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5.7 The central limit theorem 

 

We already discussed approximating the binomial and Poisson distributions 

by the Gaussian distribution when the number of trials is large. We now discuss why 

the Gaussian distribution is so common and therefore so important.  

 

Central limit theorem  

Suppose that 
iX , 1,2, ,i n , are independent random variables, each of which is 

described by a probability density function  if x  (these may all be different) with a 

mean i  and a variance 2

i . The random variable 
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i

Z X
n

                                                 (5.39) 

 

i.e. the ‘mean’ of the iX , has the following properties: 

   (i) its expectation value is given by  
1

i

i

E Z
n

                                       (5.40) 

   (ii) its variance is given by   2

2

1
i

i

V Z
n

                                                  (5.41) 

   (iii) as n   the probability function of Z tends to a Gaussian with corresponding 

mean and variance. 

 

The theorem holds if the probability density functions  if x  possess formal means 

and variances.  

 

Properties (i) and (ii) of the theorem are easily proved, as follows.  

 

                          1 2 1 2
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i
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n n n

               

 

a result which does not require that the iX  are independent random variables. If 

i   for all i then this becomes 

                                                        
n

E Z
n


    

If the iX  are independent, we know that      2 2V aX bY c a V X b V Y    , so 

                                                1 2
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 
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                                                2

1 22 2

1 1
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i
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n n

        

 

The property (iii) is the reason for the ubiquity of the Gaussian distribution and is 

most easily proved by considering the moment generating function  ZM t  of Z. 

 

The MGF of the sum of N independent random variables is the product of 

their individual MGFs. If we remember the general result (chapter 3) that the MGF 

of 1 1 2 2N N NS c X c X c X     (where the ic  are constants) is given by 

                                                     
1

N i

N

S X i

i

M t M c t


                                      

 Then, the MGF for Z is given by 

                                                    
1

i
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t
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 
  

 
                                     (5.42) 

where  
iXM t  is the MGF of  if x .   
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and as n becomes large 
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as may be verified by expanding the exponential up to terms including  
2

/t n . 

Therefore 
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Comparing this with the form of the MGF for a Gaussian distribution,   

                                                   
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we can see that the probability density function  g z  of Z tends to a Gaussian 

distribution with mean 
1

i

in
  and variance 2

2

1
i

in
 .  
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In particular, if we consider Z to be the mean of n independent measurements 

of the same random variable X (so that iX X  for 1,2, ,i n  ) then, as n  , Z has 

a Gaussian distribution with mean μ and variance 2 / n . 

 

 

If 
1 2, , , nX X X , is a random sample of size n taken from a population with 

mean μ and finite variance 2  and if X  is the sample mean, the limiting form of the 

distribution of X  is Gaussian distribution with mean μ and variance 2 / n . 

Moreover, 
/

X
Z

n






  as n  , has the standard normal distribution. 

 

The normal approximation for X  depends on the sample size n. Figure 7-3(a) 

is the distribution obtained for throws of a single, six-sided true die. The probabilities 

are equal (1/6) for all the values obtained: 1, 2, 3, 4, 5, or 6. Figure 7-3(b) is the 

distribution of the average score obtained when tossing two dice, and Fig. 7-3(c), 7-

3(d), and 7-3(e) show the distributions of average scores obtained when tossing 3, 5, 

and 10 dice, respectively. Notice that, although the population (one die) is relatively 

far from normal, the distribution of averages is approximated reasonably well by the 

normal distribution for sample sizes as small as five.  

 

 

 
 

 

The central limit theorem is the underlying reason why many of the random 

variables encountered in engineering and science are normally distributed. 
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Chapter 6 Joint distributions 

Bibliografie: Riley et al. (2006), Montgomery (2011) 

 

It is common in the physical sciences to consider simultaneously two or more 

random variables that are not independent, in general, and are thus described by joint 

probability density functions. We will concentrate mainly on bivariate distributions, 

i.e. distributions of only two random variables, though the results may be extended 

to multivariate distributions.  

When dealing with bivariate distributions, the random variables can both be 

discrete, or both continuous, or one discrete and the other continuous. In general, for 

the random variables X and Y, the joint distribution will take an infinite number of 

values unless both X and Y have only a finite number of values. We will consider 

only the cases where X and Y are either both discrete or both continuous random 

variables. 

