Problem Set 1

Exercise 1. A six-sided die is thrown. Let event A be 'the number obtained is divisible by 2 ' and event B be 'the number obtained is divisible by 3'. Draw a Venn diagram to represent these events.

Exercise 2. A biased six-sided die has probabilities $\frac{1}{2} p, \mathrm{p}, \mathrm{p}, \mathrm{p}, \mathrm{p}, 2 \mathrm{p}$ of showing
1, 2, 3, 4, 5, 6 respectively. Calculate p .
R: $p=\frac{2}{13}$

Exercise 3. By shading or numbering Venn diagrams, determine that the following are valid relationships between events. Prove the relationship using de Morgan's laws.
a) $\overline{(\bar{X} \cup Y)}=X \cap \bar{Y}$
b) $X \cup \overline{(Y \cap Z)}=(X \cup \bar{Y}) \cup \bar{Z}$

Exercise 4. Calculate the probability of drawing an ace or a red honour card (ace, king, queen, jack or 10) from a pack of cards.

R: 3/13
Exercise 5. An urn contains three white balls and four black balls. Two balls are successively drawn from this urn without replacement. We consider the events:

A : the first ball drawn is white,
B : the second ball drawn is white.
What is the probability that the second drawn ball will be white if the first is white $P(B \mid A)$?

R: 1/3
Exercise 6. A laboratory blood test is 99 percent effective in detecting a certain disease when it is, in fact, present. However, the test also yields a "false positive" result for 1 percent of the healthy persons tested. (That is, if a healthy person is tested, then, with probability 0.01 , the test result will imply he or she has the disease.) If 0.5 percent of the population actually has the disease, what is the probability a person has the disease given that his test result is positive?

$$
\text { R: } 0.3322
$$

