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Chapter 7 Distributions of Sampling Statistics 

Bibliography: Sheldon Ross(2014) 

7.1 DISTRIBUTIONS ARISING FROM THE NORMAL 

 

7.1.1 The Chi-Square Distribution and Relation with Gamma Random Variable 

We know that if  2,X N   , then the random variable  
2 2/Y X     is 

distributed as the gamma distribution 
1 1

,
2 2

Y 
 
 
 

. Let  2,i i iX N   , 1,2, ,i n , 

independent variables and define the new variable: 
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                                                  2

nE n     ,   2 2nV n                                   (7.3) 

 

Another definition 

If 1 2, , , nZ Z Z  are independent standard normal random variables, then the 

random variable 2

n  defined by: 

                                                    2 2 2 2

1 2n nZ Z Z                                         (7.4) 

is said to have a chi-square distribution with n degrees of freedom.  

The chi-square distribution has the additive property that if 1X  and 2X  are 

independent chi-square random variables with 1n  and 2n  degrees of freedom, 

respectively, then 1 2X X  is chi-square with 1 2n n  degrees of freedom. This can be 
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shown by noting that 
1 2X X  is the sum of squares of 

1 2n n  independent standard 

normal and thus has a chi-square distribution with 1 2n n  degrees of freedom. 

If X is a chi-square random variable with n degrees of freedom, then for any 

 0,1  , the quantity 2

,n  is defined to be such that 

                                                          2

,nP X                                           (7.5) 

 

Figure 7.1 

Table with values of 2

,n  are available at the end of the statistical books.  In addition, 

Program R can be used to obtain chi-square probabilities and the values of 2

,n . 

 

Exercise 1:  Determine  2

26 30P    when 2

26  is a chi-square random variable with 

26 degrees of freedom. 

Using Program R  gives the result  2

26 30 0.7325P     

> pchisq(30, 26, lower.tail = TRUE) 

[1] 0.732389 

lower.tail logical; if TRUE (default), probabilities are  Pr X x , otherwise, 

 Pr X x . 

> pchisq(30, 26)    [1] 0.732389 

>qchisq(0.7325, df=26)   [1] 30.00268 
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Exercise 2: Find 2

0.05,15  . So, 0.05   and using Program R: 

qchisq(0.95, df=15) 
[1] 24.99579 
 
 

Exercise 3: Suppose that we are attempting to locate a target in three-dimensional 

space, and that the three coordinate errors (in meters) of the point chosen are indep

endent normal random variables with mean 0 and standard deviation 2. Find the pr

obability that the distance between point chosen and the target exceeds 3 meters. 

 If D is the distance, then 

                                                     2 2 2 2

1 2 3D X X X     

where iX  is the error in the -ith coordinate. Since  0 / 2i iZ X  , 1,2,3i   are all sta

ndard normal random variables, it follows that 

 

                                  2 2 2 2 2 2 2

1 2 3 1 2 39 9 4 4 4 9P D P X X X P Z Z Z           

                                            2 2 2 2

1 2 3 3

9 9
0.5222

4 4
P Z Z Z P 
   

         
   

  

where the final equality was obtained from R. 

> pchisq(9/4, 3, lower.tail = FALSE) 

[1] 0.5221672 

                     

Figure 7.2 The chi-square density functions having 1, 3, and 10 degrees of 

freedom, respectively. 

> x <- seq(0,20,by = 0.1) 
> y <- dchisq(x,df=1) 
> z <- dchisq(x,df=3) 
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> t <- dchisq(x,df=10) 
> plot(x,y,main="chisq (df=1,3,10)",ylim=c(0,0.4),type='l') 
> lines(x,z,type='l') 
> lines(x,t,type='l') 

 

Exercise 4: When we attempt to locate a target in two-dimensional space, suppose 

that the coordinate errors are independent normal random variables with mean 0 and 

standard deviation 2. Find the probability that the distance between the point chosen 

and the target exceeds 3. 

