
 Curs 9  

1 
 

8.3.1 Confidence Interval for a Normal Mean when the Variance Is Unknown 

 

Suppose now that 1 2, , , nX X X  is a sample from a normal distribution with 

unknown mean μ and unknown variance σ2, and that we wish to construct a  100 1   

percent confidence interval for μ. Since σ is unknown, we can no longer base our 

interval on the fact that   /n X    is a standard normal random variable. 

However, by letting    
22 / 1iS X X n    denote the sample variance, then from 

Corollary (section 7.2.4b), it follows that   

                                                         
 X

n
S


                                            (8.25) 

is a t-random variable with 1n  degrees of freedom. Hence, from the symmetry of 

the t-density function, we have that for any  0,1/ 2  , 
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If it is observed that X x  and S s , then “with  100 1   percent confidence” 
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Exercise 8 Let consider Exercise 4 but let us now suppose that when the value μ is 

transmitted at location A then the value received at location B is normal with mean 

μ and variance σ2 but with σ2 being unknown. If 9 successive values are, as in 

Exercise 4:  5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, compute a 95 percent confidence 

interval for μ. 

 

A simple calculation yields that 9x   and 

                                                 
 

22

2
9

9.5
8

ix x
s


 
   

                                                         3.082s    

Hence, as 
0.025,8 2.306t   ,  

qt(0.025,df=8,lower.tail = FALSE) 
[1] 2.306004 

 

a 95 percent confidence interval for μ is 

                                 
   

 
3.082 3.082

9 2.306 ,   9 2.306 6.63,  11.37
3 3

 
   

 
  

a larger interval than obtained in Exercise 4 (  7.69,10.31 ). The reason why the 

interval just obtained is larger than the one in Exercise 4 is twofold. The primary 

reason is that we have a larger estimated variance than in Exercise 4. In Exercise 4 

we assumed that σ2 was known to equal 4, whereas in this example we assumed it to 

be unknown and our estimate of it turned out to be 9.5, which resulted in a larger 

confidence interval. In fact, the confidence interval would have been larger than in 

Exercise 4 even if our estimate of σ2 was again 4 because by having to estimate the 

variance we need to utilize the t-distribution, which has a greater variance and thus 

a larger spread than the standard normal (which can be used when σ2 is assumed 

known). For instance, if it had turned out that 9x   and 2 4s  , then our confidence 

interval would have been 

                                       
2 2

9 2.306 ,   9 2.306 7.46,  10.54
3 3

 
   

 
   

which is larger than that obtained in Exercise 4. 
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REMARK 

The confidence interval for μ when σ is known is based on the fact that   /n X    

has a standard normal distribution. When σ is unknown, the foregoing approach is 

to estimate it by S and then use the fact that   /n X S  has a t-distribution with 

1n  degrees of freedom. 

 

A one-sided upper confidence interval can be obtained by noting that 
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Hence, if it is observed that X x , S s  , then we can assert “with  100 1   percent 

confidence” that 
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Similarly, a  100 1   lower confidence interval would be 

                                                 , 1 ,  n

s
x t

n
 

 
   
 

 

 

Finding Confidence Intervals with R 

Exercise 9 Determine a 95 percent confidence interval for the average resting pulse 

of the members of a health club if a random selection of 15 members of the club 

yielded the data 54, 63, 58, 72, 49, 92, 70, 73, 69, 104, 48, 66, 80, 64, 77. Also 

determine a 95 percent lower confidence interval for this mean. 
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> x<-c(54, 63, 58, 72, 49, 92, 70, 73, 69, 104, 48, 66, 80, 64, 77) 
 
> mean(x) 
[1] 69.26667 
> sd(x) 
[1] 15.16795 
 

> qt(0.975,df=14)      
/2, 1nt 

  

[1] 2.144787 

> qt(0.975,df=14)*sd(x)/sqrt(15)     /2, 1 /nt s n   

[1] 8.39973 
 
> mean(x)-qt(0.975,df=14)*sd(x)/sqrt(15) 
[1] 60.86694 
> mean(x)+qt(0.975,df=14)*sd(x)/sqrt(15) 
[1] 77.6664 

 

The 95% confidence interval for the mean is (60.865, 77.6683) 

> qt(0.95,df=14)         , 1nt   

[1] 1.76131 

> qt(0.95,df=14)*sd(x)/sqrt(15)     , 1 /nt s n   

[1] 6.897903 
 
> mean(x)+qt(0.95,df=14)*sd(x)/sqrt(15) 
[1] 76.16457 

 

The 95% lower confidence interval for the mean is (-infinity, 76.1662) 

 

Our derivations of the  100 1   percent confidence intervals for the 

population mean μ have assumed that the population distribution is normal. 

