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The lattice Boltzmann metod

o The lattice Boltzmann method provides a simple algorithm to obtain
approximate solutions of the Boltzmann equation.

o Atsmall Knudsen number Kn = A/L, the Navier-Stokes(-Fourier) regime
can be recovered.

o At high Kn, beyond Navier-Stokes effects (slip velocity, temperature
jump, etc.) can be recovere, allowing the simulation of flows through
microchannels, rarefied flows, etc.

@ Multiphase and multicomponent flows are easily implemented (interface

tracking not required): glassy fluids, foams, phase separation, droplets
dynamics, etc.



The Boltzmann equation

@ In the BGK approximation for the collision term, the Boltzmann equation
reads:

1 1
Of +—p-Vf +F-Vpf = ——(f — flea)y,

where f = f(x, p, t) is the one-particle distribution function, t ~ Kn/#n is
the relaxation time and f©% is the Maxwell-Boltzmann equilibrium
distribution (D is the number of space dimensions):

(p — mu)®
nmKgT)? eXp[ 2mKpT

FO(n,u,T) =



@ Macroscopic properties given as moments of order N of f:

N =0: number density: n= f dPpf,

N =1: velocity: f rfp,
N =2: temperature: T= Dn dP f (& =p—mu),
&al
viscous tensor: Oap = f dD i f nTbag,

N =3: heat flux: f pf 2m ot



Transport equations

@ The transport equations are obtained by multiplying the Boltzmann
equation by 1 = {1, p, p?/2m} and integrating over p:
i + du(puy) =0,
di(puta) + dp(pugup + nTOug + 0ap) = nF,,

3 u?
(0; + dauy) (EnT + pT) + daGa + o [u/; (nT(Saﬂ + oaﬁ)] = nuyF,.

@ Using the Chapman-Enskog expansion:
f=fC9 4+ fOKn+fPKn*+..., =0 +Kndy +...,
o the Navier-Stokes limit is recovered at O(Kn):

1 _ 2 a _ D+2
Opp = —tnT |daug + gty — anuy], 9o = —W”mTaaT.

a7

S. Harris, An Introduction to the Theory of the Boltzmann Equation (Holt, Rinehart and Winston, Inc., USA, 1971)
V. E. Ambrus, V. Sofonea, Phys. Rev. E 86 (2012) 016708.



Boundary conditions for the distribution function

Due to the particle — wall interaction, reflected particles carry some
information that belongs to the wall.

[ M st

bounce back specular reflection diffuse reflection

Diffuse reflection: the distribution function of reflected particles is
identical to the Maxwellian distribution function
€D (uyan, Twan)

Microfluidics: Kn = A/L is non-negligible
= velocity slip ugp
= temperature jump Tjump



Diffuse reflection boundary conditions

@ The diffuse reflection boundary conditions require:

f(XW/ | t) Zf(eq)(nW/ Uy, Ty) (P <X <0),

where y is the outwards-directed normal to the boundary.
@ Requiring zero mass-flux through the boundary:

f Fpf(p-x) + f B FD(n, 1, Tor) (p - 1) = 0
p-x>0 p-x<0

fixes the density n,, on the wall:

f Fpfp-x
px>0

[t e o]
oo @EmT P2 P | ™ omT,

e Diffuse reflection requires the computation of integrals of f and % over
half of the momentum space.

Ny = —




Discretising the momentum space

@ In lattice Boltzmann, the velocity space is replaced by a set of discrete
velocities py.

@ The corresponding distribution function f is replaced by fi.

e f©d in the collision operator is constructed such that the continuum space
moments

Mo, = f dPp feD plpy

equal those of the discretised set {f, D).

(eq) 1y
”’f Ty, Z p k, xpk S/

such that

Mnx,ny,... = Mnx,ny,...-



Full-range Gauss-Hermite lattice Boltzmann models

@ £ can be factorised as:

1 (Pa - m”a)z]
©) = poo, ..., W= exp |- .
f 3x8y 8u = s P T

@ The moments Mnx,ny,___ can also be factorised:

Mnx,ny,... = Mx,nx My,ny ey MUt,Ha = f dpa g(pa) an .
@ For N order accuracy, g, can be expanded with respect to the full-range Hermite polynomials He(p):