If D is the distance and iX , 1,2i  , are the coordinate errors, then 

                                                        2 2 2

1 2D X X   

Since  0 / 2i iZ X  , 1,2i  , are standard normal random variables, we obtain 

                       2 2 2 2 2

1 2 1 29 9 4 4 9P D P X X P Z Z         

                                            2 2 2

1 2 2

9 9
0.3247

4 4
P Z Z P 
   

        
   

     

pchisq(9/4, 2, lower.tail = FALSE) 
[1] 0.3246525 

 

7.1.2 The t -Distribution 

If Z and 2

n  are independent random variables, with Z having a standard 

normal distribution and 2

n  having a chi-square distribution with n degrees of 

freedom, then the random variable nT  defined by      

                                                        
2 /

n

n

Z
T

n
                                               (7.6) 

is said to have a t-distribution with n degrees of freedom. A graph of the probability 

density function of nT  is given in Figure 7.3 for n = 1, 3, and 10.            

x <- seq(-5,5,by = 0.1) 
> y <- dt(x,df=1) 
> z <- dt(x,df=3) 
> t <- dt(x,df=10) 
> plot(x,y,main="t-distribution (df=1,3,10)",ylim=c(0,0.4),type='l') 
> lines(x,z,type='l') 
> lines(x,t,type='l') 
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Figure 7.3 

Like the standard normal density, the t-density is symmetric about zero. In addition, 

as n becomes larger, it becomes more and more like a standard normal density.   

 

Figura 7.4 

x <- seq(-5,5,by = 0.1) 
> y <- dt(x,df=5) 
> z <- dnorm(x,mean=0,sd=1) 
> plot(x,y,main="t-distribution (df=5) and normal standard",ylim=c(0,0.4),typ
e='l') 
> lines(x,z,type='l') 
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Figure 7.4 shows a graph of the t-density function with 5 degrees of freedom 

compared with the standard normal density. Notice that the t-density has thicker 

“tails,” indicating greater variability, than does the normal density. 

The mean and variance of 
nT  can be shown to equal 

                                                         0nE T   , 1n                                          (7.7) 

                                                    
2

n

n
Var T

n



 ,  2n                                    (7.8) 

Thus the variance of 
nT  decreases to 1 — the variance of a standard normal random 

variable — as n increases to ∞.  

For  0,1  , let ,nt  be such that 

                                                         ,Pr n nT t                                           (7.9) 

It follows from the symmetry about zero of the t-density function that nT  has the 

same distribution as nT , and so 

                                     , , ,Pr Pr 1 Prn n n n n nT t T t T t              

 

Figure 7.5 

Therefore, 

                                                     ,Pr 1n nT t        

Dar,  1 ,Pr 1n nT t      leading to the conclusion that 

                                                        , 1 ,n nt t                                                  (7.10) 
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The values of ,nt  for a variety of values of n and α are tabulated. In addition, 

Programs R compute the t-distribution function and the values ,nt . 

 

Exercise 5: Find (a)  12Pr 1.4T   and (b) 0.025,9t . 

Run Programs R to obtain the results: (a)0 .9066 (b) 2.2625 

> pt(1.4,df=12) 
[1] 0.9065835 
 
> qt(1-0.025,df=9) 
[1] 2.262157 

 

 

7.1.3 The F-Distribution 

 If 2

n  and 2

m  are independent chi-square random variables with n and m  

degrees of freedom, respectively, then the random variable ,n mF  defined by 

                                                         
2

, 2

/

/

n
n m

m

n
F

m




                                         (7.11) 

is said to have an F-distribution with n and m degrees of freedom. 

