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Chapter 5 Important continuous distributions 

Bibliografie: Riley et al. (2006), Montgomery (2011) 

 

 

Having discussed the most commonly encountered discrete probability 

distributions, we now consider some of the more important continuous probability 

distributions. These are summarised in table 1.2. 

 

Table 1.2 
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5.1 The Gaussian distribution 
By far the most important continuous probability distribution is the Gaussian 

or normal distribution. Many random variables of interest, in all areas of the physical 

sciences and beyond, are described either exactly or approximately by a Gaussian 

distribution. Moreover, the Gaussian distribution can be used to approximate other, 

more complicated, probability distributions. 

The probability density function for a Gaussian distribution of a random 

variable X, with mean  E X   and   2V X  , is 
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The factor 1/ 2  arises from the normalisation of the distribution, 
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                                                          1f x dx





                                             (5.2) 

The evaluation of this type of integral is 
2xe dx 







  (prin ridicare la patrat si 

integrare in coordonate polare). The Gaussian distribution is symmetric about the 

point x   and has the characteristic ‘bell’ shape shown in figure 5.1. 

 

Figure 5.1 The Gaussian or normal distribution for mean 3   and 

various values of the standard deviation σ 

 

The width of the curve is described by the standard deviation σ: if σ is large 

then the curve is broad, and if σ is small then the curve is narrow (see the figure). At 

x    ,  f x  falls to 1/2 0.61e   of its peak value; these points are points of 

inflection, where 2 2/ 0d f dx  .   

Indeed, 
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When a random variable X follows a Gaussian distribution with mean μ and variance 
2 , we write  2,X N    . 

The effects of changing μ and σ are only to shift the curve along the x-axis or 

to broaden or narrow it, respectively. Thus all Gaussians are equivalent in that a 

change of origin and scale can reduce them to a standard form. We consider the 

random variable 
X

Z





 , for which the PDF takes the form 
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which is called the standard Gaussian distribution and has mean 0   and variance 
2 1  . The random variable Z is called the standard variable. 

 

The cumulative probability function for a Gaussian distribution is 
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where u is a (dummy) integration variable. This integral cannot be evaluated 

analytically. It is a standard practice to tabulate values of the cumulative probability 

function for the standard Gaussian distribution (see figure 5.2), i.e. 
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It is usual only to tabulate  z  for 0z  , since it can be seen easily, from figure 5.2 

and the symmetry of the Gaussian distribution, that    1z z    ; see table 5.1. 

Using such a table it is then straightforward to evaluate the probability that Z lies in 

a given range of z-values. For example, for a and b constant, 

                                                        Pr Z a a                                          (5.8) 

                                                      Pr 1Z a a                                        (5.9)                                 

                                                   Pr a Z b b a                                  (5.10) 

 

Figure 5.2 On the left, the standard Gaussian distribution  z ; the shaded 

area gives    Pr Z a a   . On the right, the cumulative probability function 

 z  for a standard Gaussian distribution  z . 

 

Remembering that 
X

Z
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


  and  
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So, we may also calculate the probability that the original random variable X lies in 

a given x-range. For example, 

                                          

2
1

21
Pr

2

xb

a

a X b e dx





 

 
  

                              (5.12) 

                                     
b a

F b F a
 

 

    
       

   
                          (5.13) 

                 

Table 5.1 Cumulative Standard Normal Distribution 

z) .00   .01   .02   .03   .04   .05   .06   .07   .08   .09 

0.0 

0.1 

0.2 

0.3 

0.4 

.5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 
… 

 

Exercise 1. If X is described by a Gaussian distribution of mean μ and variance 2 , 

calculate the probabilities that X lies within 1σ, 2σ and 3σ of the mean. 

From (5.13) 

                            Pr 1 2 1n X n n n n n n                      

and so from table 5.1, or with R 

                                  Pr 2 1 1 0.6826 68.3%X                

                                 Pr 2 2 2 2 1 0.9544 95.4%X             

                                 Pr 3 3 2 3 1 0.9974 99.7%X             

Thus we expect X to be distributed in such a way that about two thirds of the values 

will lie between    and   , 95% will lie within 2σ of the mean and 99.7% will 

lie within 3σ of the mean. These limits are called the one-, two- and three-sigma 
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limits respectively; it is important to note that they are independent of the actual 

values of the mean and variance. 

