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Chapter 4 Important discrete distributions 

Bibliografie: Riley et al. (2006), Mihoc and Micu (1980) 

 

Having discussed some general properties of distributions, we now consider 

the more important discrete distributions encountered in physical applications. These 

are discussed in detail below, and summarised in table 4.1. 

 

Table 4.1. Important discrete distributions 

Distribution Probability law  f x   MGF  E X    V X   
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4.1 The binomial distribution 

Perhaps the most important discrete probability distribution is the binomial 

distribution. This distribution describes processes that consist of a number of 

independent identical trials with two possible outcomes, A and B A . We may call 

these outcomes ‘success’ and ‘failure’ respectively. If the probability of a success is 

 Pr A p  then the probability of a failure is  Pr 1B q p   . If we perform n trials 

then the discrete random variable 

                                             number of times  A occursX                                   (4.1) 

can take the values 0,1,2, , n ; its distribution amongst these values is described by 

the binomial distribution. 
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We now calculate the probability that in n trials we obtain x successes (and so

n x  failures). One way of obtaining such a result is to have x successes followed by 

n x  failures. Since the trials are assumed independent, the probability of this is 

                                                   
 times  times

x n x

x n x

pp p qq q p q 



    

This is, however, just one permutation of x successes and n x  failures. The total 

number of permutations of n objects, of which x are identical and of type 1 and n x  

are identical and of type 2, is given by  

                                                        
 

!

! !

x

n

n
C

x n x



  

Therefore, the total probability of obtaining x successes from n trials is 

 

                                          Pr 1
n xx x n x x x

n nf x X x C p q C p p
                      (4.2) 

which is the binomial probability distribution formula. When a random variable X 

follows the binomial distribution for n trials, with a probability of success p, we write 

 ,X Bin n p . Some typical binomial distributions are shown in figure 4.1. 

 

Figure 4.1 Some typical binomial distributions with various combinations 

of parameters n and p. 
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Exercise 1. If a single six-sided die is rolled five times, what is the probability that 

a six is thrown exactly three times? 

Here the number of ‘trials’ n = 5, and we are interested in the random variable 

                                              number of sixes thrownX    

Since the probability of a ‘success’ is 1/ 6p  , the probability of obtaining exactly 

three sixes in five throws is given by (4.2) as 

                               
 

3 2

3 3 5 3

5

5! 1 5
Pr 3 0.032

3! 5 3 ! 6 6
X C p q     
      

    
  

 

For evaluating binomial probabilities a useful result is the binomial recurrence 

formula 

                      
   

1 1 1 1 1!
Pr 1

1 ! 1 !

x x n x x n x

n

n
X x C p q p q

x n x

         
  

  

                                        
   

1! !

! ! 1 1 ! !

x n x x n xn n x p n x n
p pq q p q

x n x x q x x n x

   
 

   
 

                                      Pr 1 Pr
1

p n x
X x X x

q x


   


                                     (4.3) 

which enables successive probabilities  Pr X x k  , 1,2,k   , to be calculated once 

 Pr X x  is known; it is often quicker to use than (4.2). 

 

Exercise 2. The random variable X is distributed as 
1

3,
2

X Bin
 
 
 

. Evaluate the 

probability function  f x  using the binomial recurrence formula. 

The probability  Pr 0X   may be calculated using (4.2) and is 

                                           
0 3

0

3

1 1 1
Pr 0

2 2 8
X C

   
     

   
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The ratio 
1 1

/ / 1
2 2

p q    in this case and so, using the binomial recurrence formula 

(4.3), we find 

                                              
3 0 1 3

Pr 1 1
0 1 8 8

X


    


  

                                              
3 1 3 3

Pr 2 1
1 1 8 8

X


    


 

                                              
3 2 3 1

Pr 3 1
2 1 8 8

X


    


 

results which may be verified by direct application of (4.2). 

 

As required, the binomial distribution satisfies 

                                             
0 0

1
n n

nx x n x

n

x x

f x C p q p q

 

           

From the definitions of  E X  and  V X  for a discrete distribution, we may 

show that for the binomial distribution  E X np  and  V X npq . The direct 

summations involved are, however, rather cumbersome and these results are 

obtained much more simply using the moment generating function. 

