Problem Set 3

Exercise 1. *X* has a Bernoulli distribution—that is, *X* takes on values 0 and 1 with probability 1 - p and *p*, respectively. Find the mean and variance for the Bernoulli distribution. R: E[X] = p, V[X] = p(1-p)

Exercise 2. Let X have the probability density function

$$f(x) = \frac{1+\alpha x}{2}$$
, $-1 \le x \le 1$, $-1 \le \alpha \le 1$
R: $\alpha/3$, $\frac{1}{3} - \frac{1}{9}\alpha^2$

Find E[X] and V[X].

Exercise 3. Let X be a random variable having the *k*th moment:

$$\mu_k = E[X^k] = \frac{1}{k+1}$$
, $k = 1, 2, 3$

Find the third central moment $v_3 = E\left[\left(X - \mu_1\right)^3\right]$ R:0

Exercise 4. A Poisson-distributed integer variable with mean λ has the probability function: $f(x) = \Pr(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$.

- a) Find the moment generating function (MGF) for the Poisson distribution.
- b) Using MGF, find the mean and variance for the Poisson distribution.

R:a)
$$M_{X}(t) = e^{\lambda(e^{t}-1)}$$
 b) λ , λ

Exercise 5. The MGF for the Gaussian distribution is given by

$$M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Let X a Gaussian distribution with mean μ_X and variance σ_X^2 and Y a Gaussian distribution with mean μ_Y and variance σ_Y^2 . If X and Y are independent find the

MGF of
$$Z = X + Y$$
.
R: $M_Z(t) = e^{(\mu_X + \mu_Y)t} e^{(\sigma_X^2 + \sigma_Y^2)\frac{t}{2}}$

Exercise 6. Let *X* be a discrete random variable that takes on values 0, 1, 2 with probabilities $\frac{1}{2}$, $\frac{3}{8}$, $\frac{1}{8}$, respectively. Find the moment-generating function of *X*, $M_x(t)$, and verify that E[X] = M'(0) and that $E[X^2] = M''(0)$.

R:
$$M_{X}(t) = \frac{1}{2} + \frac{3}{8}e^{t} + \frac{1}{8}e^{2t}$$