Problem Set 7

1. Suppose $X_{1}, X_{2}, \ldots, X_{100}$ are i.i.d. with mean $1 / 5$ and variance $1 / 9$. Use the central limit theorem to estimate $P\left(\sum X_{i}<30\right)$.

$$
\text { R: } 0.9986
$$

2. The average IQ in a population is 100 with standard deviation 15 . What is the probability that a randomly selected group of 100 people has an average IQ above 115 ?

R: 7.619×10^{-24} practice zero!
3. Suppose that X_{1}, X_{2}, X_{3} are independent with the common probability function

$$
P\left(X_{i}=0\right)=0.2, P\left(X_{i}=1\right)=0.3, P\left(X_{i}=3\right)=0.5, \quad i=1,2,3
$$

Let $\bar{X}_{2}=\frac{X_{1}+X_{2}}{2}$ and $\bar{X}_{3}=\frac{X_{1}+X_{2}+X_{3}}{3}$. Determine: a) $E\left[\bar{X}_{2}\right], V\left[\bar{X}_{2}\right]$ b) $E\left[\bar{X}_{3}\right], V\left[\bar{X}_{3}\right]$.

R:a) $1.8,0.78$ b) $1.8,0.52$
4. If 10 fair dice are rolled, approximate the probability that the sum of the values obtained (which ranges from 10 to 60) is between 30 and 40 inclusive. R: 0.6922
5. If X is a chi-square random variable with 6 degrees of freedom, find
a) $P(X \leq 6)$
b) $P(3 \leq X \leq 9)$

$$
\text { R: use } R \text { or tables a)0.5768 b)0.6352 }
$$

6. If X and Y are independent chi-square random variables with 3 and 6 degrees od freedom, respectively, determine the probability that $X+Y$ will exceed 10 .

R: use R or tables 0.3504
7. If T is a t-distribution with 8 degrees of freedom, find a) $P(T \geq 1)$, b) $P(T \leq 2)$ c) $P(-1<T<1)$

R: use R or tables a)0.1732 b)0.9597 c)0.6534
8. A highway department has enough salt to handle a total of 80 inches of snowfall. Suppose the daily amount of snow has a mean of 1.5 inches and a standard deviation of 0.3 inches. Approximate the probability that the salt on hand will suffice for the next 50 days. What assumption did you make?

R: 0.9907