 

6.1 Discrete bivariate distributions 

If X is a discrete random variable that takes the values  ix  and Y one that 

takes the values  jy  then the probability function of the joint distribution is defined 

as 

                                      
 Pr ,   for ,

,
0                    otherwise

i j i jX x Y y x x y y
f x y

    
 


                 (6.1) 

 

We may therefore think of  ,f x y  as a set of spikes at valid points in the xy-plane, 

whose height at  ,i jx y  represents the probability of obtaining iX x  and jY y . The 

normalisation of  ,f x y  implies 

 

                                                       , 1i j

i j

f x y                                          (6.2) 

 

where the sums over i and j take all valid pairs of values. We can also define the 

cumulative probability function 

 

                                                    , ,
i j

i j

x x y y

F x y f x y
 

                                  (6.3) 

 

from which it follows that the probability that X lies in the range  1 2,a a  and Y lies in 

the range  1 2,b b  is given by 



5 
 

 

                       1 2 1 2 2 2 1 2 2 1 1 1Pr ,  , , , ,a X a b Y b F a b F a b F a b F a b             (6.4) 

 

Finally, we define X and Y to be independent if we can write their joint distribution 

in the form 

                                                      , X Yf x y f x f y                                       (6.5) 

 

i.e. as the product of two univariate distributions. 

 

 

6.2 Continuous bivariate distributions 

In the case where both X and Y are continuous random variables, the PDF of 

the joint distribution is defined by 

 

                                 ,  Pr ,   f x y dx dy x X x dx y Y y dy                         (6.6) 

 

so  ,  f x y dx dy  is the probability that X lies in the range  ,x x dx  and Y lies in the 

range  ,y y dy . The two-dimensional function  ,f x y  must be everywhere non-

negative and that normalization requires 

 

                                                ,  1f x y dx dy

 

 

    

It follows further that 

                                          
2 2

1 1

1 2 1 2Pr ,  ,  

b a

b a

a X a b Y b f x y dx dy                     (6.7) 

 

We can also define the cumulative probability function by 

 

                                          , Pr ,  ,  

yx

F x y X x Y y f u v du dv
 

                     (6.8)      

 

from which we see that (as for the discrete case), 

                                                  

                        1 2 1 2 2 2 1 2 2 1 1 1Pr ,  , , , ,a X a b Y b F a b F a b F a b F a b          

 

Finally, we note that the definition of independence (6.5) for discrete bivariate 

distributions also applies to continuous bivariate distributions. 
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Exercise 1. A flat table is ruled with parallel straight lines a distance D apart, and a 

thin needle of length l D  is tossed onto the table at random. What is the probability 

that the needle will cross a line? 

 

Let θ be the angle that the needle makes with the lines, and let x be the distance 

from the center of the needle to the nearest line. Since the needle is tossed ‘at 

random’ onto the table, the angle θ is uniformly distributed in the interval  0, , and 

the distance x is uniformly distributed in the interval  0, / 2D . Assuming that θ and 

x are independent, their joint distribution is just the product of their individual 

distributions, and is given by 

                                                  
1 1 2

,
/ 2

f x
D D


 

    

The needle will cross a line if the distance x of its center from that line is less than 
1

sin
2

l  . Thus the required probability is 

                                        

1
sin

2

0 0 0

2 2 2
 sin  

2

l

l l
dx d d

D D D


 

  
  

      

 

 

6.3 Marginal and conditional distributions 

Given a bivariate distribution  ,f x y , we may be interested only in the 

probability function for X irrespective of the value of Y. This marginal distribution 

of X is obtained by summing or integrating the joint probability distribution over all 

allowed values of Y. Thus, the marginal distribution of X is given by 

 

                                
 

 

,  for a discrete distribution

,   for a continuous distribution

j

j
X

f x y

f x

f x y dy




 






               (6.9) 

 

It is clear that an analogous definition exists for the marginal distribution of Y. 

 

Alternatively, one might be interested in the probability function of X given 

that Y takes some specific value of 0Y y , i.e.  0Pr X x Y y  . This conditional 

distribution of X is given by 

                                            
 

 
0

0

,

Y

f x y
g x

f y
                                         (6.10) 

where  Yf y  is the marginal distribution of Y. 
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Exercise 2.  Suppose that 3 batteries are randomly chosen from a group of 3 new, 4 

used but still working, and 5 defective batteries. If we let X and Y denote, 

respectively, the number of new and used but still working batteries that are chosen, 

then the joint probability function of X and Y,    , ,p i j P X i Y j   , is given by 

                                                  
 

3

3 4 5

3

12

,
i j i jC C C

p i j
C

 



 
Because of the 3

12C  equally likely outcomes, there are, by the basic principle of 

counting, 3

3 4 5

i j i jC C C    possible choices that contain exactly i new, j used, and 3 i j   

defective batteries.  

