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Motivation

Applications of lattice Boltzmann

@ Lattice Boltzmann is a method for solving the Boltzmann
equation numerically.

@ The Boltzmann equation is mesoscopic, i.e. the Knudsen number

Kn = £ is non-negligible.

@ At small Kn: multi-phase / multicomponent flows, where
interface tracking is difficult macroscopically.

@ Atlarge Kn (beyond Navier-Stokes regime): microfluidics
(microchannels, rarefied flows, flows in the ballistic regime).
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Boltzmann Equation

@ Evolution equation of the one-particle distribution function

fEf(X/P/t): )
of + %p-Vf+F-fo:][f].

@ The collision operator [[f] accounts for changes to f due to
collisions:

TIf1 = f Fp. &y Pp. P +p.—p —p)(E+E.—E —E)

do [P’ — P

X
@ Assumptions: aQ  m
e Only binary collisions need to be considered;
o Particle interactions are short ranged;
e Particle interaction durations are small;
o Interacting particles are completely uncorrelated (stosszahlansatz),

i-e-fZ(Plr PZ/ X1,X2, t) = f(Plr X1, t)f(PZr X2, t)

(Ff =11
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H-theorem

@ Under Boltzmann’s assumptions, the second law of

thermodynamics (of increasing entropy) is guaranteed.
@ Consider the H-function:

H(t):fd3xfd3pf In f.

@ Its time derivative is:

o= [ e [@nasnp

~4 f P f dEpd’p.d’p’ dp.5*(p + p. — p’ — pl)O(E + E. — E' — E))

xjg ;l Ff —ff)nf+Inf.—Inf —Inf) <0,

since (1 —x)Inx < 0.
@ Equality holds in (local) thermal equilibrium.
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Collision invariants

@ Consider the following integrals:

fmw=j#www

:%f EpdEp.&p' dp 5> (p +p. —p' —pl)O(E+E. — E' — E))
% do "= >,+ rer )( n T /)
B R =y =),

@ 1 is a collision invariant if J[f, V] =

@ In the collisions considered here, the invariants are:

Y el{l,p,E
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Maxwell-Boltzmann equilibrium

@ The H-theorem can be written as:

6;—1;1 = | @x]J[f,Inf+1]<0.
@ Equilibrium is attained when f(x, p,t) = f ) (x, p, t), such that:
In f*Y(x,p,t) =A+B-p+CE.

@ Rearranging gives the Maxwell-Boltzmann equilibrium
distribution:

n (p - mu)zl

€d(x,p,t) = ex [—
S = ot P 2k, T

(from now on, Kz = 1).
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Moments of f

@ The macroscopic properties of the fluid can be written in terms of
moments of order N of f:

N =0: number density: n = f Epf,

1. T _ L 3
N =1: velocity: u=-— a’pfp,
9) 2
N =2: temperature: T = 3 dp f (& =p —mu),
Cat
viscous tensor:  0up = er?’p mﬁ f —nTbug,
_3. . _ [ &
N =3 : heat flux: q= ) a’p S
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Transport equations

@ Multiplying the Boltzmann equation:
1
of + %p-Vf+F-VPf:][f],

by the collision invariants ¢ € {1, p, E} and integrating over p
gives:
din + do(puy) =0,

&t(pua) + &ﬁ(puauﬁ + YlTéa[g + Uacﬁ) =nkF,,
3 pu’
(¢ + dyuy) EnT + = + Jduqs + 9y [uﬁ (nTéaﬁ + aaﬁ)] =nu,F,.

@ The evolution of the moment of order N depends on the moment
of order N + 1.
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BGK collision term

@ In solving the Boltzmann equation (analytically or numerically),
the collision term poses a challenge:

JIf] = f $p. Py Pp. S +p.—p —p.)NE+E.—E —E)

do |P" =P,
X dQ m (ff* _ff*)'
@ BGK approximation: the incoming particles are assumed to be

distributed thermally:
f/ f*, — f(eq)/j,;(eq)/ — f(eq)ﬁ(e@.
@ The integrals can now be performed to yield:

Jecklf] = —%[f — flea)],

where 7 is the relaxation time.
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Chapman-Enskog expansion

@ Typically, the relaxation time is chosen as (Kn = A/L):

n
T~ —.
Kn

@ Chapman-Enskog assumptions:
f=fO 4+ fOKn + fPKn* +.. .,
fxp,t) =f(x, p;n,u, T).