 

The moment generating function for the binomial distribution 

To find the MGF for the binomial distribution we consider the binomial 

random variable X to be the sum of the random variables 
iX , 1,2, ,i n , which are 

defined by 

                                    
1  if a 'success' occurs on the th trial

0  if a 'failure' occurs on the th trial
i

i
X

i


 


                          (4.4) 

iX  are known as Bernoulli random variables. Thus, 

                                 0 1Pr 0 Pr 1itX t t

i i iM t E e e X e X           

                                                   1 t tq e p pe q        
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If 
1X , 

2X , … ,
nX  are independent random variables then MGF for the sum 

1 2n nS X X X     is 

                                                        
1

n i

n

S X

i

M t M t


                                         (4.5) 

It follows that the MGF for the binomial distribution is given by  

                                                    
1

i

n
n

t

X

i

M t M t pe q


                                  (4.6) 

We can now use the moment generating function to derive the mean and variance of 

the binomial distribution. 

                                                     
1n

t tM t n pe q pe


     

                                               
1

0
n

E X M np p q np


                                  (4.7) 

The last equality follows from 1p q  . 

                                     
2 1

1
n n

t t t t tM t npe n pe q pe npe pe q
 

        

                                             2 20 1E X M np n np         

Thus,  

                                        
2 22 2 1 1V X E X E X np n np np np p            

                                                            V X npq                                            (4.8) 

Multiple binomial distributions 

Suppose X and Y are two independent random variables, both of which are 

described by binomial distributions with a common probability of success p, but with 

different numbers of trials 
1n  and 

2n , so that  1,X Bin n p  and  2 ,Y Bin n p . Now 

consider the random variable Z X Y  . We could calculate the probability 

distribution of Z directly using (3.41), but it is much easier to use the MGF (4.6). 

Since X and Y are independent random variables, the MGF  ZM t  of the new 

variable Z X Y   is given simply by the product of the individual MGFs  XM t  and 

 YM t . Thus, 
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                                            1 2n n
t t

Z X YM t M t M t pe q pe q        

                                                        1 2n n
t

ZM t pe q


                                        (4.9) 

which we recognize as the MGF of  1 2 ,Z Bin n n p . Hence Z is also described by 

a binomial distribution. 

This result may be extended to any number of binomial distributions. If 
iX , 

1,2, ,i N , is distributed as  ,i iX Bin n p  then 
1 2 NZ X X X     is distributed as 

 1 2 ,NZ Bin n n n p   , as would be expected since the result of i

i

n  trials cannot 

depend on how they are split up.  

 

4.2 The geometric and negative binomial distributions 

A special case of the binomial distribution occurs when instead of the number 

of successes we consider the discrete random variable 

                         number of trials required to obtain the first successX                    (4.10) 

The probability that x trials are required in order to obtain the first success, is simply 

the probability of obtaining 1x   failures followed by one success. If the probability 

of a success on each trial is p, then for 0x    

                                            
1 1Pr 1

x xf x X x p p q p
                               (4.11) 

where 1q p  . This distribution is called the geometric distribution (for waiting 

time problems). The probability generating function for this distribution is:  

                                    1

0 1

  n n n

X n

n n

t f t q p t
 



 

     

                                                      
1 1 1

n

n

p p qt pt
qt

q q qt qt





  
 

                        (4.12) 

By replacing t by te  in (4.12) we immediately obtain the MGF of the geometric 

distribution   

                                                        
1

t

t

pe
M t

qe



                                           (4.13) 

from which its mean and variance are found to be 
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                                 
   

   
2 2

1

1 1

t t t t t

t t

pe qe pe qe pe
M t

qe qe

  
  

 
  

                                            
 

2

1
0

1

p
E X M

pq
  


       

1
E X

p
           (4.14)         

                                   
    

 

2

4

1 2 1

1

t t t t t

t

pe qe pe qe qe
M t

qe

   
 


 

                               
 

 2 2 2 2

4
1 2 2 2

1

t
t t t t

t

pe
M t qe q e qe q e

qe
     


 

                                                  
 

 2 2

4
1

1

t
t

t

pe
M t q e

qe
  


 

                                      
 

 
 

 
2 2

4 3 2

1 1
0 1

1 1

p qp q
E X M q

pq q

 
       

 
 

                            
22

2 2 2

1 1q q
V X E X E X

p p p


                2

q
V X

p
       (4.15) 

 

Exercise 3: Wafer Contamination. The probability that a wafer contains a large 

particle of contamination is 0.01. If it is assumed that the wafers are independent, 

what is the probability that exactly 125 wafers need to be analyzed before a large 

particle is detected? 

