evolution with respect to the
wall-normal distance is shown by Figure 5 for two Stokes num-
ber τ∗

p = 10 and τ∗

p = 100. As expected the larger the Stokes
number is, the smaller the gas-particle covariance is. Figure 5
also shows that the model given by Eq. (21) leads to covariance
slightly smaller than the predictions with Eq. (20).

4.3. Physical properties

The Reynolds number is equal to 180. The Stokes number τ∗

p

vary between 0.1 and 1000 and the dimensionless particle diam-
eters vary between 2.9 10−2 and 2.9.

4.4. LBM parameters

The numerical simulation have been performed with 20 dis-
crete velocities with 6th order polynomial Hermite expansion en-
suring that the five first moments of fp are accurately computed
[6].

5. Particle deposition in vertical channel flow

The deposition rate of particles transported in turbulent verti-
cal channel flow is shown by Figure 6. In LBM simulations, we
steady state is reached, the deposition rate is computed by

V +
d =

1
u∗

∫ 0

−∞
cpfp(x = 0)dcp

1
H

∫ H
0

[

∫ +∞

−∞
fpdcp

]

dy
. (22)

Figure 6 shows that the LBMmodel predict the inertia-moderated
regime, the diffusion-impaction regime and the transition be-
tween these two regimes. In diffusion-impaction regime the slope
predicted by the LBM is in accordance with slope measured by
Liu & Agarwal [10] in their experiments. However, the magni-
tude of the deposition rate is slightly overestimated by the LBM.
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Figure 6: Deposition rate with respect to the Stokes number.
Comparison between the experiments of Liu & Agarwal [10], the
LBM prediction with τ t

f predicted by the standard model (20) and
by the model proposed by Oesterlé & Zaichik (21) [14].

It is also observed that in the impaction-diffusion regime the stan-
dard model for the Lagrangian fluid integral timescale gives the
same predictions than the model of Oesterlé & Zaichik [14].
In contrast, some differences are shown by Figure 6 in inertia-
moderated regime. Indeed, the ”eddy-viscosity” model leads to
an underestimation of the deposition whereas the standard model
gives predictions in very good accordance with the experiments.

The mean density number of particles with respect to the
wall-distance is shown by Figure 7. For small Stokes number
(τ∗

p = 1), the profile of np is nearly flat from the centre of the
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channel to x/H = 0.2. When approaching the wall the mean
particle density number is increasing and reaches a maximum for
y+ = 2.5. Finally from y+ = 2.5 up to dp/2 the particle density
is decreasing. For τ∗

p = 10 the trends are the same excepted that
in the core of the channel the particle number density is decreas-
ing from the centre to the reach also a peak at y+ = 8. Between
y+ = 8 and the wall, np is decreasing an reaches a plateau. Fi-
nally for τ∗

p = 100, the peak close to the wall vanishes.
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Figure 7: Mean particle number density predicted by LBM for
τ∗

p = 1, 10, 100 with respect to the normalized wall-distance.

Figure 8 shows the mean particle velocity with respect to the
normalized wall-distance. As expected, when increasing τ∗

p the
wall-normal mean particle velocity is increasing.
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Figure 8: Mean particle velocity predicted by LBM for τ∗

p =
1, 10, 100 with respect to the normalized wall-distance.

The particle velocity covariance is depicted by Figure 9.
From the center of the channel towards the wall, the particle ki-
netic stress is increasing for reaching a peak that is closer to wall
for smaller Stokes number. For τ∗

p = 100 and τ∗

p = 10 the vari-
ance reaches in a constant positive value very close to the wall. In
contrast, for τ∗

p = 1 the particle variance follows the same trend
excepted that for y+ < 1 the particle variance becomes nega-
tive that is not correct. It is possible that for such a small Stokes
number the order of the quadrature has to be increased.
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Figure 9: Mean particle variance density predicted by LBM for
τ∗

p = 1, 10, 100 with respect to the normalized wall-distance.

6. Conclusion

Lattice Boltzmann Model has been used for solving a kinetic
equation describing the interaction of inertial particles with a tur-
bulent flow. The LBM has been applied for predicting the deposi-
tion of particles interacting with a turbulent boundary layer. The
results show that the deposition rate is in accordance with ex-
perimental data for the inertial and impaction-diffusion regime.
The transition between inertial and impaction-diffusion regime is
well predicted and the slope of the deposition rate is correct.These
promising results show that the method seems to be able to pre-
dict correctly the gas-particle interaction in the near-wall region
but more development are needed. Some trouble stay for the pre-
diction of the moments in the near wall region and some com-
plementary investigations are in progress. The influence of the
Reynolds number on the deposition rate predicted by the method
is also investigated. Future developments will include different
wall interaction such as elastic bounce-back or the addition of the
Brownian motion.
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