@ Since f now depends implicitly on ¢, the time derivative in the
Boltzmann equation can be written using the chain rule:

81} :o"tp 8)0 + 6’tua 8ua + 8tT8T
=9, + Knd;, +Kn?d;, +....

@ The time derivatives of 1, u and T can be eliminated using the
macroscopic equations.
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Navier-Stokes equations

@ Boltzmann equation at order #n in Kn:

n
o1 1
Z e f "D + aprm) +F-V,f® = = [f(n+1> _ f(eq>5n’_1],

T’
=0

where v/ = 7/Kn.
o Atorder Kn™': fO = fleq,
o At order Kn':

, 1
FiOp— [atof@) +—pVf® + Ffo(O)].

@ Truncating at O(Kn) gives:

2
Oap = — TnT laauﬁ + dglly — 5@1@] ,
1 D+2
a = — Pr om TnTaaT,

where the Prandtl number Pr = 1 in the BGK model.
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Shakhov collision term

@ To recover the Prandtl number Pr = 2/3 for ideal monatomic
gases, the Shakhov collision term must be used:

T =- - [f-r<a+s),
~1-Pr &2
> =TT (1:>+2)mir_1]‘5'q

@ Through the Chapman-Enskog expansion, the recovery of the
Navier-Stokes-Fourier equations requires moments of up to

order N = 6 of f©9.
@ Moments of f©®? of order up to N = 6 required to recover the
Navier-Stokes equations in the Shakhov model.

V. E. Ambrus Half-range LB models



Boltzmann Equation H-theorem

) q ..
1 Maxwell-Boltzmann statistics

Macroscopic equations

Boundary conditions

Boundary conditions for the distribution function

Due to the particle — wall interaction, reflected particles carry some
information that belongs to the wall.

[ N st

bounce back specular reflection diffuse reflection

Diffuse reflection the distribution function of reflected particles is
identical to the
Maxwellian distribution function f €D (uyan1, Twall)
Microfluidics Kn = A/L is non-negligible
= velocity slip ug;p

= temperature jump Tjump
Half-range LB models
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Diffuse reflection boundary conditions

@ The diffuse reflection boundary conditions require:

f(xw/ | o t) :f(eq)(nW’ Uy, Tw) (P "X < 0)/

where x is the outwards-directed normal to the boundary.

@ The density ny, is fixed by imposing zero flux through the
boundary:

f Fpfp-x)=- f Ppfe (p - x).
p-x>0

p-x<0

e Diffuse reflection requires the computation of integrals of f and
£ over half of the momentum space.
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Example: ballistic regime of Couette flow

@ Flow between parallel plates
(xt = —xp = 0.5) moving along y. Xt U-

e Diffuse reflection on the x axis.

@ In the ballistic regime, the gas

is effectively collisionless: &>

Pyr_
c}’tf+me—O.

A
<
+

@ Ballistic regime (Kn — o0) solution:
ferpin,ue, T pe>0 _ 24T%
f(eq)(p; n_,u_,T_) Px < 0’ 8 VT + T_'

e Half-range models required to capture the discontinuous
character of f.

foaliistic(p) =

Simulations performed using PETSc 3.1 on BlueGene cluster - collaboration with Prof. Dana Petcu,

West University of Timisoara, Romania.
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Importance of moments of f%

@ To construct numerically a solution of the Boltzmann equation:

o'?tf+%p-Vf+F-fo:][f],

time, space and the momentum must be discretised.

@ The key is to preserve the moments of f9:
[rs0r= 5 0.

where P, (p) is a polynomial of order n in p.
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Orthogonal expansion (1D)

@ Consider the set of orthogonal polynomials {¢p(x)}:
[ a0 g b0 = o0
@ The distribution function f can be written as:
f=o@) Fed® @ =plpo),
=0

where py is an arbitrary reference momentum.