 

    
3

5

3

12

10
0,0

220

C
p

C
      

1 2

4 5

3

12

40
0,1

220

C C
p

C
      

2 1

4 5

3

12

30
0,2

220

C C
p

C
      

3

4

3

12

4
0,3

220

C
p

C
                                                                                                

                   
1 2

3 5

3

12

30
1,0

220

C C
p

C
      

1 1 1

3 4 5

3

12

60
1,1

220

C C C
p

C
      

1 2

3 4

3

12

18
1,2

220

C C
p

C
                   

                                  
2 1

3 5

3

12

15
2,0

220

C C
p

C
       

2 1

3 4

3

12

12
2,1

220

C C
p

C
   

                                                     
3

3

3

12

1
3,0

220

C
p

C
   

 

i\j   0       1       2        3     Row Sum =  P X i  

0 

 

1 

 

2 

 

3 

Column 

Sums = 

 P Y j  

10

220
   

40

220
  

30

220
   

4

220
                  

84

220
 

30

220
   

60

220
  

18

220
     0                     

108

220
 

15

220
   

12

220
    0        0                     

27

220
 

1

220
     0       0        0                     

1

220
 

56

220
   

112

220
  

48

220
   

4

220
 

The marginal probability function of X is obtained by computing the row 

sums, in accordance with the eq. (6.9), whereas the marginal probability function of 

Y is obtained by computing the column sums. Because the individual probability 

functions of X and Y thus appear in the margin of such a table, they are often referred 

to as being the marginal probability functions of X and Y, respectively. It should be 

noted that to check the correctness of such a table we could sum the marginal row 

(or the marginal column) and verify that its sum is 1.   
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6.4 Properties of joint distributions 

 

The probability density function  ,f x y  contains all the information on the 

joint probability distribution of two random variables X and Y. It is conventional to 

characterize  ,f x y  by certain of its properties. These properties are based on the 

concept of expectation values. The expectation value of any function  ,g X Y  of the 

random variables X and Y is given by 

 

                        

   

   

, ,  for the discrete case

,

, ,  for the continuous case

i j i j

i j

g x y f x y

E g X Y

g x y f x y dxdy

 

 





   





 
      (6.11) 

 

1. Means 

The means of X and Y are defined respectively as the expectation values of the 

variables X and Y. Thus, the mean of X is given by 

 

                         

 

 

,   for the discrete case

,   for the continuous case

i i j

i j

X

x f x y

E X

xf x y dxdy

  

 





  





 
              (6.12) 

 

 E Y  is obtained in a similar manner. 

 

Exercise 3. Show that if X and Y are independent random variables then 

     E XY E X E Y  . 

Let us consider the case where X and Y are continuous random variables. Since 

X and Y are independent      , X Yf x y f x f y , so that 

 

                                 X YE XY xyf x f y dxdy

 

 

     

                                               X Yxf x dx yf y dy E X E Y

 

 

                         (6.13) 

An analogous proof exists for the discrete case. 
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2. Variances 

The definitions of the variances of X and Y are analogous to those for the single-

variable case, i.e. the variance of X is given by 

                  

   

   

   

2

2 2

2

,   for the discrete case

,   for the continuous case

i X i j

i j

X X

X

x f x y

V X E X

x f x y dxdy



 


 

 

 

      
 




 
       (6.14) 

 

Equivalent definitions exist for the variance of Y. 

 

 

3. Covariance and correlation 

Means and variances of joint distributions provide useful information about their 

marginal distributions, but we have not yet given any indication of how to measure 

the relationship between the two random variables. Of course, it may be that the two 

random variables are independent, but often this is not so. For example, if we 

measure the heights and weights of a sample of people we would not be surprised to 

find a tendency for tall people to be heavier than short people and vice versa. The 

covariance and the correlation, can be defined for a bivariate distribution and are 

useful in characterizing the relationship between the two random variables. 

