Problem Set 9

1. There are three types of coins which are indistinguishable apart from their probability of landing heads when tossed.

- Type A coins are fair, with probability 0.5 of heads
- Type B coins have probability 0.6 of heads
- Type C coins have probability 0.9 of heads

You have a drawer containing 4 coins: 2 of type A, 1 of type B, and 1 of type C. You reach into the drawer and pick a coin at random.

Suppose you toss the coin 5 times and it lands tails all 5 times. What are the posterior probabilities?

$$
\mathrm{R}: P(A \mid D)=0.859106, P(B \mid D)=0.140756, P(C \mid D)=0.00013745
$$

2. Stubborn priors. Suppose you run an experiment to test 3 different hypotheses: A, B, and C. You are so convinced that B is the correct hypothesis that your prior is

$$
P(A)=0 \quad P(B)=1 \quad P(C)=0
$$

You collect data D with likelihoods

$$
P(D \mid A)=0.8 \quad P(D \mid B)=0.01 \quad P(D \mid C)=0.7
$$

(a) Compute the posterior probabilities: $P(A \mid D), P(B \mid D), P(C \mid D)$
(b) Will any amount of data change your belief that B is the correct hypothesis?
3. There are three types of coins which have different probabilities of landing heads when tossed.

Type A coins are fair, with probability 0.5 of heads
Type B coins are bent and have probability 0.6 of heads
Type C coins are bent and have probability 0.9 of heads
You have a drawer containing 4 coins: 2 of type A, 1 of type B, and 1 of type C. You pick a coin at random. Assuming the first two tosses were heads, what is the posterior predictive probability of heads on the third toss?

R: 0.7155