@ Since ¢n1 is orthogonal to ¢, for all £ < N, the first N moments
of f are fully contained in the coefficients ¥, (0 < £ < N).
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Orthogonal expansion (1D)

@ In general,
Grrte) = [ dxo) o900 = e
@ The distribution function f can be written as:
f=w@) Feoi®) @ =plpo),
=0

where py is an arbitrary reference momentum.

@ Since ¢ is orthogonal to ¢, for all £ < N, the first N moments
of f are fully contained in the coefficients ¥, (0 < £ < N).
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Orthogonal polynomials

@ For any set of orthogonal polynomials ¢,(x) satisty the following
recursion:

Pe+1(X) = (@ex + be)Pe(x) + cepe—1(x),
ag

ar = Api1/Ag, be = —ag {x¢, Pr), Ce = T

where A; is the coefficient of the leading order term in b,.
@ The unknown A1 (hence, a,) can be found using:

1 1
% = (X¢, XP¢) = (XPe, Pr) — —5—

Ap_q

@ Recursion method more accurate than Gram-Schmidt.
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Projection of the Boltzmann equation (free, 1D)

@ Consider the free one-dimentional Boltzmann equation with the
BGK collision term:

Poro Ll te
Of + Louf = ——(f - ).
@ Consider coefficient of ¢;:

! 1 :
OiF¢ + (@——ﬁ C“m)};(ﬂ—?;q).

ar—1 ae ae+1
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Truncation of the Boltzmann equation (free, 1D)

@ Consider the truncated distribution function:

N
N = w(@) Y Fr pe(p).
=0

@ Boltzmann equation for true f up to order N:

. 1 .
Yo forrs Ban (222 -y L) L (-7 <o

ar—1 ae aer+1

@ Boltzmann equation for truncated f™)

™ L Pyoeon, Ly _ feny
AfN + Zof ™+~ - 0] = ey,

where

ex = ) o | 2L on AT + D FITR |

N+1

E. Pascal, S. Blanco, V. Sofonea, S. Olivier, R. Fournier, L. Guillaume, V. Ambrus, in preparation.
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Quadrature methods

@ According to the Gauss quadrature method,

Q
f dx w(x) P, (x) = Z Wi Pxx)
k=1

is exact for Q > 2n.
@ The quadrature points x; are the Q roots ¢o(x).
@ The quadrature weights wy are given by:

Am+1
Am¢m+1 (xk)gb;fn (xk) .

@ Choosing Q = N + 1 and initialising the distribution function
only up to order N (i.e. #y+1 = 0) ensures that ey = 0.

Wy = —

EN = CU(I?)]:” [CN+1 @N(P)a Fn+1 + —¢N+1(P)a Fnl =

AN+1
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Discretisati ¢ . 0
1scretisation of momentum space Quadrature methods

Formulation of half-space problem

@ Rewrite integrals over the whole momentum space in terms of
half-space integrals:

[ I f(p)Pa(p) =f U R)Pa() + Fp)Po(p)],

00 0

@ The half-space integrals are replaced by quadrature sums:

00 Q
fo dx w(x)P,(x) = Z wiP(x),
k=1
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Discretisati ¢ .
1scretisation of momentum space Quadrature methods

Formulation of half-space problem

@ The quadrature method can be implemented using Laguerre’:
w(x) =e™ Wy = Yk
C @+ Dloa (WP
@ ...or half-range Hermite polynomials®
1 2 AQ+1
w(x) = e /2, Wy = - :
V2 A bo+1(xk)hi, (k)

TV. E. Ambrus, V. Sofonea, Phys. Rev. E 89 (2014) 041301(R).
* G.P. Ghiroldi, L. Gibelli, Journal of Computational Physics 258 (2014) 568.
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Temperature profile for Couette flow at Kn=0.5