 For any  0,1  , let , ,n mF  be such that 

 

                                                            , , ,Pr n m n mF F                              (7.12)           

 
Figure 7.6 

 

 

The quantities , ,n mF  are tabulated for different values of n, m, and 1/ 2  . If , ,n mF   

is desired when 1/ 2  , it can be obtained by using the following equalities: 

                                 
2 2

, ,2 2

, ,

/ / 1
Pr Pr

/ /

n m
n m

m n n m

n m
F

m n F




 


 

  
       

   
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2
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 
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 or, equivalently, 

                                                  
2

2

, ,

/ 1
Pr 1

/

m

n n m

m

n F






 
    

 

                                

But because    2 2/ / /m nm n   has an F-distribution with degrees of freedom m and n

, it follows that                                                      

                                                
2

1 , ,2

/
Pr 1

/

m
m n

n

m
F

n








 
   

 
 

implying, from Equation (3), that 

                                                        1 , ,

, ,

1
m n

n m

F
F





                                         (7.13) 

For instance, 0.9,5,7

0.1,7,5

1 1
0.296

3.37
F

F
     

qf(1-0.1,7,5)     [1] 3.367899 
> qf(1-0.9,5,7)   [1] 0.296921 
 
> pf(3.37,7,5) [1] 0.9001106 

 

Exercise 6: Determine  6,14Pr 1.5F  . 

Run R to obtain the solution 0.7518. 

> pf(1.5,6,14)  [1] 0.7515004 
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7.2 SAMPLING STATISTICS 

 

 INTRODUCTION 

The science of statistics deals with drawing conclusions from observed data. 

For instance, a typical situation arises when one is confronted with a large collection, 

or population, of items that have measurable values associated with them. By 

suitably sampling from this collection, and then analyzing the sampled items, one 

hopes to be able to draw some conclusions about the collection as a whole. 

To use sample data to make inferences about an entire population, it is 

necessary to make some assumptions about the relationship between the two. One 

such assumption, is that there is an underlying (population) probability distribution 

such that the measurable values of the items in the population can be thought of as 

being independent random variables having this distribution. If the sample data are 

then chosen in a random fashion, then it is reasonable to suppose that they too are 

independent values from the distribution. 

Definition 

If 1 2, , , nX X X  are independent random variables having a common distribution F, 

then we say that they constitute a sample (sometimes called a random sample) from 

the distribution F. 

In most applications, the population distribution F will not be completely 

specified and one will attempt to use the data to make inferences about F. Sometimes 

it will be supposed that F is specified up to some unknown parameters (for instance, 

one might suppose that F was a normal distribution function having an unknown 

mean and variance, or that it is a Poisson distribution function whose mean is not 

given), and at other times it might be assumed that almost nothing is known about F 

(except maybe for assuming that it is a continuous, or a discrete, distribution). 

Problems in which the form of the underlying distribution is specified up to a set of 

unknown parameters are called parametric inference problems, whereas those in 

which nothing is assumed about the form of F are called nonparametric inference 

problems. 

EXAMPLE Suppose that a new process has just been installed to produce computer 

chips, and suppose that the successive chips produced by this new process will have 

useful lifetimes that are independent with a common unknown distribution F. 

Physical reasons sometimes suggest the parametric form of the distribution F; for 
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instance, it may lead us to believe that F is a normal distribution, or that F is an 

exponential distribution. In such cases, we are confronted with a parametrical 

statistical problem in which we would want to use the observed data to estimate the 

parameters of F. For instance, if F were assumed to be a normal distribution, then 

we would want to estimate its mean and variance; if F were assumed to be 

exponential, we would want to estimate its mean. In other situations, there might not 

be any physical justification for supposing that F has any particular form; in this case 

the problem of making inferences about F would constitute a nonparametric 

inference problem.  

  

7.2.1 THE SAMPLE MEAN 

Consider a population of elements, each of which has a numerical value 

attached to it. For instance, the population might consist of the adults of a specified 

community and the value attached to each adult might be his or her annual income, 

or height, or age, and so on. We often suppose that the value associated with any 

member of the population can be regarded as being the value of a random variable 

having expectation μ and variance σ2. The quantities μ and σ2 are called the 

population mean and the population variance, respectively. Let 1 2, , , nX X X  be a 

sample of values from this population. The sample mean is defined by 

                                                  1 2 nX X X
X

n

  
                                       (7.14) 

Since the value of the sample mean X  is determined by the values of the random 

variables in the sample, it follows that X  is also a random variable. Its expected 

value and variance are obtained as follows: 

                                           1 2 nX X X
E X E

n

   
     

 
  

                                                           1 2

1
nE X E X E X

n
                  (7.15) 

                                          1 2 nX X X
V X V

n

   
     

 
  

                                         1 22

1
nV X V X V X

n
       by independence 
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2 2

2

n
V X

n n

 
                                            (7.16) 

where μ and σ2 are the population mean and variance, respectively. Hence, the 

expected value of the sample mean is the population mean μ whereas its variance is 

1/n times the population variance. As a result, we can conclude that X  is also 

centered about the population mean μ, but its spread becomes more and more 

reduced as the sample size increases. 