 

The covariance of two random variables X and Y is defined by 

 

                                        , XY X YCov X Y E X Y         ,                      (6.15) 

 

where X  and Y  are the expectation values of X and Y respectively. Related to the 

covariance is the correlation of the two random variables, defined by 

 

                                           
 ,

, XY

X Y

Cov X Y
Corr X Y 

 
   ,                              (6.16) 

 

where X  and Y  are the standard deviations of X and Y respectively. The correlation 

function lies between −1 and +1. If the value assumed is negative, X and Y are said 

to be negatively correlated, if it is positive they are said to be positively correlated 

and if it is zero they are said to be uncorrelated.  
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If the points in the joint probability distribution of X and Y that receive positive 

probability tend to fall along a line of positive (or negative) slope, XY , is positive 

(or negative). If the points tend to fall along a line of positive slope, X tends to be 

greater than X  when Y is greater than Y . Therefore, the product of the two terms 

Xx   and Yy   tends to be positive. However, if the points tend to fall along a line 

of negative slope, Xx   tends to be positive when Yy   is negative, and vice versa. 

Therefore, the product of Xx   and Yy   tends to be negative. In this sense, the 

covariance between X and Y describes the variation between the two random 

variables. Figure 5-12 assumes all points are equally likely and shows examples of 

pairs of random variables with positive, negative, and zero covariance. 

 

The covariance of two independent variables, X and Y, is zero. It immediately 

follows from (6.16) that their correlation is also zero, and this justifies the use of the 

term ‘uncorrelated’ for two such variables.  

 

                                       , X YCov X Y E X Y        

                                                    X Y X YE XY Y X         

                                                        X Y X YE XY E Y E X         

                                                     X YE XY                                              (6.17) 
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Now, if X and Y are independent then       X YE XY E X E Y     and so 

 , 0Cov X Y  . It is important to note that the converse of this result is not necessarily 

true; two variables dependent on each other can still be uncorrelated. In other words, 

it is possible (and not uncommon) for two variables X and Y to be described by a 

joint distribution  ,f x y  that cannot be factorized into a product of the form 

   g x h y , but for which  , 0Corr X Y  .  

 

We have already asserted that if the correlation of two random variables is 

positive (negative) they are said to be positively (negatively) correlated. We have 

also stated that the correlation lies between −1 and +1. The terminology suggests 

that if the two RVs are identical (i.e. X Y ) then they are completely correlated and 

that their correlation should be +1. Likewise, if X Y   then the functions are 

completely negative correlated and their correlation should be −1. Values of the 

correlation function between these extremes show the existence of some degree of 

correlation.  

In fact it is not necessary that X Y  for  , 1Corr X Y  ; it is sufficient that Y is 

a linear function of X, i.e. Y aX b   (with a positive). If a is negative then 

 , 1Corr X Y   . To show this we first note that Y Xa b   . 

 

                               Y XY aX b aX a              Y XY a X      

 

and using the definition of the covariance     , X YCov X Y E X Y      : 

 

                                                
2 2, X XCov X Y aE X a    

 
  

 

It follows from the properties of the variance that    2V Y a V X , so Y Xa   and 

so, using the definition of the correlation, 

 

                                          
  2

2

,
, 1X

X Y X

Cov X Y a a
Corr X Y

a a



  
      , 

which is the stated result. 

 

Exercise 4. A biased die gives probabilities 
1

, , , , , 2
2

p p p p p p  of throwing 1, 2, 3, 4, 

5, 6 respectively. If the random variable X is the number shown on the die and the 

random variable Y is defined as 2X , calculate the covariance and correlation of X 

and Y. 
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We have already calculated that 

                             
2

13
p   ,  

53

13
E X   ,  2 253

13
E X    ,   

480

169
V X    

 

Using        ,Cov X Y E XY E X E Y    we obtain 

 

                                   2 3 2, ,Cov X Y Cov X X E X E X E X               

                          3 3 3 3 3 3 31 1313
1 2 3 4 5 6 2 101

2 2
E X p p p p              

  

and the covariance of X and Y is given by 

 

                                          
53 253 3660

, 101
13 13 169

Cov X Y       

 

The correlation is defined by  
 ,

,
X Y

Cov X Y
Corr X Y

 
 . The standard deviation of Y may 

be calculated from the definition of the variance. Letting 2 253

13
Y E X      gives 

 

                             
2 2 222 2 2 21 2 3

2
Y Y Y Y Y

p
E Y p p             
 

  

                                        
2 2 2

2 2 2 28824
4 5 2 6

169
Y Y Yp p p           

We deduce that 

                                   
3660 169 169

, 0.984
169 28824 480

Corr X Y     

 

Thus the random variables X and Y display a strong degree of positive correlation, 

as we would expect.  