Comparison between full-space (HLB and SLB) and half-space (LLB

and HHLB) models:
T across the channel T at the centre of the channel
1.048 ——— — — 1.0505 conv ‘
1.046 | ' 1050 = SLB e |
1044 | 1.0495 | * % HLB e 1
e 1 o 1049} > LB
5 g . HHLB
c 1.042 ¢ S 1.0485 |
S 104 o 1.048 | i
= 1.038 [ § - 1'103475 ’
5 A . "ea 2 . ]
1 _036 TR 1 -0465 | “\m\\\\\\'m . .
1034 b—u . 1.046 Le"— ‘ ‘
-0.50.4-0.30.20.1 0 0.10.20.30.40.5 0 2000 4000 6000 8000
X Velocities

(Upaits = 2042 , Tyoans = 1.0, 6s=1072 , 6t =107 , Kn = 0.5)
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Couette flow: comparison with DSMC

0.4 1.055
03 1.05 - 0" .
I 1.045 =" awe
g Ll 8 1.035 ¢
| & 103
: & 1.025
0.2 Fa” = I .. .
03] 018 Velocities required
04— 1.01 L— o
-0.5-0.4-0.3-0.2-0.1 0 0.10.20.30.40.5 -0.50.40.3:0.2:0.1 0 0.10.20.30.40.5 for 1 /0 aCCUI'aCYZ
X X
s oom| T N N — Kn | LLB | HHLB
3 0.03 | Kno1.Q «eeeeer ‘J.f"' 1 X3 0.04 J":};-A__ Kn=1.0 «erere |
g oor | g 0% 0.1 | 2744 512
—_ 0+ = 0t
1 o TN 05| 2744 | 512
S - s = -u
g oo b § 004 y 1.0 | 4096 1000
00 504050201 0 0102030405 00 504030201 0 0102030405

X X

@ DSMC (for Kn = 0.1 and 0.5) vs. LLB (lines) and HHLB (points)
at Kn =0.1, 0.5 and 1.0.

@ Discrepancy in temperature profile due to incompatibility
between the Shakhov model and the hard-sphere molecules used

for DSMC.
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Couette flow: ballistic regime (Kn — o)

@ In the ballistic regime, all moments are constant.

LLB*/HHLB results at T, = 1.0, T; = 10.0 and u,, = 0.42:

Model | Velocities T uy x qy
LLB(2,2,2) 64 | 2.910987 | -0.218165 | -6.305084 | 1.414574
HHLB(2,2,2) 64 | 1.943523 | -0.216613 | -2.807558 | 0.977046
LLB(@3,3,3) 216 | 3.205209 | -0.218187 | -11.40061 | 3.700024
HHLB(@3, 3, 3) 216 | 3.205236 | -0.218184 | -10.45152 | 2.787300
LLB(4,4,64) 512 | 3.205209 | -0.218187 | -11.02230 | 3.477877
HHLB(4,4,4) 512 | 3.205209 | -0.218187 | -11.02230 | 3.477871
Analytic 3.205209 | -0.218187 | -11.02227 | 3.477866

e Half-range models recover the ballistic regime with 512

velocities.

@ Full-space models break down at large T differences as Kn — oo.

V. E. Ambrus, V. Sofonea, Phys. Rev. E 89, 041301(R) (2014)
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Force term in LLLB

@ In the Boltzmann equation, the force term involves F - Vf.

@ After discretisation, Vf is replaced with a suitable expansion.
@ The EQ (equilibrium) method:

p — mu
Vof = Vpf 0 = Empte,

which works if the fluid is not far from equilibrium (small Kn).
@ The SC (Shan-Chen) method:

f=w@) ) Fioe@),  If =w®) Y F o).
£ {

@ The coefficients Tf for d,f can be calculated using 7.

TN.S. Martys, X. Shan, H. Chen, Phys. Rev. E 58, 6855 (1998).
X. W. Shan, X. FE. Yuan, H. D. Chen, J. Fluid. Mech. 550, 413 (2006).
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Application: Poiseuille flow

@ Flow between parallel stationary
plates driven by a = (0,4,,0), with
ay, = 0.1,

xy = —xp =0.5

Temperature of plates: T, = Ty = 1.0
Ditfuse reflection on the x axis % Y

Micro-fluidics effects: temperature
jump, velocity slip, temperature dip.