 

Exercise 2. Sawmill (fabrica de cherestea) A produces boards (scanduri) whose 

lengths are Gaussian distributed with mean 209.4 cm and standard deviation 5.0 cm. 

A board is accepted if it is longer than 200 cm but is rejected otherwise. Show that 

3% of boards are rejected.  

Let X = length of boards from A, so that   2
209.4, 5.0X N  and 

                                 
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                                 Pr 200 1 1.88 1 0.9699 0.0301X        

i.e. 3.0% of boards are rejected. 

 

Exercise 3. The time taken for a computer ‘packet’ to travel from Cambridge UK to 

Cambridge MA is Gaussian distributed. 6.8% of the packets take over 200 ms to 

make the journey, and 3.0% take under 140 ms. Find the mean and standard 

deviation of the distribution. 

Let X = journey time in ms; we are told that  2,X N    where μ and σ are 

unknown. Since 6.8% of journey times are longer than 200 ms, 
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Using table 5.1, we have therefore 
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Also, 3.0% of journey times are under 140 ms, so  
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Now using    1z z      gives 
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Using table 5.1, we find 
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Solving the simultaneous equations (5.14) and (5.15) gives 173.5  , 17.8  . 

 

The moment generating function for the Gaussian distribution 

                                    
 

2

2

1
exp

22

tX

X

x
M t E e tx dx



 





 
     

  
           (5.16) 

Since 

                                      
 

2 2 2 2

2 2

2 2

2 2

x tx x x
tx

   

 

   
         

                               
     

2 2
2 2 2 2 2

2

2

2

x t x t t      



      
       

                               
 

2
2 2 2 4

2

2

2

x t t t    



     
     

                   
 

2
2

2 2

2

1
exp

2 22

tX

X

x tt
M t E e t dx

 


 





   
         

  

  

                                                 
2 2

exp
2

X

t
M t c t



 

  
 

  

where the final equality is established by completing the square in the argument of 

the exponential and writing 
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The final integral is simply the normalization integral for the Gaussian distribution, 

and so 1c   and the MGF is given by 
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Gaussian approximation to the binomial distribution 

We may consider the Gaussian distribution as the limit of the binomial 

distribution when the number of trials n   but the probability of a success p 

remains finite, so that np  also. (This contrasts with the Poisson distribution, 

which corresponds to the limit n   and 0p   with np   remaining finite.) In 

other words, a Gaussian distribution results when an experiment with a finite 

probability of success is repeated a large number of times. To see how this Gaussian 

limit arises look Riley et al. (2006). The binomial probability function gives the 

probability of x successes in n trials as 
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Taking the limit as n   (and x  ) we may approximate (Riley et al. (2006)) 
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which is of Gaussian form with np   and  1np p   .  

Thus we see that the value of the Gaussian probability density function  f x  

is a good approximation to the probability of obtaining x successes in n trials. This 

approximation is actually very good even for relatively small n. For example, if 

10n   and 0.6p   then the Gaussian approximation to the binomial distribution have 

10 0.6 6     and  10 0.6 1 0.6 1.549     . The probability functions  f x  for the 
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binomial and associated Gaussian distributions for these parameters are given in 

table 5.2, and it can be seen that the Gaussian approximation is a good one.  

 

Table 5.2 Comparison of the binomial distribution for 10n   and 0.6p   with 

its Gaussian approximation. 

x  f x  binomial    f x  Gaussian 

0 0.0001 0.0001 

1 0.0016 0.0014 

2 0.0106 0.0092 

3 0.0425 0.0395 

4 0.1115 0.1119 

5 0.2007 0.2091 

6 0.2508 0.2575 

7 0.2150 0.2091 

8 0.1209 0.1119 

9 0.0403 0.0395 

10 0.0060 0.0092 

 

Since the Gaussian distribution is continuous and the binomial distribution is 

discrete, we should use the integral of  f x  for the Gaussian distribution in the 

calculation of approximate binomial probabilities. We should apply a continuity 

correction so that the discrete integer x in the binomial distribution becomes the 

interval  0.5, 0.5x x   in the Gaussian distribution. Explicitly, 
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The Gaussian approximation is useful for estimating the binomial probability that X 

lies between the (integer) values 
1x  and 

2x , 
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Exercise 4. A manufacturer makes computer chips of which 10% are defective. For 

a random sample of 200 chips, find the approximate probability that more than 15 

are defective. 