 

We note that the covariance of X and Y occurs in various expressions. For 

example, if X and Y are not independent then 

 

                                      
22

V X Y E X Y E X Y     
 

  

                                      
22 22E X E XY E Y E X E Y             

                                           
2 22 22 2E X E XY E Y E X E X E Y E Y             
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                                          2V X V Y E XY E X E Y     

 

                                       2 ,V X Y V X V Y Cov X Y                                    (6.18) 

 

More generally, for a, b and c constant 

 

                                     2 2 2 ,V aX bY c a V X b V Y abCov X Y                     (6.19) 

 

Note that if X and Y are in fact independent then  , 0Cov X Y   and we recover the 

expression:      2 2V aX bY c a V X b V Y    . 

 

We may use (6.19) to obtain an approximate expression for  ,V f X Y    for 

any arbitrary function f, even when the random variables X and Y are correlated. 

Approximating  ,f X Y  by the linear terms of its Taylor expansion about the point 

 ,X Y  , we have 

                                 , ,X Y X Y

f f
f X Y f X Y

X Y
   

    
       

    
             (6.20) 

 

where the partial derivatives are evaluated at XX   and YY  . Taking the variance 

of both sides, and using (6.19), we find 

 

                     
2 2

, 2 ,
f f f f

V f X Y V X V Y Cov X Y
X Y X Y

         
                     

      (6.21) 

 

Clearly, if  , 0Cov X Y  , we recover the result (3.50). We note that (6.21) is exact if 

 ,f X Y  is linear in X and Y. 

 

For several variables iX , 1,2, ,i n , we can define the symmetric covariance 

matrix whose elements are 

 

                                                        ,ij i jV Cov X X                                        (6.22) 

 

and the symmetric correlation matrix 

 

                                                        ,ij i jCorr X X                                       (6.23) 
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The diagonal elements of the covariance matrix are the variances of the variables, 

whilst those of the correlation matrix are unity.  

 

 

Exercise 5. A card is drawn at random from a normal 52-card pack and its identity 

noted. The card is replaced, the pack shuffled and the process repeated. Random 

variables W, X, Y, Z are defined as follows: 

 

      2W      if the drawn card is a heart;  0W   otherwise. 

      4X      if the drawn card is an ace, king, or queen;  2X   if the card is 

                   a jack or ten; 0X   otherwise. 

      1Y       if the drawn card is red; 0Y    otherwise. 

      2Z      if the drawn card is black and an ace, king or queen; 0Z    otherwise. 

 

Establish the correlation matrix for W, X, Y, Z. 

 

The means of the variables are given by  

   

                                   
1 1

2
4 2

W               
3 2 16

4 2
13 13 13

X        

                                    
1 1

1
2 2

Y               
6 3

2
52 13

Z      

 

The variances, calculated from     
22 2

U V U E U E U      , where , ,  or U W X Y Z , 

are: 

                                      
2

2 1 1 3
4

4 2 4
W

   
      
   

  

                                      
2

2 3 2 16 472
16 4

13 13 13 169
X

     
          
     

  

                                      
2

2 1 1 1
1

2 2 4
Y

   
      
   

  

                                      
2

2 6 3 69
4

52 13 169
Z

   
      
   

  

 

The covariance are found by first calculating  E WX  etc. and then forming 

  W XE WX    etc. 
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                      
3 2 8

2 4 2 2
52 52 13

E WX         ,      
8 1 16

, 0
13 2 13

Cov W X      

                      
1 1

2 1
4 2

E WY      ,                         
1 1 1 1

,
2 2 2 4

Cov W Y     

                       0E WZ   ,                                        
1 3 3

, 0
2 13 26

Cov W Z      

                     
6 4 8

4 1 2 1
52 52 13

E XY         ,         
8 16 1

, 0
13 13 2

Cov X Y     

                     
6 12

4 2
52 13

E XZ      ,                        
12 16 3 108

,
13 13 13 169

Cov X Z     

                       0E YZ   ,                                          
1 3 3

, 0
2 13 26

Cov Y Z      

 

The correlations  ,Corr W X  and  ,Corr X Y  are clearly zero; the remainder are: 

 