N
<
Y

@ SC required for the temperature dip.

@ Analytical results* in the ballistic Simulations done using PETSc 3.4 at
. BlueGene cluster - collaboration with
regime show that Prof. Daniela Petcu, West University of
o T is parabolic using SC: Timigoara, Romania.
T=T,+ x?6T

o T is flat using EQ.

* V. E. Ambrus, V. Sofonea, Interfacial Phenomena and heat transfer, with editors.
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EQ vs SC: Poiseuille flow

114 0.04 = 0,01 (SC) -
112 | 0.03 + tn=0.01 ((Iégg
L n=0.05
14 | 0.02 1 120,05 (EQ)
108 | 0.01 kn=inf (SC)
S — : & 0 kn=inf (EQ)
1.06 -0.01 F
1.04 -0.02 |
1.02 -0.03
0t : : : : 1 : : : : -0.04 : : : :
-0.4 -0.2 0 0.2 0.4 -04 -02 0 0.2 0.4 -04 -0.2 0 0.2 0.4
z coordinate z coordinate z coordinate
0.22 ; ; ; ; ; 1.007 ; ; ; ; ; 0.015 T T . . !
ol ] 1. L B Rk s e ] 0.01
0 0065 + i 0.005 1\ f
0.18 | ] 1.006 | ] 0 b
0.16 | ] 1.0055 | ' ] 0.005 | it <
...................... ] I -0.01 f
3 014y K201 (SC) e = 1.005 S 0015 &, kn=0.01 (SC)
0.12 | 0T KK . 1 1.0045 -0.02 | %, kn=0.01 (EQ) + **
01 a,ﬁ<‘*T(n:O.25 (SC) %%K 1 004 0.025 | %,,% kn=0.05 (SC) wwwevee &
A1 [ kn=0.25 (EQ) %) | 004 ¢ 003 | *,kn=0.05 (EQ) e
0.08 kn=1.0 (SQ) 1.0085 |, . 0035 | 1.0 59 e
= * o . it P %
0.06 L— n=10(EQ) ‘ 1003 koo 004 | Ko=TOEQT
-04 -0.2 0 0.2 0.4 -04 -0.2 0 0.2 0.4 -04 -0.2 0 0.2 0.4
z coordinate z coordinate z coordinate

Good agreement between EQ and SC at small Kn for T and g, and
throughout the Kn range for 1, and q,. EQ does not recover the
temperature dip.
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EQ vs SC: dip in Poiseuille flow temperature profile

Temperature dip at Kn > 0.1 1% accuracy achieved by:
requires SC.
007 Kn | Vel (LLB) | Vel (HHLB)
10065 | RS ] <01 744 512
e | | 025 | 2744 2744
—  1.005 | 0.5 2744 4096
1.0045 . 1.0 4096 4096
1-004 ¥ | ’ 00 2744 2744
1.0035 |, %*****HHHH***%M%%
1.003 +— ‘ ‘

-0.4 -0.2 0 0.2 0.4
z coordinate

Temperature profile across the channel in Poiseuille flow: comparison
between EQ (points) and SC (lines) models.

(”y =01, Tyys =10, 6s=107% , 6t = 10—5)
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EQ vs SC: Ballistic regime

Temperature in the ballistic regime.

EQ method: SC method:

Kn=inf, EQ method Kn=inf, SC method
1.01 — ‘ ‘ ‘ ‘ 1.05 ‘
1.0095 | | 1.045 | rr— \
1.009 | ] 1.04 1= ECT-SN
o 4035} " Q=16
S 1.0085 | 5 10 b v Qo e
S 1.008 f § 103 . pyQs7 P
S 1.0075 | Q=7 —— o el e o
E [nammnnnannnnnnnnnnnnn ®.=...1.1. . - . E . '.,..'. I"""u, 111 g g @ ““‘“\‘
o 1.007 © 1015 F .
T 1.0065 | Q=18 | 1ot
1.006 007 . f 1.005 ¢
1.0055 = ‘ ‘ ‘ ‘ 1L ‘ ‘ ‘ ‘
04 -02 0 02 04 04 -02 0 02 04

The SC profile is paraxbolic, in agreement with * and with analytic
results’. The EQ profile is constant’.

