Problem Set 10

1. A population distribution is known to have standard deviation 20. Determine the p-value of a test of the hypothesis that the population mean is equal to 50 , if the average of a sample of 64 observations is
(a) 52.5 ; (b) 55.0 ; (c) 57.5

$$
\mathrm{R}: \mathrm{a}) 0.317 \text { b) } 0.0455 \mathrm{c}) 0.00269
$$

2. In a certain chemical process, it is very important that a particular solution that is to be used as a reactant have a pH of exactly 8.20. A method for determining pH that is available for solutions of this type is known to give measurements that are normally distributed with a mean equal to the actual pH and with a standard deviation of 0.02 . Suppose 10 independent measurements yielded the following pH values:
$8.18 \quad 8.178 .168 .158 .178 .218 .228 .168 .198 .18$
(a) What conclusion can be drawn at the $\alpha=0.10$ level of significance?
(b) What about at the $\alpha=0.05$ level of significance?

R: p-value 0.0009 reject $a), b$)
3. IQ is normally distributed in the population according to a $N\left(100,15^{2}\right)$ distribution. We suspect that most MIT students have above average IQ so we frame the following hypotheses.
$\mathrm{H}_{0}=$ MIT student IQs are distributed identically to the general population = MIT IQ's follow a $N\left(100,15^{2}\right)$ distribution.
$\mathrm{H}_{1}=$ MIT student IQs tend to be higher than those of the general population $=$ the average MIT student IQ is greater than 100 . Notice that H_{1} is one sided.
Suppose we test 9 students and find they have an average IQ of $\bar{x}=112$. Can we reject H_{0} at a significance level $\alpha=0.05$? Compute the p-value.

$$
\text { R: } 0.0081975
$$

4. Our data is normal with variance 25 . The null hypothesis is that the data is drawn from $\mathrm{N}(10,25)$. That is, the null distribution has $\mu=10$. We have 1 data point $\mathrm{x}=20$.
(a) If the alternative hypothesis is one-sided $\mu>10$. What is the p-value for this data?
(b) Suppose our significance level is 0.05 . Will we reject the null hypothesis?
R: a)0.0227 b)yes
5. The mean response time of a species of pigs to a stimulus is 0.8 seconds. Twentyeight pigs were given 2 oz of alcohol and then tested. If their average response time was 1.0 seconds with a standard deviation of 0.3 seconds, can we conclude that alcohol affects themean response time? Use the 5 percent level of significance.

$$
\text { R: TS =3.527668, p-value } 0.001521239
$$

6. Suppose that we have data that follows a normal distribution of unknown mean μ and unknown variance. Let the null hypothesis H_{0} be that $\mu=0$. Let the alternative hypothesis H_{1} be that $\mu>0$. Suppose we collect the following data: $1,2,3,6,-1$

At a significance level of $\alpha=0.05$, should we reject the null hypothesis?

$$
\text { R: do not reject p-value } 0.065
$$

7. Suppose data is drawn from a normal distribution with unknown mean μ and unknown standard deviation. We make the following hypotheses:
There are 100 data points with a sample mean of 2 and sample variance of 36 .
For a t-test let $\mathrm{H}_{0}: \mu=1$ and $\mathrm{H}_{1}: \mu>1$.
(a) What is the value of the t statistic?
(b) How many degrees of freedom does the null distribution (the distribution t of the statistic test) have?
(c) What is the p -value for this test? Use R to compute your answer.
(d) At a significance level of 0.01 do you reject the null hypothesis in favor of H_{1} ? R: a)1.666 c) 0.04943731
