Problem Set 6

1. Flip a fair coin 100 times. Estimate the probability of more than 55 heads. Answer:
Let X_{j} be the result of the $\mathrm{j}^{\text {th }}$ flip, so $X_{j}=1$ for heads and $X_{j}=0$ for tails (Bernoulli variable). The total number of heads is

$$
S=X_{1}+X_{2}+\ldots+X_{100}
$$

We know $E\left[X_{j}\right]=0.5$ and $v\left[X_{j}\right]=1 / 4$. Since $n=100$, we have

$$
E[S]=50 ; V[S]=25 \text { and } \sigma_{s}=5
$$

The standardization on S gives the question asks for $\mathrm{P}(\mathrm{S}>55)$:

$$
P(S>55)=P\left(\frac{S-50}{5}>\frac{55-50}{5}\right)=P(Z>1) \approx 0.16
$$

2. Estimate the probability of more than 220 heads in 400 fips.

$$
\text { R: } 0.025
$$

3. Estimate the probability of between 40 and 60 heads in 100 fips.

R: 0.9544997
4. Suppose X and Y both take values in $[0,1]$ with density $f(x, y)=4 x y$. Show $f(x, y)$ is a valid joint pdf, visualize (in a graph xOy) the event $\mathrm{A}={ }^{`} X<0.5$ and $Y>0.5^{\prime}$ and find its probability.

$$
\mathrm{R}: 3 / 16
$$

5. Suppose ($\mathrm{X} ; \mathrm{Y}$) takes values on the square $[0,1] \times[1,2]$ with joint $\operatorname{pdf} f(x, y)=\frac{8}{3} x^{3} y$
. Find the marginal pdf's $f_{X}(x)$ and $f_{Y}(y)$.

$$
\mathrm{R}: 4 x^{3}, \frac{2}{3} y
$$

6. Suppose $(X ; Y)$ takes values on the unitsquare $[0,1] \times[0,1]$ with joint pdf $f(x, y)=\frac{3}{2}\left(x^{2}+y^{2}\right)$. Find the marginal pdf $f_{X}(x)$ and use it to find $P(X<0.5)$.

$$
\mathrm{R}: 3 x^{2}+\frac{1}{2}, 5 / 16
$$

7. $f(x, y)=c x y$ is a joint $p d f$ on $[0,1] \times[0,1]$. What is the value of c ?
R:4
8. Consider the following joint probability table.

$\mathrm{X} \backslash \mathrm{Y}$	1	2	3	4	$f_{X}(x)$
1	$1 / 24$	$1 / 24$	$1 / 24$	$1 / 24$	
2	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	
3	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	
$f_{Y}(y)$					

(a) What is the probability that $\mathrm{X} \leq 2$ and $\mathrm{Y} \leq 2$?
(b) What is the marginal probability $\mathrm{X}=1$?
(c) Are X and Y independent?

$$
\text { R: a) } 1 / 4 \quad \text { b) } 1 / 6 \quad \text { c)da }
$$

9. Flip a fair coin 3 times. Let X be the number of heads in the first 2 flips and let Y be the number of heads on the last 2 flips (so here is overlap on the middle flip). A) Constructs the joint probability table. b) Compute $\operatorname{Cov}[X, Y]$.

$$
\mathrm{R}: \mathrm{a})
$$

$\mathrm{X} \backslash \mathrm{Y}$	0	1	2	$p\left(x_{i}\right)$
0	$1 / 8$	$1 / 8$	0	
1	$1 / 8$	$2 / 8$	$1 / 8$	
2	0	$1 / 8$	$1 / 8$	
$p\left(y_{j}\right)$				

b) $1 / 4$