*J. Meng, L. Wu, J. M. Reese, Y. Zhang, ]. Comp. Phys. 251 (2013) 383.

T V. E. Ambrus, V. Sofonea, Interfacial Phenomena and heat transfer, with editors.
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Tissue growth - motivation

@ Tissue engineering aim to replace or repair damaged tissues,
even organs.

e Computational methods are extremely valuable for
understanding morphogenesis.

@ In mesoscale (LB), the system is simulated using two isothermal
and incompressible components.

@ Simulation results are validated by comparison to experimental
data’.

t C. Norotte, F. Marga, L. E. Niklason, G. Forgacs, Biomaterials 30 (2009) 5910.
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Simulation of tissue growth using a two-component
flow

@ Consider a 2D two-component flow (o =0, 1):

o P o o 1 o g,e
If* + VfT —FVpf = ——[f7 =]

@ D209 model used.
@ EQ method used for the momentum gradient:

p —mu
mT

@ The inter-particle interaction of strength w and the surface
tension described by «x is modelled as:

F' = — VX' + xV(V2X"),

where X° = n7/(n° + n') is the mole fraction of species o.

0,eq

F°V,f - F-

A. Cristea, A. Neagu, Biofabrication, under revision.
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Fusion of multicellular cylinders in a hexagonal
arrangement

Snapshots of (2D) evolution of cross-section of a 3D tubular structure: initial configuration (a) and

after 5x10% (b), 1 x10* (c), 1.5x 10* (d), 2.5 x 10% (e), 5 x 10* (f), 7.5 x 10* (g) and 1 x 10° (h) time steps.

A. Cristea, A. Neagu, Biofabrication, under revision.

Half-range LB models
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Evolution of printing defect

Snapshots of (2D) evolution of printing defect: initial configuration (a) and after 5 x 10° (b), 1 x 10*
(c), 1.5x 10* (d), 2.5 x 10% (e), 5 x 10* (f), 7.5 x 10* (g), 1 x 10° (h), 1.5 x 10° (i), 2 X 10° (j), 2.5 X 10° (k)

and 5 x 10° (1) time steps. [A. Cristea, A. Neagu, Biofabrication, under revision. ]
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Phase separation using lattice Bolzmann

@ Phase separation achieved by changing the ideal gas equation of
state to that of van der Waals gases, by adding a force term:

F = V(pi ~ pu) + KV(Vn).

@ The ideal pressure p; = nT is changed to the van der Waals
pressure:

_ 3nT _2n2
Pw =3, 78"

@ No interface tracking required.

T. Biciuscd, V. Sofonea, Proceedings of DSFD-2014 (under revision).
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Liquid-vapour phase diagram
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Phase separation Pmean = 0.90

iter = 500000 iter = 1000000 iter = 2000000
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Phase separation Omean = 1.30

iter = 50000

iter = 200000 iter = 500000 iter = 600000
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Omean = 0.90 : Evolution of the mean drop size 1/P
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Crossover from the exponent 2/3 to 1/2.
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T = 0.85 : Liquid drops separation on a 3D lattice with 128 x 128 x 128 nodes

iter = 10000

- rho rho
k .Em 182E1.6
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0.316 0.316

iter = 160000
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Conclusion

Conclusion

@ Quadrature methods provide a systematic way of increasing the
accuracy of lattice Boltzmann simulations.

e Half-space quadratures essential for the implementation of
diffuse-reflection boundary conditions.

e EQ implementation of force term (Vpf ~ V,f (¢9) inaccurate (no
temperature dip in Poiseuille flow; less accurate van der Waals
phase diagram), compared to NS implementation.

@ Multiphase and multicomponent flows can be simulated by
modelling inter-particle forces.
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