We first define the random variable 

                                    X = number of defective chips in the sample, 

which has a binomial distribution,  200,0.1X Bin . Therefore, the mean and 

variance of this distribution are 

                                200 0.1 20E X      and     200 0.1 1 0.1 18V X       

and we may approximate the binomial distribution with a Gaussian distribution such 

that  20,18X N . The standard variable is 

                                                         
20

18

X
Z


   

and so, using 15.5x   to allow for the continuity correction, 

                       
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Pr 15.5 Pr Pr 1.06 Pr 1.06 0.86
18
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Gaussian approximation to the Poisson distribution 

We first met the Poisson distribution as the limit of the binomial distribution 

for n   and 0p  , taken in such a way that np   remains finite. Further, in the 

previous subsection, we considered the Gaussian distribution as the limit of the 

binomial distribution when n   but p remains finite, so that np  also. It should 

come as no surprise, that the Gaussian distribution can also be used to approximate 

the Poisson distribution when the mean λ becomes large. The probability function 

for the Poisson distribution is 

                                                        
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f x e
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                                             (5.22) 

It can be shown that (Riley et al. (2006)) 
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which is the Gaussian distribution with    and 2  . 

The larger the value of λ, the better is the Gaussian approximation to the 

Poisson distribution; the approximation is reasonable even for 5  , but 10   is 

safer. As in the case of the Gaussian approximation to the binomial distribution, a 

continuity correction is necessary since the Poisson distribution is discrete. 

 

Exercise 5. E-mail messages are received by an author at an average rate of one per 

hour. Find the probability that in a day the author receives 24 messages or more. 

We first define the random variable 

                                X = number of messages received in a day. 

Thus   1 24 24E X    , and so  24X Po . Since 10   we may approximate the 

Poisson distribution by  24,24X N . Now the standard variable is 

                                                          
24

24

X
Z


  , 

and, using the continuity correction, we find 

                
23.5 24

Pr 23.5 Pr Pr 0.102 Pr 0.102 0.54
24

X Z Z Z
 

         
 

  

In fact, almost all probability distributions tend towards a Gaussian when the 

numbers involved become large – that this should happen is required by the central 

limit theorem, which we discuss in a next section. 

 

Multiple Gaussian distributions 

Suppose X and Y are independent Gaussian-distributed random variables, so 

that  

                                        2

1 1,X N      and    2

2 2,Y N     

Let us consider the random variable Z X Y  . The PDF for this random variable 

may be found using the MGFs. The MGFs of X and Y are 

                                         
2 2

1 1

1

2
t t

XM t e
 

  ,    
2 2

2 2

1

2
t t

YM t e
 

  
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Since X and Y are independent RVs, the MGF of Z X Y   is simply the product of 

 XM t  and  YM t : 

                                            
2 2 2 2

1 1 2 2

1 1

2 2
t t t t

Z X YM t M t M t e e
    

    

                                                        
   2 2 2

1 2 1 2

1

2
t t

e
     

  , 

which we recognise as the MGF for a Gaussian with mean 1 2   and variance 
2 2

1 2  . Thus, Z is also Gaussian distributed:  2 2

1 2 1 2,Z N      .  

 

Exercise 6. An executive travels home from her office every evening. Her journey 

consists of a train ride, followed by a bicycle ride. The time spent on the train is 

Gaussian distributed with mean 52 minutes and standard deviation 1.8 minutes, 

while the time for the bicycle journey is Gaussian distributed with mean 8 minutes 

and standard deviation 2.6 minutes. Assuming these two factors are independent, 

estimate the percentage of occasions on which the whole journey takes more than 65 

minutes. 