However, even when this is not the case, if the sample size is reasonably large then 

the intervals obtained will still be approximate  100 1   percent confidence 

intervals for μ. This is true because, by the central limit theorem,   /n X    will 

have approximately a normal distribution, and   /n X S  will have 

approximately a t-distribution. 
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8.3.2 Confidence Intervals for the Variance of a Normal Distribution 

If 1 2, , , nX X X  is a sample from a normal distribution having unknown 

parameters μ and σ2, then we can construct a confidence interval for σ2 by using the 

fact that 

                                                       
2
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1 n

S
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
                                         (8.29) 

Hence, 
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Hence when 2 2S s , a  100 1   percent confidence interval for σ2 is 
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Exercise 10 A standardized procedure is expected to produce washers (saibe) with 

very small deviation in their thicknesses. Suppose that 10 such washers were chosen 

and measured. If the thicknesses of these washers were, in inches, 

            0.123  0.133  0.124  0.125  0.126  0.128  0.120  0.124  0.130  0.126 

what is a 90 percent confidence interval for the standard deviation of the thickness 

of a washer produced by this procedure? 

 

A computation gives that 

wa<-c(0.123,0.133,0.124,0.125,0.126,0.128,0.120,0.124,0.130,0.126) 
> var(wa) 
[1] 1.365556e-05 

                                                   2 51.366 10s     

 

90 percent confidence interval    0.1    

Because 2 2

/2 0.05,9 16.917    and 2 2

1 /2 0.95 3.334    , 

alfa<-0.1 
> qchisq(alfa/2,df=9,lower.tail = FALSE) 
[1] 16.91898 
> qchisq(1-alfa/2,df=9,lower.tail = FALSE) 
[1] 3.325113 

 

                                
  2 5

6

2

/2

1 9 1.366 10
7.267 10

16.917

n s






  
          

                                
  2 5

6

2

1 /2

1 9 1.366 10
36.875 10

3.334

n s








  
             

 it follows that, with confidence 90%, 

                                      σ2 ∈ (7.267 × 10−6,  36.875 × 10−6)             

 Taking square roots yields that, with confidence 0.90, 

                                       σ ∈ (2.696 × 10−3, 6.072 × 10−3)  

 

One-sided confidence intervals for σ2 are obtained by similar reasoning and 

are presented in the Table, which sums up the results of this section.       
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Table:   100 1   Percent Confidence Intervals 

                                                2

1 2, , , ,nX X X N     

                                 
1

/
n

i

i

X X n


              
2

1

/ 1
n

i

i

S X X n


     

 

Assumption Parameter Confidence Inteval   Lower Interval   Upper Interval 

2  known 

 

2 unknown 

 

  unknown 

 

 

   

 

  

 

2  
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8.4 ESTIMATING THE DIFFERENCE IN MEANS OF TWO 

NORMAL POPULATIONS 

Let 1 2, , , nX X X  be a sample of size n from a normal population having mean 

1  and variance 2

1  and let 1 2, , , mY Y Y  be a sample of size m from a different normal 

population having mean 2  and variance 2

2  and suppose that the two samples are 

independent of each other. We are interested in estimating 1 2  . 

 Since /iX X n  and /iY Y m  are the maximum likelihood estimators of 

1  and 2  it seems intuitive (and can be proven) that X Y  is the maximum 

likelihood estimator of 1 2  . 

To obtain a confidence interval estimator, we need the distribution of X Y . 