Let X denote the number of samples analyzed until a large particle is detected. 

Then X is a geometric random variable with 0.01p  . The requested probability is 

                                             
124

125 0.99 0.01 0.0029P X     

 

Another distribution closely related to the binomial is the negative binomial 

distribution. This describes the probability distribution of the random variable 

                                     number of failures before the th success.X r                   (4.16)     
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One way of obtaining x failures before the r-th success is to have 1r   successes 

followed by x failures followed by the r-th success, for which the probability is 

                                                  
1 times  times

r x

r x

pp p qq q p p q



                                  (4.17) 

However, the first 1r x   factors constitute just one permutation of 1r   successes 

and x failures. The total number of permutations of these 1r x   objects, of which 

1r    are identical and of type 1 and x are identical and of type 2, is 

                                                         
 

  1

1 !

1 ! !

x

r x

r x
C

r x
 

 



  

Therefore, the total probability of obtaining x failures before the rth success is 

                                                  1Pr x r x

r xf x X x C p q                               (4.18) 

which is called the negative binomial distribution.  

 

The PGF of this distribution is: 

                                   1 1

0 0 0

   n n r n n r n n n

X n r n r n

n n n

t f t C p q t p C q t
  

   

  

           (4.19) 

For negative value of n in the binomial expansion, we have: 

                                   
0

k
m m k

m

k

y
x y x C

x


 





 
   

 
    where 0m   and x y    (4.20) 

and   11
kk k

m m kC C      

So,                                     
1

1 C  1
n rr n n n r

X r

n

t p q t p qt








      

                                                      
1

r

X

p
t

qt

 
   

 
                                       (4.21) 

By replacing t by te , we immediately obtain the MGF of the negative binomial 

distribution   

                                                      
1

r

t

p
M t

qe

 
  

 
                                       (4.22) 
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and that its mean and variance are given by 

                                  
1 1

1 1
r r

r t t r t tM t p r qe qe p rqe qe
   

         

                                               
1

0 1
rr rq

E X M p rq q
p

 
                           (4.23) 

                                   
1 2

1 1 1
r r

r t t r t t tM t p rqe qe p rqe r qe qe
   

          

                                
1 22 0 1 1 1

r rr rE X M p rq q p rq r q q
   

                                            

                 2

1 2 2 2 2

1 1 1 1
1r

r r

r r rq rq
E X p rq q rq q p qr q qr

p p p p p p 

    
              

   
  

                                       
2 2

22

2 2 2
1

rq r q rq
V X E X E X qr

p p p
         

                                             
rq

E X
p

      and     2

rq
V X

p
                            (4.24) 

 

4.3 The hypergeometric distribution 

In subsection 4.1 we saw that the probability of obtaining x successes in n 

independent trials was given by the binomial distribution. Suppose that these n 

‘trials’ actually consist of drawing at random n balls, from a set of N such balls of 

which M are red and the rest white. Let us consider the random variable 

                                           X = number of red balls drawn.                         (4.25) 

On the one hand, if the balls are drawn with replacement then the trials are 

independent and the probability of drawing a red ball is /p M N  each time. 

Therefore, the probability of drawing x red balls in n trials is given by the binomial 

distribution as 

                                             
 

 
!

Pr 1
! !

n xxn
X x p p

x n x


  


                          (4.26) 

On the other hand, if the balls are drawn without replacement the trials are not 

independent and the probability of drawing a red ball depends on how many red balls 

have already been drawn. We can derive a general formula for the probability of 

drawing x red balls in n trials, as follows.  
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The number of ways of drawing x red balls from M is x

MC , and the number of 

ways of drawing n x  white balls from N M  is n x

N MC 


. Therefore, the total number 

of ways to obtain x red balls in n trials is x n x

M N MC C 


. However, the total number of ways 

of drawing n objects from N is simply n

NC . Hence the probability of obtaining x red 

balls in n trials is 

                                          Pr
x n x

M N M

n

N

C C
X x

C



                                      (4.27) 

                 
 

 

   

 ! ! !!
Pr

! ! ! ! !