We first define the random variables 

                          X = time spent on train,       Y= time spent on bicycle, 

so that,   2
52, 1.8X N  and   2

8, 2.6Y N . Since X and Y are independent, the total 

journey time T X Y   is distributed as 

                                          2 2 2
52 8,   1.8 2.6 60,   3.16T N N     

The standard variable is thus 

                                                         
60

3.16

T
Z


   

and the required probability is given by 

             
65 60

Pr 65 Pr Pr 1.58 1 Pr 1.58 1 0.943 0.057
3.16

T Z Z Z
 

           
 

  

Thus the total journey time exceeds 65 minutes on 5.7% of occasions. 
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The above results may be extended. For example, if the random variables 
iX , 

1,2, ,i n , are distributed as  2,i i iX N    then the random variable i i

i

Z c X

(where the 
ic  are constants) is distributed as 2 2,i i i i

i i

Z N c c 
 
 
 
   . 

 

5.2 The log-normal distribution 

 

If the random variable X follows a Gaussian distribution then the variable 
XY e  is described by a log-normal distribution. If X can take values in the range −∞ 

to ∞, then Y will lie between 0 and ∞. The probability density function for Y is 

                                           
2

1 ln

21 1

2

y
dx

g y f x y e
dy y





 

 
  

                        (5.24) 

In figures 5.3, we plot some examples of the log-normal distribution for various 

values of the parameters μ and σ2. 

 

 

Figure 5.3a The PDF g(y) for the log-normal distribution for various values 

of the parameters σ and 0  . 
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Figure 5.3b The PDF g(y) for various values of the parameters σ and 1  . 

 

We note that μ and σ2 are not the mean and variance of the log-normal distribution, 

but rather the parameters of the corresponding Gaussian distribution for X. The mean 

and variance of Y, however, can be found using the MGF of X, which reads 

                                                  
2 21

2
t t

tX

XM t E e e
 

                                    (5.25) 

Thus, the mean and the variance of Y are 

                                               
21

21X

XE Y E e M e
 

                                 (5.26) 

                                           
222 2 X XV Y E Y E Y E e E e               

                      
2

2 2 2 2 2

2
1

2 2 2 2 2 2 222 1 1X XM M e e e e e e
 

        


   
 

        
 

 

 

5.3 The exponential and gamma distributions 

The exponential distribution with positive parameter λ is given by 

                                                   
 for 0

0    for  0

xe x
f x

x

  
 


                               (5.27) 
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and satisfies   1f x dx





  as required. The exponential distribution occurs naturally 

if we consider the distribution of the length of intervals between successive events 

in a Poisson process or, equivalently, the distribution of the interval (i.e. the waiting 

time) before the first event. If the average number of events per unit interval is λ then 

on average there are x  events in interval x, so that from the Poisson distribution the 

probability that there will be no events in this interval is given by 

                  
!

x

f x e
x

    with x              Pr no events in interval x xe    

The probability that an event occurs in the next infinitestimal interval  ,x x dx  is 

given by dx , so that 

                             Pr the first event occurs in the interval , xx x dx e dx     

Hence the required probability density function is given by 

                                                            xf x e     

 

The expectation and variance of the exponential distribution can be evaluated 

as 1/   and  
2

1/   respectively. The MGF is given by 

                                                          M t
t







                                         (5.28) 

Indeed, 

                                  

0 0

t xtX tx x

XM t E e e e dx e dx
t

 
 



 
         

                                    
 

2XM t
t




 


          

1
0XE X M


    

                                   
 

3

2
XM t

t




 


        2

2

2
0XE X M


       

                                       
2

22

2 2

2 1 1
V X E X E X

  

 
       

 
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We may generalise the above discussion to obtain the PDF for the interval 

between every rth event in a Poisson process or, equivalently, the interval (waiting 

time) before the rth event. We begin by using the Poisson distribution to give 

            
!

x

f x e
x

    with x       
 

 

1

Pr 1 events occur in interval 
1 !

r

x
x

r x e
r

 


 


 , 

from which we obtain 

                           
 

 

1

Pr th event occurs in the interval ,
1 !

r

x
x

r x x dx e dx
r

 




 


 

Thus the required PDF is 

                                                
 

 
1

1 !

r xf x x e
r




 


                               (5.29) 

which is known as the gamma distribution of order r with parameter λ. Although our 

derivation applies only when r is a positive integer, the gamma distribution is defined 

for all positive r by replacing  1 !r   by  r . If a random variable X is described by 

a gamma distribution of order r with parameter λ, we write  ,X r  ; we note that 

the exponential distribution is the special case  ,1  . The gamma distribution 

 ,r   is plotted in figure 5.4 for 1   and 1,2,5,10r  . For large r, the gamma 

distribution tends to the Gaussian distribution whose mean and variance are 

specified by (5.31) below. 