PR L mug\“F (T ¥
8a = ﬁ ;chl(Pa)/ Gt = - S'(f 25), > (Po,a ) (a - 1]
@ M, canbe recovered using HLB(Q,), i.e. the Gauss-Hermite quadrature of order Q,:
. Qa
Ma,;m = Zga,k}”:l‘j(,
k=1

where p, x are the Q, roots of Hp, and

wp V21 Q.!
= — 8 , Wk = 75— 5
Sax =~y 8alPar) W= R
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Full-range Gauss-Hermite lattice Boltzmann models

@ M,,, can be split corresponding to the + and — p, semi-axes:

0
Mﬂ/"a M; My + Mc: M ! a M f dpa 8a pa ’ M;,na = f dpﬂ 8a Pga .

@ g, canbe expanded in terms of the half-range Hermite polynomials b as:

_eF’a sz(|ﬁa|){ bes[zz

Oa

] [(1 +erf(o)PF(Ca) + Te‘%P*(cn]}

where o, is the sign of p, and P} and P; are polynomials in (, = 0qutq Vm/2T .
@ M;,, can be recovered using HHLB(Q,), i.e. the half-range Gauss-Hermite quadrature of order Q,:

oo Qu 2Qa
Mise = fo dpagupit = Y kbl Mas, = f pagupit = Y Skl
k=1 e k=Qq+1

@ The quadrature points p, are related to the roots r of ho, (x) through:

e 1<k<Qa,
Pek =\ Qu <k <2Qu.

@ g, are defined in terms of the half-range Gauss-Hermite quadrature weights wyt.

t V. E. Ambrus, V. Sofonea, Phys. Rev. E 89 (2014) 041301(R).
* G.P. Ghiroldi, L. Gibelli, Journal of Computational Physics 258 (2014) 568.

¥ V. E. Ambrus, V. Sofonea, J. Comput. Phys., accepted.
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Couette flow

@ 2D Couette flow between parallel plates
(x4 = —x- = —0.5) moving
along the y axis.

@ Diffuse reflection on the x axis.

@ uy, =0.63, T, = 1.0. o
o Half-range models required to capture
the discontinuous character of f. Tw

@ The reference profiles were obtained
using the HHLB(21) x HLB(4) model.

V. E. Ambrus, V. Sofonea, Phys. Rev. E 89 (2014) 041301(R) [3D, Shakhov]
V. E. Ambrus, V. Sofonea, ]. Comput. Phys., accepted
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Reference profiles: n and u,

"Kn=0.01 —3—

1.06 [f Kn=0.1 ---®--
Kn=0.25 @
1.05 Kn=0.5 —-e—- ]
1.04 Kn=1.0 —&— B
Kn=5.0 ---a=- :

Kn=co

Density
Velocity ratio (uy /uy)

o N= f_ LL//ZZ dx n(x) fixed at unity for all Kn.

@ n(xy) and |uy| decrease monotonically with Kn.
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Comparison with DSMC & linearised Boltzmann
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*S. H. Kim, H. Pitsch, I. D. Boyd, J. Comput. Phys. 227 (2008) 8655.

14/29



Reference profiles: T
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@ T increases monotonically with Kn everywhere across the channel.
@ Thallistic — T + mu%} /D.
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Reference profiles: g, and g,
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e Atsmall Kn, f ~ f©¥ (according to C-E), so g, and g, vanish.
° q])::allistic — qyl?allistic =0.
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Dependence of g,(x,,) and g,(x,,) on Kn
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@ Maximum of |qx(xw)| and |qy(xw)| at Kn ~ 0.62 and 1.0.

Y. Sone, Molecular Gas Dynamics: Theory, Techniques and Applications, Birkhduser, Boston, 2007
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Convergence test

@ The following error is calculated for each profile M € {n,u,, T, g, q,}:

- maxXy [M(x) — Mies(x)]
M= A]\/Iref ’

where M,¢¢(x) represents the reference profile and
AM,ef = max{maxy [Mref(x)] — min, [Mref(x)]/ 0.1}

o The restriction that AM,es > 0.1 is imposed to limit the effects of
numerical fluctuations for quasi-constant profiles.

@ Convergence is achieved in the channel domain when

e = maxy(ey) < 0.01.



Full- vs half-range Hermite lattice Boltzmann models

2D Couette-BGK (uy, = 0.63)
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@ The HLB models do not converge for all Q < 100 for Kn > 0.25.

@ The HHLB models exhibit good convergence for all tested values of Kn.