Because 

                                                       2

1 1, /X N n    

                                                       2

2 2, /Y N m    
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it follows from the fact that the sum of independent normal random variables is also 

normal, that 

                                               
2 2

1 2
1 2 ,X Y N

n m

 
 
 

   
 

                             (8.32) 

Hence, assuming 2

1  and 2

2  are known, we have that 

                                                
 

 1 2

2 2

1 2

0,1
X Y

N

n m

 

 

  



                                (8.33) 

and so 

                                        
 1 2

/2 /2
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1 2

Pr 1
X Y

z z

n m

 

 


 

 
 

  
     
 

 
 

                 (8.34) 
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  (8.35) 
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Hence, if X  and Y  are observed to equal x  and y , respectively, then a  100 1    

two-sided confidence interval estimate for 1 2   is 

                         
2 2 2 2

1 2 1 2
1 2 /2 /2,      x y z x y z

n m n m
 

   
 

 
        

 
 

          (8.36) 

One-sided confidence intervals for 1 2   are obtained in a similar fashion, and for 

exemple, a  100 1   percent lower one-sided interval is given by 

                                         
2 2

1 2
1 2 ,   x y z

n m


 
 

 
      

 
 

         

   

Exercise 11 Two different types of electrical cable insulation have recently been 

tested to determine the voltage level at which failures tend to occur. When specimens 

were subjected to an increasing voltage stress in a laboratory experiment, failures 

for the two types of cable insulation occurred at the following voltages: 

                                             Type A            Type B 

                                              36   54             52   60 

                                              44   52             64   44 

                                              41   37             38   48 

                                              53   51             68   46 

                                              38   44             66   70 

                                              36   35             52   62 

                                              34   44 

Suppose that it is known that the amount of voltage that cables having type A 

insulation can withstand is normally distributed with unknown mean A  and known 

variance 2 40A  , whereas the corresponding distribution for type B insulation is 

normal with unknown mean B  and known variance 2 100B  . Determine a 95 

percent confidence interval for A B  . Determine a value that we can assert, with 

95 percent confidence, exceeds A B  . 
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> n<-14 
> m<-12 
> A<-c(36,54,44,52,41,37,53,51,38,44,36,35,34,44) 
> B<-c(52,60,64,44,38,48,68,46,66,70,52,62) 
> mean(A) 
[1] 42.78571 
> mean(B) 
[1] 55.83333 
 
> alfa<-0.05 
> za2<-qnorm(alfa/2, lower.tail = FALSE) 
> za2 
[1] 1.959964 
 
> [ll<-mean(A)-mean(B)-za2*sqrt(40/n+100/m) 
>  
[1] -19.60412 
> [ul<-mean(A)-mean(B)+za2*sqrt(40/n+100/m) 
>  
[1] -6.491114 
 

 
 

The 95% confidence interval for the mean is (-19.6056, -6.4897) 

> za<-qnorm(alfa, lower.tail = FALSE) 
> za 
[1] 1.644854 
 
> ul<-mean(A)-mean(B)+za*sqrt(40/n+100/m) 
 
[1] -7.723731 

  
 

 

The 95% lower confidence interval for the mean is (-infinity, -7.7237) 

 

Let us suppose now that we again desire an interval estimator of 1 2   but 

that the population variances 2

1  and 2

2  are unknown. In this case, it is natural to try 

to replace 2

1  and 2

2  in Equation (8.36) 

                   
2 2 2 2

1 2 1 2
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n m n m
 

   
 
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 
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by the sample variances 

                                   
 
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That is, it is natural to base our interval estimate on 

                                                    
 1 2

2 2

1 2

X Y

S S

n m

   



                                        (8.38) 

However, to utilize the foregoing to obtain a confidence interval, we need its 

distribution and it must not depend on any of the unknown parameters 2

1  and 2

2 . 

Unfortunately, this distribution is both complicated and does indeed depend on the 

unknown parameters 2

1  and 2

2 . In fact, it is only in the special case when 2 2

1 2    

that we will be able to obtain an interval estimator. So let us suppose that the 

population variances, though unknown, are equal and let 2  denote their common 

value. Now, from Theorem (section 7.2.4b), it follows that 

 

                                       
2

21
12

1 n

S
n 


   and   

2
22

12
1 m

S
m 


                        (8.39) 

Also, because the samples are independent, it follows that these two chi-square 

random variables are independent. Hence, from the additive property of chi-square 

random variables, which states that the sum of independent chi-square random 

variables is also chi-square with a degree of freedom equal to the sum of their 

degrees of freedom, it follows that 

 

                                               
2 2

21 2
22 2

1 1 n m

S S
n m 

 
                                (8.40) 

Also, since 

                                          
2 2

1 2 ,X Y N
n m

 
 
 

   
 

                               (8.41) 

 we see that 

                                             
 