N M n N nM
X x

x M x n x N M n x N

 
 

    
         (4.28) 

                                           
not M

p
N

        1q p    

                  
 

 
 

 
1 !

! ! !

! ! !
! 1 !

M
N

Np n N nN

x Np x NM
n x N n x

N

  
     

   
     

  

 

                          
     

     

! ! ! !
Pr

! ! ! ! !

Np Nq n N n
X x

x Np x n x Nq n x N


 

   
               (4.29) 

This is called the hypergeometric distribution.  

 

It may be shown that the hypergeometric distribution has mean 

                                                       
M

E X n np
N

                                         (4.30) 

and variance 

                                         
  

 2 1 1

nM N M N n N n
V X npq

N N N

  
 

 
                    (4.31) 

The argumentation is based on the identity  

                                                       
0

n
x n x n

M N M N

x

C C C





                                         (4.32) 

resulting from the identification of the coefficients of ny  in  
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                                                   1 1 1
M N M N

y y y


      

              1 1 1

1 1 1
10 0
1

x n xn n
x n x n nM N M
M N M N Nn n n

nx xN N N
N

C C M M M Mn
E X x C C C C np

NC C C N
C

n


   
   

 


         

                                
 

 

   
1

1

1 !!

! ! 1 ! !

x x

M M

M MM M
C C

x M x x x M x x





 
       

  

                      

 

   
 

 

2 2

0 0 0

1 2

1 2

0 0

1

1
1

x n x x n x x n xn n n
M N M M N M M N M

n n n
x x xN N N

n n
x n x x n x

M N M M N Mn n
x xN N

C C C C C C
E X x x x x

C C C

M MM
x C C E X C C E X

C C

  

  

  

   

   

 

      


    

  

 

 

                                            
 2 2

2

1
n

Nn

N

M M M
E X C n

C N






      

                           
  2

22 2

2

1
n

Nn

N

M M M M
V X E X E X C n n

C N N





  
       

 
 

                   Also      
 

  

     

 

 
2

2

1 2 ! 1!

! ! 1 2 ! ! 1

n n

N N

N N N N NN
C C

n N n n n n N n n n





  
  

    
  

                                     
   

 

2
1 1

1

n

Nn

N

M M n n M M
V X C n n

C N N N N

   
   

  
 

                            
       

 

2 2

2

1 1 1 1

1

M M n n N nMN N n M N
V X

N N

     



 

                                         
  

 2 1 1

nM N M N n N n
V X npq

N N N

  
 

 
 

 

Exercise 4. In the UK National Lottery each participant chooses six different 

numbers between 1 and 49. In each weekly draw six numbered winning balls are 

subsequently drawn. Find the probabilities that a participant chooses 0, 1, 2, 3, 4, 5, 

6 winning numbers correctly. 
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The probabilities are given by a hypergeometric distribution with 49N   (the 

total number of balls), 6M   (the number of winning balls drawn), and 6n   (the 

number of numbers chosen by each participant). Thus, substituting in (4.27), we find 

                                  
0 6

6 43

6

49

1
Pr 0

2.29

C C

C
           

1 5

6 43

6

49

1
Pr 1

2.42

C C

C
    

                                 
2 4

6 43

6

49

1
Pr 2

7.55

C C

C
           

3 3

6 43

6

49

1
Pr 3

56.6

C C

C
   

                                 
4 2

6 43

6

49

1
Pr 4

1032

C C

C
           

5 1

6 43

6

49

1
Pr 5

54200

C C

C
   

                                                    
6 0

6 43

6 6

49

1
Pr 6

13.98 10

C C

C
 


 

It can easily be seen that 

                                  
6

3

1

Pr 0.44 0.41 0.13 0.02 10 1
i

i O 



        

 

Note that if the number of trials (balls drawn) is small compared with N, M 

and N M  then not replacing the balls is of little consequence, and we may 

approximate the hypergeometric distribution by the binomial distribution (with 

/p M N ); this is much easier to evaluate.      