V. E. Ambrus, V. Sofonea, J. Comput. Phys., accepted.
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Convergence models

Number of velocities
Kn Up =01 | ty =0.63 | up =1.0
0.0005 18 32 32
0.001 18 32 32
0.01 18 32 32
0.05 18 32 32
0.1 18 32 32
0.25 18 40 48
0.5 18 48 56
1.0 40 48 64
5.0 32 96 96

The above data is for the models HHLB(Q,) x HLB(Q,), where
Qy = min(Qy, 4). The number of velocities employed by such models is 2Q.Q,.

V. E. Ambrus, V. Sofonea, J. Comput. Phys., accepted.



Convergence of HHLB over all Kn

Qconv

0.01 0.1 1 10 100 1000 10000
Kn
99% accuracy can be achieved throughout the whole spectrum of Kn using
HHLB(6) x HLB(4) (2 X 6 X 4 = 48 velocities) and HHLB(17) x HLB(4)
(2 x 17 x 4 = 136 velocities) for u,, = 0.1 and u,, = 1.0, respectively.

V. E. Ambrus, V. Sofonea, ]. Comput. Phys., accepted.



Poiseuille flow

@ 2D Poiseuille flow between parallel plates
atrest (x; = —x_ = —-0.5).

o Diffuse reflection on the x axis. “

ea=01,T,=1.0.

e Half-range models required to capture
the discontinuous character of f. —

@ The reference profiles were obtained
using the HHLB(21) x HLB(4) model.

T Tw

V. E. Ambrus, V. Sofonea, Journal of Computational Science, under review.
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Reference profiles: n and u,

" Kn=0.01 —3—
Kn=0.015 ---0--

Density
normalised uy

o N= f_ LL//ZZ dx n(x) fixed at unity for all Kn.
@ n(x,) decreases monotonically with Kn.
o The agreement with DSMC is excellent for 1, even at Kn = 4.0.

*S. H. Kim, H. Pitsch, I. D. Boyd, J. Comput. Phys. 227 (2008) 8655
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Mass flow rate and velocity slip

2D Poiseuille-BGK (a, = 0.01)
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The mass flow rate is in excellent agreement with analytial predictions (at
small Kn) and with the numerical DVM results of Aoki et al.”.

* K. Aoki, S. Takata, T. Nakanishi, Phys. Rev. E 65 (2002) 026315. 24/29



Reference profiles: T

2D Poiseuille-BGK (a, = 0.1)
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T decreases monotonically with Kn, maintaining the shape of an inverted
parabola for Kn < 0.1. For Kn > 0.1, the profile becomes parabolic and the
temperature increases monotonically with Kn.



Reference profiles: g, and g,

2D Poiseuille-BGK (a, = 0.1)
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@ g, decreases monotonically to 0 as Kn — co.
@ g, decreases monotonically to —co as Kn — oo.



Full- vs half-range Hermite lattice Boltzmann models

2D Poiseuille-BGK (a, = 0.1)
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@ The HLB models do not converge for all Q < 100 for Kn > 0.25.
e The HHLB models exhibit good convergence for Kn < 2.6.

V. E. Ambrus, V. Sofonea, Journal of Computational Science, under review.



Convergence models (Poiseuille flow)

Number of velocities
Kn || 2,=0.01|4a,=0.05]|4a,=01
0.01 32 32 32
0.05 18 32 32
0.1 18 18 32
0.25 18 18 40
0.5 18 32 48
1.0 18 40 64
5.0 40 96 136

The above data is for the models HHLB(Q,) x HLB(Q,), where
Qy = min(Qy, 4). The number of velocities employed by such models is 2Q.Q,.

V. E. Ambrus, V. Sofonea, Journal of Computational Science, under review.



Conclusion

@ Quadrature-based LB models can be used to simulate thermal flows
beyond the Navier-Stokes regime.

o Half-space quadratures are necessary in flows between diffuse reflective
boundaries at non-negligible Kn.

o HLB (full-range) requires less velocities than HHLB (half-range) at small
Kn, but converges very slowly when Kn = 0.25.

@ The agreement in Poiseuille flow between LB and other numerical
methods is excellent even at Kn ~ 4.0.

@ This work was supported by a grant of the Romanian National Authority
for Scientific Research, CNCS-UEFISCDI, project number
PN-II-ID-JRP-2011-2-0060.
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