                                         
1/2

1 3 1
, 0.577

4 4 4
Corr W Y



 
   

 
  

                                         
1/2

3 3 69
, 0.209

26 4 169
Corr W Z



 
     

 
 

                                         
1/2

108 472 69
, 0.598

169 169 169
Corr X Z



 
   

 
 

                                         
1/2

3 1 69
, 0.361

26 4 169
Corr Y Z



 
     

 
 

 

Finally, then, we can write down the correlation matrix: 

 

                                          

1 0 0.58 0.21

0 1 0 0.60

0.58 0 1 0.36

0.21 0.60 0.36 1



 
 
 
 
 
  

  

 

As would be expected, X is uncorrelated with either W or Y, colour and face-value 

being two independent characteristics. Positive correlations are to be expected 

between W and Y and between X and Z; both correlations are fairly strong. Moderate 

anticorrelations exist between Z and both W and Y. 
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6.5  Important joint distributions 

 

In this section we will examine an important multivariate distribution, the 

multinomial distribution, which is an extension of the binomial distribution. 

The binomial distribution describes the probability of obtaining x ‘successes’ from 

n independent trials, where each trial has only two possible outcomes. This may be 

generalized to the case where each trial has k possible outcomes with respective 

probabilities 1 2, , , kp p p . If we consider the random variables 
iX , 1,2, ,i k  to be 

the number of outcomes of type i in n trials then we may calculate their joint 

probability function 

 

                                         1 2 1 1 2 2, , , Pr , , ,k k kf x x x X x X x X x               (6.24) 

 

where we must have 
1

k

i

i

x n


 . In n trials the probability of obtaining 
1x  outcomes of 

type 1, followed by 2x  outcomes of type 2 etc. is given by 

 

                                                         1 2

1 2
kxx x

kp p p                                               (6.25) 

 

However, the number of distinguishable permutations of this result is 

                                                        
1 2

!

! ! !k

n

x x x
  

and thus 

                                     1 2

1 2 1 2

1 2

!
, , ,

! ! !
kxx x

k k

k

n
f x x x p p p

x x x
                          (6.26) 

 

This is the multinomial probability distribution. 

If 2k   then the multinomial distribution reduces to the familiar binomial 

distribution. Although in this form the binomial distribution appears to be a function 

of two random variables, it must be remembered that, in fact, since 2 11p p   and 

2 1x n x  , the distribution of 1X  is entirely determined by the parameters p and n.  

1X  has a binomial distribution. In fact, any of the random variables iX  has a binomial 

distribution, i.e. the marginal distribution of each iX  is binomial with parameters n 

and ip . It immediately follows that 

 

                                     i iE X np     and       1i i iV X np p                          (6.27) 
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Exercise 7. At a village f ê te patrons were invited, for a 10 p entry fee, to pick 

without looking six tickets from a drum containing equal large numbers of red, blue 

and green tickets. If five or more of the tickets were of the same color a prize of 100 

p was awarded. A consolation award of 40 p was made if two tickets of each color 

were picked. Was a good time had by all? 

 

In this case, all types of outcome (red, blue and green) have the same 

probabilities. The probability of obtaining any given combination of tickets is given 

by the multinomial distribution   1 2

1 2 1 2

1 2

!
, , ,

! ! !
kxx x

k k

k

n
f x x x p p p

x x x
  with 6n  , 

3k   and 
1

3
ip  , 1,2,3i  . 

(i) The probability of picking six tickets of the same color is given by 

       
6 0 0

6! 1 1 1 1
Pr six of the same colour 3

6!0!0! 3 3 3 243

     
       

     
  

The factor of 3 is present because there are three different colors. 

 

(ii) The probability of picking five tickets of one color and one ticket of 

another colour is 

          
5 1 0

6! 1 1 1 4
Pr five of one colour; one of another 3 2

5!1!0! 3 3 3 81

     
        

     
  

The factors of 3 and 2 are included because there are three ways to choose 

the color of the five matching tickets, and then two ways to choose the 

color of the remaining ticket. 

 

(iii) Finally, the probability of picking two tickets of each color is 

         
2 2 2

6! 1 1 1 10
Pr two of each colour

2!2!2! 3 3 3 81

     
      

     
  

 

Thus the expected return to any patron was, in pence, 

                        
1 4 10

100 40 10.29
243 81 81

   
      

   
  

A good time was had by all but the stallholder! 

 