 

4.4 The Poisson distribution 

We have seen that the binomial distribution describes the number of 

successful outcomes in a certain number of trials n. The Poisson distribution also 

describes the probability of obtaining a given number of successes but for situations 

in which the number of ‘trials’ cannot be enumerated; rather it describes the situation 

in which discrete events occur in a continuum. Typical examples of discrete random 

variables X described by a Poisson distribution are the number of telephone calls 

received by a switchboard in a given interval, or the number of stars above a certain 

brightness in a particular area of the sky. Given a mean rate of occurrence λ of these 

events in the relevant interval or area, the Poisson distribution gives the probability 

 Pr X x  that exactly x events will occur. 
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We may derive the form of the Poisson distribution as the limit of the binomial 

distribution when the number of trials n   and the probability of ‘success’ 0p 

, in such a way that np   remains finite. Thus, in our example of a telephone 

switchboard, suppose we wish to find the probability that exactly x calls are received 

during some time interval, given that the mean number of calls in such an interval is 

λ. Let us begin by dividing the time interval into a large number, n, of equal shorter 

intervals, in each of which the probability of receiving a call is p. As we let n   

then 0p  , but since we require the mean number of calls in the interval to equal λ, 

we must have np  . The probability of x successes in n trials is given by the 

binomial formula as    

                                             
 

 
!

Pr 1
! !

n xxn
X x p p

x n x


  


                       (4.33) 

Now as n  , with x finite, the ratio of the n-dependent factorials in (4.33) behaves 

asymptotically as a power of n, i.e. 

                                   
 

    
!

lim lim 1 2 1 ~
!

x

n n

n
n n n n x n

n x 
    


  

                                          
 

 

/

0 0

1
lim lim 1 lim

11

p

n x

xn p p

p e
p

p

 


  


  


  

Thus, using np  , (4.33) tends to the Poisson distribution 

                                                   Pr
!

xe
f x X x

x



                                 (4.34) 

which gives the probability of obtaining exactly x calls in the given time interval. As 

we shall show below, λ is the mean of the distribution. Events following a Poisson 

distribution are usually said to occur randomly in time. 

If a discrete random variable is described by a Poisson distribution of mean λ 

then we write  X Po  . As it must be, the sum of the probabilities is unity: 

                                           
0 0

Pr 1
!

x

x x

X x e e e
x

   
 

 

       

From (4.34) we may also derive the Poisson recurrence formula, 
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          
 

 
1

Pr 1 Pr
1 ! 1 ! 1

x x

X x e e X x
x x x x

    
      

  
  for 0,1,2,x   (4.35) 

which enables successive probabilities to be calculated easily once one is known. 

 

Exercise 5. A person receives on average one e-mail message per half-hour interval. 

Assuming that the e-mails are received randomly in time, find the probabilities that 

in any particular hour 0, 1, 2, 3, 4, 5 messages are received. 

Let X = number of e-mails received per hour. Clearly the mean number of e-

mails per hour is two, and so X follows a Poisson distribution with 2  , i.e. 

                                                    22
Pr

!

x

X x e
x

    

Thus   2Pr 0 0.135X e     

            2Pr 1 2 0.271X e     

            2 2Pr 2 2 / 2! 0.271X e    

            3 2Pr 3 2 / 3! 0.180X e    

            4 2Pr 4 2 / 4! 0.090X e    

             5 2Pr 5 2 / 5! 0.036X e    

Or using the recurrence formula (4.35):    
2

Pr 1 0.135 0.270
0 1

X    


, 

   
2

Pr 2 0.270 0.270
1 1

X    


,    
2

Pr 3 0.270 0.180
2 1

X    


  … 

 

The above example illustrates the point that a Poisson distribution typically 

rises and then falls. It either has a maximum when x is equal to the integer part of λ 

or, if λ happens to be an integer, has equal maximal values at 1x    and x  . The 

Poisson distribution always has a long ‘tail’ towards higher values of X but the higher 

the value of the mean the more symmetric the distribution becomes. Typical Poisson 

distributions are shown in figure 4.2. 
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Figure 4.2 Poisson distributions for different values of the parameter λ. 