 

Figure 5.4  f x  for the gamma distributions  ,r   with 1   and 1,2,5,10r  . 
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The MGF for the gamma distribution is obtained from that for the exponential 

distribution, by noting that we may consider the interval between every rth event in 

a Poisson process as the sum of r intervals between successive events. Thus the rth-

order gamma variate is the sum of r independent exponentially distributed random 

variables. From (5.28), the MGF of the gamma distribution is given by 

                                                          
r

M t
t





 
  

 
                                   (5.30) 

from which the mean and variance are found to be 

                           
 

1

2

r

XM t r
t t

 

 



 
   

  
          0X

r
E X M


     

                             
   

2 12

4 3

2
1

r r

XM t r r r
t tt t

   

  

 

   
      

     
 

                                     
  2

2

2 2 2

1 2
0X

r r r r r
E X M

  

 
        

                                      
2 2

22

2 2 2

r r r r
V X E X E X

  


          

                                             
r

E X


             2

r
V X


                               (5.31) 

Multiple gamma distributions If  ,i iX r  , 1,2, ,i n  are independent gamma 

variates then the random variable 1 2 nY X X X     has MGF 

                                           
1 2

1

i nr r r rn

i

M t
t t

 

 

  



   
    

    
                      (5.32) 

Thus Y is also a gamma variate, distributed as  1 2, nY r r r     . 

 

5.4 The chi-squared distribution 

In section Functions of random variables, we showed that if X is Gaussian 

distributed with mean μ and variance σ2, such that  2,X N   , then the random 

variable  
2 2/Y X     is distributed as the gamma distribution 

1 1
,

2 2
Y 

 
 
 

. Let us 
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now consider n independent Gaussian random variables  2,i i iX N   , 1,2, ,i n , 

and define the new variable 

                                                 
 

2

2

2
1

n
i i

n

i i

X 





                                     (5.33) 

Using the result (5.32) for multiple gamma distributions, 2

n  must be distributed as 

the gamma variate 2 1 1
,

2 2
n n 

 
 
 

 , which from (5.29) has the PDF 

                     
 

 
1

1 !

r xf x x e
r




 


              
1 1

2
2

1
12

1 2

2

n

x

f x x e

n


 

  
    
 

                     

                                                      
1

2 2

2

1

1
2

2

n x

n
f x x e

n

 


 

 
 

                           (5.34) 

 

This is known as the chi-squared distribution of order n and has numerous 

applications in statistics. Setting 
1

2
   and 

1

2
r n  in (5.31), we find that 

                                       2

n

r
E n


      ,       2

2
2n

r
V n


                          (5.35) 

 

Generalisation: when the n Gaussian variables 
iX  are not linearly independent but 

are instead required to satisfy a linear constraint of the form 

                                                
1 1 2 2 0n nc X c X c X                                 (5.36) 

in which the constants ic  are not all zero. In this case, it may be shown that the 

variable 2

n  defined in (5.33) is still described by a chi squared distribution, but one 

of order 1n . This result may be extended to show that if the n Gaussian variables 

iX  satisfy m linear constraints of the form (5.35) then the variable 2

n  defined in 

(5.33) is described by a chi-squared distribution of order n m .   
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5.5 The uniform distribution 

Finally we mention the very simple, but common, uniform distribution, which 

describes a continuous random variable that has a constant PDF over its allowed 

range of values. If the limits on X are a and b then 

                                                    
1

  for 

0      otherwise

a x b
f x b a


 

 



                            (5.36) 

The MGF of the uniform distribution is found to be 

                                         
1 1

bb tx
tX tx

a a

e
M t E e e dx

b a b a t
         

                                                      
 

bt ate e
M t

b a t





                                          (5.37) 

and its mean and variance are given by 

                                            
2

a b
E X


            

 
2

12

b a
V X


                       (5.38) 