 

7.2.2 THE CENTRAL LIMIT THEOREM 

This theorem asserts that the sum of a large number of independent random 

variables has a distribution that is approximately normal. In its simplest form, the 

central limit theorem is as follows: 

 

The Central Limit Theorem 

Let 1 2, , , nX X X  be a sequence of independent and identically distributed 

random variables each having mean μ and variance σ2. Then for n large, the 

distribution of 

                                                    1 2 nX X X                                              (7.17) 

is approximately normal with mean n  and variance 2n . 

It follows from the central limit theorem that 

                                                   1 2 nX X X n

n





   
                                    (7.18) 

is approximately a standard normal random variable; thus, for n large, 

                                     1 2Pr PrnX X X n
x Z x x

n





    
     

 
             (7.19) 

where Z is a standard normal random variable. 

 

Exercise 1: An insurance company has 25,000 automobile policy holders. If the 

yearly claim of a policy holder is a random variable with mean 320 and standard 
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deviation 540, approximate the probability that the total yearly claim exceeds 8.3 

million. 

Let X denote the total yearly claim. Number the policy holders, and let iX  

denote the yearly claim of policy holder i. With 25000n  , we have from the central 

limit theorem that 
1

n

i

i

X X


  will have approximately a normal distribution with 

mean 6320 25000 8 10    and standard deviation 4540 25000 8.5381 10  . 

Therefore,  

                          
6 6 6

6

4 4

8 10 8.3 10 8 10
8.3 10

8.5381 10 8.5381 10

X
P X P

     
    

  
  

                                                 
6 6

4 4

8 10 0.3 10

8.5381 10 8.5381 10

X
P
   

  
  

 

                                                  3.51 0.00023P Z     where Z is a standard normal 

Thus, there are only 2.3 chances out of 10,000 that the total yearly claim will exceed 

8.3 million. 

 

One of the most important applications of the central limit theorem is in regard 

to binomial random variables. Since such a random variable X having parameters 

 ,n p  represents the number of successes in n independent trials when each trial is a 

success with probability p, we can express it as 

                                      1 2 nX X X X                                          (7.20) 

                                                  
1  if the i-th trial is a succes

0    otherwise
iX


 


                                (7.21) 

Because 

                                                        iE X p ,              1iV X p p                        (7.22) 

it follows from the central limit theorem that for n large 

                                                                     
 1

X np

np p




                                              (7.23) 
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will approximately be a standard normal random variable [see Figure, which 

graphically illustrates how the probability function of a binomial  ,n p  random 

variable becomes more and more “normal” as n becomes larger and larger]. 

 

> x <- seq(0,10,by = 1) 
> y <- dbinom(x,10,0.7) 
> plot(x,y,main="Binomial (10,0.7)",type='h') 
> x <- seq(0,20,by = 1) 
> y <- dbinom(x,20,0.7) 
> plot(x,y,main="Binomial (20,0.7)",type='h') 
> x <- seq(0,30,by = 1) 
> y <- dbinom(x,30,0.7) 
> plot(x,y,main="Binomial (30,0.7)",type='h') 
> x <- seq(0,50,by = 1) 
> y <- dbinom(x,50,0.7) 

 

Exercise 2: The ideal size of a first-year class at a particular college is 150 students. 

The college, knowing from past experience that, on the average, only 30 percent of 

those accepted for admission will actually attend, uses a policy of approving the 

applications of 450 students. Compute the probability that more than 150 first-year 

students attend this college. 

