Problem Set 3

Exercise 1. X has a Bernoulli distribution-that is, X takes on values 0 and 1 with probability $1-p$ and p, respectively. Find the mean and variance for the Bernoulli distribution.
$\mathrm{R}: E[X]=p, V[X]=p(1-p)$
Exercise 2. Let X have the probability density function

$$
f(x)=\frac{1+\alpha x}{2},-1 \leq x \leq 1,-1 \leq \alpha \leq 1
$$

Find $E[X]$ and $V[X]$.
$\mathrm{R}: \alpha / 3, \frac{1}{3}-\frac{1}{9} \alpha^{2}$
Exercise 3. Let X be a random variable having the k th moment:

$$
\mu_{k}=E\left[X^{k}\right]=\frac{1}{k+1}, k=1,2,3
$$

Find the third central moment $v_{3}=E\left[\left(X-\mu_{1}\right)^{3}\right]$ R:0

Exercise 4. A Poisson-distributed integer variable with mean λ has the probability function: $f(x)=\operatorname{Pr}(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}$.
a) Find the moment generating function (MGF) for the Poisson distribution.
b) Using MGF, find the mean and variance for the Poisson distribution.

$$
\mathrm{R}: \text { a) } M_{X}(t)=e^{\lambda\left(e^{\prime}-1\right)} \text { b) } \lambda, \lambda
$$

Exercise 5. The MGF for the Gaussian distribution is given by

$$
M_{X}(t)=e^{\mu \mu+\frac{1}{2} \sigma^{\sigma_{t}}}
$$

Let X a Gaussian distribution with mean μ_{X} and variance σ_{X}^{2} and Y a Gaussian distribution with mean μ_{Y} and variance σ_{Y}^{2}. If X and Y are independent find the
MGF of $Z=X+Y$.
$\mathrm{R}: M_{Z}(t)=e^{\left(\mu_{X}+\mu_{Y}\right)} e^{\left(\sigma_{\chi}^{2}+\sigma_{Y}^{2}\right) \frac{l^{2}}{2}}$

Exercise 6. Let X be a discrete random variable that takes on values 0, 1,2 with probabilities $1 / 2,3 / 8,1 / 8$, respectively. Find the moment-generating function of X, $M_{X}(t)$, and verify that $E[X]=M^{\prime}(0)$ and that $E\left[X^{2}\right]=M^{\prime \prime}(0)$.

$$
\mathrm{R}: M_{X}(t)=\frac{1}{2}+\frac{3}{8} e^{t}+\frac{1}{8} e^{2 t}
$$