 1 2

2 2
0,1

X Y
N

n m

 

 

  



                               (8.42) 
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Now it follows from the fundamental result that in normal sampling X  and 2S  are 

independent (Theorem (section 7.2.4b)), that 
1X , 2

1S , 
2X , 2

2S  are independent random 

variables. Hence, using the definition of a t-random variable (as the ratio of two 

independent random variables, the numerator being a standard normal and the 

denominator being the square root of a chi-square random variable divided by its 

degree of freedom parameter), it follows from Equations (8.40) and (8.42) that if we 

let 

                                                
   2 2

1 22
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2
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n S m S
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Then       
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                                                                                                                     (8.44) 

has a t-distribution with 2n m   degrees of freedom. Consequently, 

                                
 1 2

/2, 2 /2, 2

2

Pr 1
1 1

n m n m

p

X Y
t t

S
n m

 

 
   

 
 

       
  
   

  

            (8.45) 

                                  

                2 2

/2, 2 1 2 /2, 2

1 1 1 1
Pr 1n m p n m pt S X Y t S

n m n m
      

    
                  

 

 

      2 2

/2, 2 1 2 /2, 2

1 1 1 1
Pr 1n m p n m pX Y t S X Y t S

n m n m
      

    
                   

 (8.46) 

Therefore, when the data result in the values X x , Y y , p pS s , we obtain the 

following  100 1   percent confidence interval for 1 2  : 

                             /2, 2 /2, 2

1 1 1 1
,   n m p n m px y t s x y t s

n m n m
    

 
       

 
                (8.47) 
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One-sided confidence intervals are similarly obtained. 

 

Exercise 12 There are two different techniques a given manufacturer can employ to 

produce batteries. A random selection of 12 batteries produced by technique I and 

of 14 produced by technique II resulted in the following capacities (in ampere hours): 

                                     Technique I           Technique II 

                                        140  132                144  134 

                                        136  142                132  130 

                                        138  150                136  146 

                                        150  154                140  128 

                                        152  136                128  131 

                                        144  142                150  137 

                                                                      130  135 

Determine a 90 percent level two-sided confidence interval for the difference in 

means, assuming a common variance. Also determine a 95 percent upper confidence 

interval for I II  . 

We run Program R. 

> alfa<-0.1 
> n<-12 
> m<-14 
> I<-c(140,132,136,142,138,150,150,154,152,136,144,142) 
> II<-c(144,134,132,130,136,146,140,128,128,131,150,137,130,135) 
> mean(I) 
[1] 143 
> mean(II) 
[1] 135.7857 
 
> ta2<-qt(alfa/2,df=n+m-2,lower.tail = FALSE) 
> ta2 
[1] 1.710882 
 
> sp<-sqrt(((n-1)*var(I)+(m-1)*var(II))/(n+m-2)) 
> sp 
[1] 7.007012 
 
> [ll<- mean(I)-mean(II)-ta2*sp*sqrt(1/n+1/m) 
> 
[1] 2.498164 
> [ul<- mean(I)-mean(II)+ta2*sp*sqrt(1/n+1/m) 
>  
[1] 11.93041 
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The 90% confidence interval for the mean difference is (2.4971, 11.9315) 

The 95% upper confidence interval for the mean difference is (2.4971, infinity) 

 

REMARK 

The confidence interval given by Equation (8.47) was obtained under the assumption 

that the population variances are equal; with 2  as their common value, it follows 

that 

                                      
   1 2 1 2

2 2 1 1

X Y X Y

n mn m

   

 


     




 

has a standard normal distribution. However, since 2  is unknown this result cannot 

be immediately applied to obtain a confidence interval; 2  must first be estimated. 

To do so, note that both sample variances are estimators of 2 ; moreover, since 2

1S  

has 1n  degrees of freedom and 2

2S  has 1m , the appropriate estimator is to take a 

weighted average of the two sample variances, with the weights proportional to these 

degrees of freedom. That is, the estimator of 2  is the pooled estimator 

 

                                              
   2 2

1 22
1 1

2
p

n S m S
S

n m

  


 
                                (8.48) 

and the confidence interval is then based on the statistic 

                                                     
 1 2

2 1 1
p

X Y

S
n m

   



                                     (8.49) 

which, by our previous analysis, has a t-distribution with 2n m   degrees of 

freedom. 

 

 


