Problem Set 6

1. Flip a fair coin 100 times. Estimate the probability of more than 55 heads. Answer:

Let X_j be the result of the jth flip, so $X_j = 1$ for heads and $X_j = 0$ for tails (Bernoulli variable). The total number of heads is

 $S = X_1 + X_2 + \ldots + X_{100}$

We know $E[X_j] = 0.5$ and $V[X_j] = 1/4$. Since n = 100, we have

$$E[S] = 50; V[S] = 25 \text{ and } \sigma_s = 5$$

The standardization on S gives the question asks for P(S>55):

$$P(S > 55) = P\left(\frac{S-50}{5} > \frac{55-50}{5}\right) = P(Z > 1) \approx 0.16$$

2. Estimate the probability of more than 220 heads in 400 fips.

```
R: 0.025
```

- 3. Estimate the probability of between 40 and 60 heads in 100 fips. R: 0.9544997
- 4. Suppose *X* and *Y* both take values in [0,1] with density f(x, y) = 4xy. Show f(x, y) is a valid joint pdf, visualize (in a graph xOy) the event A = X < 0.5 and Y > 0.5' and find its probability.

R:3/16

5. Suppose (X;Y) takes values on the square $[0,1] \times [1,2]$ with joint pdf $f(x, y) = \frac{8}{3}x^3y$. Find the marginal pdf's $f_x(x)$ and $f_y(y)$.

R:
$$4x^3$$
 , $\frac{2}{3}y$

6. Suppose (X;Y) takes values on the unitsquare $[0,1] \times [0,1]$ with joint pdf $f(x, y) = \frac{3}{2}(x^2 + y^2)$. Find the marginal pdf $f_x(x)$ and use it to find P(X < 0.5).

R:
$$3x^2 + \frac{1}{2}$$
, $5/16$

7. f(x, y) = cxy is a joint pdf on $[0,1] \times [0,1]$. What is the value of c?

R:4

X\Y	1	2	3	4	$f_{X}(x)$
1	1/24	1/24	1/24	1/24	
2	1/12	1/12	1/12	1/12	
3	1/8	1/8	1/8	1/8	
$f_{Y}(y)$					

8. Consider the following joint probability table.

- (a) What is the probability that $X \le 2$ and $Y \le 2$?
- (b) What is the marginal probability X=1?
- (c) Are X and Y independent?

R: a)1/4 b)1/6 c)da

9. Flip a fair coin 3 times. Let X be the number of heads in the first 2 flips and let Y be the number of heads on the last 2 flips (so here is overlap on the middle flip). A) Constructs the joint probability table. b) Compute Cov[X,Y].

R: a)

X\Y	0	1	2	$p(x_i)$
0	1/8	1/8	0	
1	1/8	2/8	1/8	
2	0	1/8	1/8	
$p(y_j)$				

b)1/4