Let X denote the number of students that attend; then assuming that each 

accepted applicant will independently attend, it follows that X is a binomial random 
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variable with parameters 450n   and 0.3p  . Since the binomial is a discrete and the 

normal a continuous distribution, it is best to compute  Pr X i  as 

 Pr 0.5 0.5i X i     when applying the normal approximation (the continuity 

correction). This yields the approximation 

                                
450 0.3 150.5 450 0.3

150.5
450 0.3 0.7 450 0.3 0.7

X
P X P

    
   

    
  

                                                         1.59 1 1.59 0.06P Z P Z        

> 1-pnorm(1.59,0,1) 
[1] 0.0559174 

Hence, only 6 percent of the time do more than 150 of the first 450 accepted actually 

attend.  

 

 Approximate Distribution of the Sample Mean 

Let 1 2, , , nX X X  be a sample from a population having mean μ and variance σ2. The 

central limit theorem can be used to approximate the distribution of the sample mean 

                                                         
1

/
n

i

i

X X n


                                            (7.24) 

From the central limit theorem X  will be approximately normal when the sample 

size n is large. Since the sample mean has expected value μ and standard deviation 

/ n , it then follows that 

                                                            
/

X

n






                                                (7.25) 

has approximately a standard normal distribution. 

 

Exercise 3: An astronomer wants to measure the distance from her observatory to a 

distant star. However, due to atmospheric disturbances, any measurement will not 

yield the exact distance d. As a result, the astronomer has decided to make a series 

of measurements and then use their average value as an estimate of the actual 

distance. If the astronomer believes that the values of the successive measurements 

are independent random variables with a mean of d light years and a standard 
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deviation of 2 light years, how many measurements need she make to be at least 95 

percent certain that her estimate is accurate to within ±0.5 light years? 

If the astronomer makes n measurements, then X , the sample mean of these 

measurements, will be approximately a normal random variable with mean d and 

standard deviation 2 / n . Thus, the probability that it will lie between 0.5d   is 

obtained as follows: 

                            
0.5 0.5

Pr 0.5 0.5 Pr
2 / 2 / 2 /

X d
d X d

n n n

  
       

 
  

                                     Pr / 4 / 4 2Pr / 4 1n Z n Z n         

where Z is a standard normal random variable. 

Thus, the astronomer should make n measurements, where n is such that 

                                                 2Pr / 4 1 0.95Z n       

                                                    Pr / 4 0.975Z n   

Since    Pr 1.96 1.96 0.975Z     , it follows that n should be chosen so that 

                                                           / 4 1.96n    

That is, at least 62 observations are necessary. 

 

How Large a Sample Is Needed? 

The central limit theorem leaves open the question of how large the sample 

size n needs to be for the normal approximation to be valid, and indeed the answer 

depends on the population distribution of the sample data. For instance, if the 

underlying population distribution is normal, then the sample mean X  will also be 

normal regardless of the sample size. A general rule of thumb is that one can be 

confident of the normal approximation whenever the sample size n is at least 30. 

That is, practically speaking, no matter how nonnormal the underlying population 

distribution is, the sample mean of a sample of size at least 30 will be approximately 

normal. In most cases, the normal approximation is valid for much smaller sample 

sizes. Indeed, a sample of size 5 will often suffice for the approximation to be valid. 
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Figure presents the distribution of the sample means from an exponential population 

distribution for samples of sizes 5,10n  . 

 

> par(mfrow=c(1,2)) 
> y <- vector("numeric",length=1000) 
> for (k in 1:1000 ){ 
+ x<-rexp(5, rate = 1) 
+ y[k]<-mean(x) 
+ } 
> mean(y) 
[1] 0.9704635 
> var(y) 
[1] 0.1930445 
> hist(y,main = 'n=5') 
 
> z <- vector("numeric",length=1000) 
> for (k in 1:1000 ){ 
+   x<-rexp(10, rate = 1) 
+   z[k]<-mean(x) 
+ } 
> mean(z) 
[1] 0.98889 
> var(z) 
[1] 0.0886846 

 

 

 