 

Using the definitions of mean and variance, we may show that, for the Poisson 

distribution,  E X   and  V X  . Nevertheless, as in the case of the binomial 

distribution, these results are much more easily proved using the MGF. 

 

The moment generating function for the Poisson distribution 

The MGF of the Poisson distribution is given by 

                                  
 

0 0! !

t

x
tx

tX tx e

X

x x

ee
M t E e e e e e

x x


  

 
 

 

          

                                                            
 1te

XM t e
 

                                     (4.36) 

from which we obtain 

                                  
 1tet

XM t e e





   

                                  
     21 1t te et t

XM t e e e e
 

 
 

    
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                                              12 2
tet te e e


 


    

Thus, the mean and variance of the Poisson distribution are given by 

                                                   0XE X M                                            (4.37) 

                                             2 20XE X M         

                                     
22 2 2V X E X E X                                  (4.38) 

 

The Poisson approximation to the binomial distribution 

Earlier we derived the Poisson distribution as the limit of the binomial 

distribution when n   and 0p   in such a way that np   remains finite, where 

λ is the mean of the Poisson distribution. It is not surprising, therefore, that the 

Poisson distribution is a very good approximation to the binomial distribution for 

large n (≥ 50, say) and small p (≤ 0.1, say). Moreover, it is easier to calculate as it 

involves fewer factorials. 

 

Exercise 6. In a large batch of light bulbs, the probability that a bulb is defective is 

0.5%. For a sample of 200 bulbs taken at random, find the approximate probabilities 

that 0, 1 and 2 of the bulbs respectively are defective. 

Let the random variable X = number of defective bulbs in a sample. This is 

distributed as  200,0.005X Bin , implying that 1.0np   . Since n is large and p 

small, we may approximate the distribution as  1X Po , giving 

                                                      1 1
Pr

!

x

X x e
x

    

from which   1Pr 0 0.37X e    ,   1Pr 1 0.37X e   ,   1Pr 2 / 2 0.18X e   . For 

comparison, it may be noted that the exact values calculated from the binomial 

distribution are identical to those found here to two decimal places.  

 

Multiple Poisson distributions 
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Let us suppose X and Y are two independent random variables, both of which 

are described by Poisson distributions with (in general) different means, so that 

 1X Po   and  2Y Po  . Now consider the random variable Z X Y  .  

Since X and Y are independent RVs, the MGF for Z is simply the product of 

the individual MGFs for X and Y . Thus,  

                                     
      1 2 1 21 1 1t t te e e

Z X YM t M t M t e e e
      

        

which we recognise as the MGF of  1 2Z Po   . Hence Z is also Poisson 

distributed and has mean 
1 2  .  

Exercise 7. Two types of e-mail arrive independently and at random: external e-

mails at a mean rate of one every five minutes and internal e-mails at a rate of two 

every five minutes. Calculate the probability of receiving two or more e-mails in any 

two-minute interval. 

Let        X = number of external e-mails per two-minute interval, 

                       Y = number of internal e-mails per two-minute interval. 

Since we expect on average one external e-mail and two internal e-mails every five 

minutes we have  0.4X Po  and  0.8Y Po . Letting Z X Y   we have 

   0.4 0.8 1.2Z Po Po  . Now                 

                                   Pr 2 1 Pr 2 1 Pr 0 Pr 1Z Z Z Z           

                                                  1.2Pr 0 0.301Z e         

                                                 1.2 1.2
Pr 1 0.361

1
Z e    

Hence      Pr 2 1 Pr 0 Pr 1 1 0.301 0.361 0.338Z Z Z           

 

The above result can be extended, to any number of Poisson processes, so that 

if  i iX Po  , 1,2, ,i n  then the random variable 
1 2 nZ X X X     is distributed 

as  1 2 nZ Po      . 

Un site bun pentru reprezentarea functiilor de probabilitate The applet at 

http://mathlets.org/mathlets/probability-distributions/ gives a dynamic view of some discrete distributions.                                        


